AAAAAAAAAAAAAAAAAA

Programming Models for HPC

Marc Snir

U.S. DEPARTMENT OF
2, ENERGY

Goals of Lecture

e Establish a taxonomy of HPC programming models and
systems

* Introduce the main programming models and systems in
current use

 Understand there is no magic bullet, but trade-offs

INTRODUCTION

Some Taxonomy

* Programming model: Set of operations and constructs used to
express parallelism

— Message-passing, Shared memory, Bulk-synchronous...

* Programming system: Library or language that embodies one or
more programming models

— MPI, OpenMP, Cuda...

— C++ and Java are systems that implement the same
programming model

— MPI supports multiple programing models: message-passing,
one-sided communication, bulk synchronous, asynchronous...

 Model: defines semantics of execution and defines performance of
execution

— Usually, semantics are carefully defined, but not so performance
model

Implementation Stack

Language & Libraries

1 Compiler, autotuner

Executable High-Level
Execution model
(defined by run-time)
Run-time
Low-Level
Execution model
Hardware (defined by HW)

Possibly, more layers

Generic Hardware -- Node

Physical Physical
Thread Thread

Vector unit

Physical Physical
Thread Thread

Shared Memory

Communication & Synchronization

Load/store (from memory to cache or cache to cache)

Hardware and software cache prefetch

Read-modify-write operations

— Mutual exclusion (locks, atomic updates) — non-ordering,
symmetric synchronization

— Monitor/wait — ordering, asymmetric synchronization

CPUs provide extensive support to the former; HPC software
has strong need for the later.

Node Architecture -- Evolution

* Increasing number of physical threads
* Increasing number of cache levels

— Lower level caches may be replaced with scratchpads
(local memory)

* Shared memory may not be coherent and will be NUMA
— May be partitioned

Physical threads may not be all identical

— E.g., CPU-like vs. GPU-like physical threads

— May have same ISA and different performance, or
different ISAs

Generic Hardware -- System

Communication &

Synchronization

Primitives:

* Point-to-point: send/
receive...

* One-sided (rDMA): put,
get, accumulate...

Interconnection Network « Collective: barrier,

reduce, broadcast...

* Flat network vs. partially or completely exposed topology

PROGRAMMING MODELS

Low-Level Programming Model

Fixed number of threads (1/2/4 per core)

— Threads communicate via shared memory
— Fixed amount of memory per node

Fixed number of nodes

— Nodes communicate via message-passing (point-to-point,
one-sided, collective)

Performance model.

— All threads compute at same speed (equal work = equal
time)

— Memory is flat

— Communication time predicted by simple model (e.g.
a+bm, where m is message size

Model can be implemented via MPI + pthreads, or MPI +
restricted use of OpenMP

Low-Level Programming Model Pros & Cons

v/ Very hardware specific — can achieve best performance on
current systems

X Very low-level: Hard to get correct programs

X Very hardware-specific: number of threads, amount of
memory and number of nodes are code parameters

X Does not accommodate heterogeneous cores

X Performance model may not work in the future, because of
power management and error handling: Equal work # equal
compute time

Higher-level Programming Models

1. Virtualize resource and have the run-time handle the mapping of
virtual resources to physical resources

— “Virtual model execution” has well-defined semantics and
performance model

2. Encourages/mandates use of programming patterns that reduce
the likelihood of errors and facilitate virtualization

— Ensures that high-level performance model gives correct
predictions

v Simplifies programming
¢/ Provides more portability: program need not exactly match the
physical resources — e.g., number of threads or nodes

¢/ Can hide imperfections in the low-level model (e.g., assumption
of flat memory or fixed compute speed)

X Can be inefficient
* Need to understand when high-level performance model is valid

Example: Dijskra, Go-to Statement Considered
Harmful -- Restrict to Facilitate Programming

If program uses go-to’s arbitrarily then it is hard to
understand relation between static program and dynamic
execution state

If program uses only well-nested loops and function calls, the
relation is simple: Execution state is defined by

— Program counter (what statement is currently executed)
— Call stack (nesting of function calls)

— Values of loop indices (which iteration is currently
executed)

Much easier to get understand semantics and performance

Not restrictive: General programs can be transformed into
well-structured programs without significant performance
loss.

SHARED-MEMORY
PROGRAMMING

Locality in Shared Memory: Virtualization and
Performance Model

Caching = memory virtualization: Name (address) of variable
does not determine its location; caching hardware does so

Performance model: Memory capacity is DRAM size; memory
latency is L1 speed

— Reasonable approximation if cache hit rate is high

— Good cache hit rate is essential to performance, because of
high memory latency

— >99% of power consumed in future chips is spent moving
data; reduced bandwidth consumption is essential

For high cache hit rate, need good locality:
— Temporal locality, spatial locality, thread locality

Performance model is valid only for programs with good
locality

Dynamic Task Scheduling: Virtualization and
Performance Model

* Isis convenient to express parallel computations as a set of
tasks and dependencies between tasks (task graph)

A N\

 E.g., reduction: N

 Example has static task graph; in general it can be dynamic
(new tasks spawned during execution)

Mapping Tasks to Physical Threads

 Work: Total number of operations (sequential compute time)

e Depth: Critical path length (compute time with unbounded number
of threads)

* Desired performance model: Time = max (Work/P, Depth)
— Can be achieved, with suitable restrictions on task graph

* Restrictions on task granularity (size) — need to be large enough so
as to amortize cost of scheduling task

— Cost: overhead of scheduling + overhead of moving data to
place where task is scheduled (1000’s instructions in shared
memory)

* Restrictions on task graph:
— Static graph
— “Well-structured” dynamic task graph

Well-Structured Program

Task can spawn children tasks and wait for their
completion

— Spawn
— Parallel loop

No other dependencies exist, except parent to
child

— Series-parallel (and/or) execution graph
Parallel equivalent of go-to less program

Can be implemented in suitably restricted
OpenMP (no synchronization between
concurrent tasks, etc.)

— Scheduling can be done using work-stealing

Work Stealing

* Athread appends a newly created task to local queue
* Anidle thread picks a task from its local queue

* if local queue is empty, it steals a task from another queue

a N\ [)
[1] v/ Theoretically optimal and works well in
practice
- ¢/ Handles well variance in thread speed

X Needs many more tasks than physical
threads (over-decomposition)

a 20

Can a Shared-Memory Programming Model Work on
Distributed Memory?

Naive mapping: Distributed virtual shared memory (DVSM):
Software emulation of HW coherence

— Cache line = page

— Cache miss = page miss

Abysmal performance — lines too large and coherence
overhead too large

Next step: Give up caching & coherence; give up dynamic task
scheduling — Partitioned Global Address Space (PGAS)

— Languages: UPC, Co-Array Fortran
— Libraries: Global Arrays

PGAS model

* Fixed number of (single-threaded) locales
* Private memory at each locale
* Shared memory and shared arrays are partitioned across locales

» Library implementation: remote shared variables accessed via put/
get operation

* Language implementation: references to shared memory variables
are distinct from references to local variables

Global pointers

I
N
-

Local pointers

v

PGAS Performance Model

Not same as shared memory: Remote accesses are much more
expensive than local accesses

Temporal/spatial/thread locality do not cure the problem: No
hardware caching & no efficient SW caching or aggregation of
multiple remote accesses

Performance model is same as distributed memory

O®F Programming style for performance must be distributed-
memory-like: In order to obtain good performance need to
explicitly get/put remote data in large chunks and copy to local
memory

Open problem: Can we define a “shared-memory like”
programming model for distributed memory that provides shared
memory performance model (with reasonable restrictions on
programs)?

How About the Vector Units?

* Low-level: vector instructions
* High-level: compiler handles

* High-level performance model: floating-point performance is
a (large) fraction of vector unit performance

— Requires suitable programming style to write vectorizable
loops

— Direct addressing, alighed dense operands...

DISTRIBUTED-MEMORY
PROGRAMMING

Data Partitioning

* Shared memory: program does not control explicitly data
location; focus is on control partitioning, and data follows
control.

— Performs well if code satisfies restrictions listed for
efficient dynamic tasks scheduling and locality

* Distributed memory: data location is (mostly) static and
controlled by program; focus is on data partitioning and
control follows data

— Performs well if (mostly) static control partition works and
communication across data partitions is limited

Data Partitioning

e Locale = physical location (usually, node)
— Global address = <locale id, local address>

* Global view of data: Aggregates (e.g. arrays) are partitioned
across locales

— Partition is static (or slow changing)

— Predefined partition types and (possibly) user-defined
partitions

— Data is accessed with “global name” (e.g., array indices);
compiler translates to global address.

* Local view of data: Data is accessed using global address (if
remote) or local address (if local)

— Syntactic sugar: Co-arrays, with a locale index
A(7,3)[8] — entry with indices (7,3) on locale 8.

Address Computation

<€ N >
0 1 P-1
* Array index: |

Block size = (N+1)/P
Locale id = i/Block size
Local address = i%Block size+base

Computation is expensive (and even more
so for fancier partitions)

Control Partitioning

* Local view of control: each local runs its own (possibly
multithreaded) code; executions in distinct locales
synchronize explicitly (e.g., with barriers). MPI, UPC, etc.

— Variant: support remote task invocation (code on one
local can spawn computation on another locale). Charm++,
Chapel

* Global view of control: one global parallel loop; compiler &
run-time maps each iterate to a locale chosen to minimize

communication (e.g., owner compute rule)

— User can associate control with data using “on”
statements

Pros & Cons

e Global view of data & control

v/ Program need not change if number of locales or partition
is changed

X Hard to identify and reason about communication in the
program (implicitly determined by partition of data)

 Local view of data & control
— Vice-versa

Can a Distributed-Memory Programming Model Work
on Shared Memory?

* Sure: Partition memory into distinct locales, and associate
each locale with a fixed set of physical threads (one or more)

X Looses some flexibility in dynamic scheduling

X Uses shared memory inefficiently to emulate send-
receive or put-get

v/ Achieves good locality

1. Reducing communication is essential in order to reduce
power

2. We may not have coherence

0® Will need shared-memory programming model with user
control of communication

Non-Coherent, Shared-Memory-Like Programming

Model
e Cache=
1. Local memory
2. Address translation (virtualization)
3. Transfer is implicit
4. coherence

(1) is essential

(2) could be done much more efficiently, with a good HW/SW mix
(e.g., pointer swizzling)

(3) can be done, if maintain many contexts — can be augmented/
replaced with prefetch

(4) Is too expensive and probably superfluous in scientific computing

* Could be common shared memory / distributed memory model?

Is HPC Converging to One Architecture?

* Punctuated equilibrium: Relatively long periods with one
dominant architecture, interspersed with periods of fast
change

— Bipolar vector -> killer micros -> multicore -> accelerators

— We are in a period of fast change (hybrid memory, PIM,
accelerators...)

— It is not clear there will be a convergence by the exascale
era

— Need for faster architecture evolution as Moore’s Law
slows down

— Different markets pulling in different directions
— Possible divergence between HPC and commodity
* Can we “hide” differences across different architectures?

v

Portable Performance
Principle

High-level code
/7 | \

“Compilation”

2R R

Low-level, platform-
specific codes

Practice

Code A— Code B—> Code C

Manual conversion
“ifdef” spaghetti

Can we redefine compilation so that:

— It supports well a human in the loop (manual high-level
decisions vs. automated low-level transformations)

— |t integrates auto-tuning and profile-guided compilation

— It preserves high-level code semantics

— It preserves high-level code “performance semantics”
July 13 MCS -- Marc Snir

Grand Dream: Not One Programming Model

Domain
Specific

A

v

Architecture

Specific

Prog Model 1 Prog Model 2

Prog Model 4 Prog Model 3

More levels and more
paths possible

Automated translation
available at each level
(performance feedback
driven)

User coding supported
at each level

Semantics and
performance
preserved by
translations

BASTA

QUESTIONS?

