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Performance and Portability I 
• Performance (assuming you are solving a new problem, not doing ‘ports’)

• Are you sure you want brute speed? (There is always a price -- realize all HPC machines are 
poorly balanced)

• Or do you just want to run a ‘large’ problem with acceptable time to solution? (This is the 
general case)

• Step I: Know what you want, if performance is a priority it must be designed in right at the 
start, you’ll never get it afterwards (optimizing gains are often minimal to non-existent)

• Step II: If performance is needed, make sure you understand the global science problem(s) 
being addressed; you may have to start from scratch! There’s no replacement for domain 
knowledge

• Factor of two rule -- given human constraints (and Moore’s law), it is not usually worth it to go 
for the last factor of two, but there are exceptions -- HACC is one

• Step III: Obtaining performance is painful, so design for the future -- what can you rely on, 
what can disappear, what can change, what can break -- the more parameters you can 
control, the better -- HPC systems are not your laptop: Learn from experience

• General Advice (mostly obvious): On-chip/node optimization comes first, minimize number of 
performance ‘hot spots’ to the extent possible, ditto with data motion (aim to be compute-
bound, avoid look-ups), avoid forest/tree syndromes, think about sacrificing memory for 
speed wherever possible, vectorize everything, FMAs are your friends, talk to performance 
gurus, do not resort to assembly unless desperate, etc. etc.



Performance and Portability II

• Portability (assuming you are developing new code)
• Three scales of code development: individual (‘idiosyncratic’), small team (‘hot shots’), big 

team to open source (‘industrial’)

• Compute environment: small-scale (‘individual PI’, low diversity hardware), medium-scale 
(‘single project’, somewhat diverse hardware), large-scale (‘multiple projects’, very diverse 
hardware) -- note scale here does not refer to problem size!

• Step I: Consider which categories your situation falls into, this will help set the portability 
constraints

• Concrete advice is difficult; situations vary, look around you and see what other people are 
doing -- learn from them (adopt/reuse what works, dump what does not, be ruthless)

• Simplicity is good (learn from Google!), avoid nonfunctional ‘adornments’

• Design for the future -- software life cycles should be long, but often are not
• Step II: Most science projects start with a compact ‘software core’ that grows in multiple 

directions, pay attention to planning the structure of the core and the extension paths -- things 
will often not work as expected so make sure the structure is sufficiently flexible -- starting 
from scratch should be largely a reconfiguration of key software elements; identify these 
elements and design around them

• Performance and portability are often in opposition, but they can be co-aligned -- as in HACC 



What is HACC?
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HACC (Hardware/Hybrid Accelerated 
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• HACC does very large cosmological 
simulations 
• Design Imperative: Must run at high 

performance on all supercomputer 
architectures at full scale

• Highest performance ever achieved on the 
BG/Q by a science code 

• Combines a number of algorithms using a 
‘mix and match’ approach

• Perfect weak scaling

• Strong scales to better than 100 MB/core 

• Currently running the world’s largest 
cosmology simulation on Mira

Vitali



• Instrumentation Advances
• Cosmic Acceleration                                       
• Nature of Dark Matter
• Primordial Fluctuations
• Neutrinos
• Cosmic Structure Formation

ROSAT (X-ray) WMAP (microwave)

Fermi (gamma ray) SDSS (optical)

Why HACC I?: ‘Precision’ Cosmology

Boyle, Smith

Perlmutter, 
Riess, Schmidt

Mather, Smoot

Optical survey ‘Moore’s Law’

The Source of Knowledge: Sky Surveys

The Cosmic 
Puzzle: Who 
ordered the 
rest of it?



Supercomputer SDSS TelescopeMock Galaxies SDSS 
Galaxies

Dark 
matter

Theory

Why HACC 2?: Key Role of Computation

• Three Roles of Cosmological Simulations
• Basic theory of cosmological probes

• Production of high-fidelity ‘mock skys’ for end-to-end tests of the 
observation/analysis chain

• Essential component of analysis toolkits

• Extreme Simulation and Analysis Challenges
• Large dynamic range simulations; control of subgrid modeling 

and feedback mechanisms

• Design and implementation of complex analyses on large 
datasets; new fast (approximate) algorithms

• Solution of large statistical inverse problems of scientific 
inference (many parameters, ~10-100) at the ~1% level

      

Analysis Software

Cosmological Simulation

Observables

Experiment-
specific output 

(e.g., sky catalog)

Atmosphere

Telescope

Detector

Pipelines

P
ro

je
ct

T
h
e
o
ry

Sc
ie

n
ce



Simulating the Universe 
• Key Role of Gravity

• Gravity dominates at large scales: 
solve the Vlasov-Poisson equation 
(VPE)

• VPE is 6-D and cannot be solved 
as a PDE

• N-Body Methods
• No shielding in gravity (essentially 

long range interactions)

• Technique is naturally Lagrangian

• Are errors controllable?

• More Physics
• Smaller scale ‘gastrophysics’ 

effects added via subgrid modeling 
or post-pocessing (major topic)

• Phenomenology
• Calibrate simulations against 

observations

Structure formation via gravitational Jeans instability

Cosmological Vlasov-Poisson Equation: A ‘wrong-sign’ 
electrostatic plasma with time-dependent particle ‘charge’, 

Newtonian limit of the Vlasov-Einstein equations



The N-Body Problem: Central Issues 
• Algorithms

• Naive P-P hopeless 

• Particle-Mesh: solve Poisson equation on a grid, interpolate 
forces onto particles, has limited resolution, but fast 

• Tree Codes: overcome resolution problem, but not efficient at 
long range, given required error properties

• Hybrid codes: Combine above methods as needed (TPM, P3M, 
etc.)

• Time-stepping: Multi-level schemes/locally adaptive

• Parallel Implementations
• Performance and Scalability

• Portability

• Next-Generation Architectures (‘Pile of PCs’ to ‘Pile of Cell 
Phones’?)
• Complex heterogeneous nodes (including power management)

• Simpler cores, lower memory/core

• Programming environments unclear

BQC:
- 16 cores
- 205 GFlops, 16 GB
- 32 MB L2, crossbar at 
400 GB/s (memory 
connection is 40 GB/s)
- 5-D torus at 40 GB/s

Xeon Phi:
- 60 cores
- 1 TFlops, 8 GB
- 32 MB L2, ring at 300 GB/s 
(connects to cores/memory)
- 8 GB/s to host CPU



HACC’s Domain: The ‘Bleeding Edge’

• Recall: Cosmology = Physics + Statistics 
• Mapping the sky with large-area surveys 

• LSST: ~4 billion galaxies total; ~200,000 galaxies 
per sq. deg. or ~40K galaxies over a sky patch the 
size of the moon

• To ‘understand’ a dataset this large (~100 PB), we 
need to model the distribution of matter down to the 
scales of the individual galaxies, and over the size 
of the entire survey: ~trillion particle simulations

Galaxies in a patch of sky with area roughly the size of the full 
moon as seen from the ground (Deep Lens Survey). LSST will 
cover an area 50,000 times this size (and go deeper)

Can the entire 
observable 
Universe be 

‘stuffed’ inside a 
supercomputer?

• Resolution: 
• Force dynamic range greater than a million to one

• Local overdensity variation is ~million to one 

• Computing ‘Boundary Conditions’: 
• Total memory in the PB+ class

• Performance in the 10 PFlops+ class

• Wall-clock of ~days/week, in situ analysis

Can the Universe 
be run as a short 

computational 
‘experiment’?



• Cosmological N-Body 
Framework
• Designed for extreme 

performance AND portability, 
including heterogeneous 
systems

• Supports multiple 
programming models

• In situ analysis framework

Meeting the Challenge: HACC on BG/Q and CPU/GPU Systems
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Number of Cores

HACC weak scaling on the 
IBM BG/Q (MPI/OpenMP)

13.94 PFlops, 69.2% peak, 90% parallel efficiency on 
1,572,864 cores/MPI ranks, 6.3M-way concurrency

3.6 trillion particle
benchmark

Habib et al. 2012
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Co-Design vs. Code Design
BQC:
- 16 cores
- 205 GFlops, 16 GB
- 32 MB L2, crossbar at 
400 GB/s (memory 
connection is 40 GB/s)
- 5-D torus at 40 GB/s
Xeon Phi:
- 60 cores
- 1 TFlops, 8 GB
- 32 MB L2, ring at 300 GB/s 
(connects to cores and 
memory)
- 8 GB/s to host CPU

Average performance speed-up on ~10 applications codes on Titan is 
~2 (ranging from 1.few to 7), but of Titan’s 27 PFlops, only 2.5 PFlops 
are in the CPU! What is wrong with this picture?

16GB

16GB

Roadrunner: The Original Driver for HACC

• HPC Myths
• The magic compiler
• The magic 

programming model/
language (DSL)

• Special-purpose 
hardware

• Co-Design?
• Dealing with (Current) 

HPC Reality
• Follow the architecture
• Know the boundary 

conditions
• There is no such thing 

as a ‘code port’
• Think out of the box
• Get the best team
• Work together



 
• Optimize Next-Generation Code ‘Ecology’: Numerical methods, 

algorithms, mixed precision, data locality, scalability, I/O, in situ 
analysis -- life-cycle significantly longer than architecture timescales

• Framework design: Support a ‘universal’ top layer + ‘plug-in’ 
optimized node-level components; minimize data structure 
complexity and data motion -- support multiple programming models

• Performance: Optimization stresses scalability, low memory 
overhead, and platform flexibility; assume ‘on your own’ for software 
support, but hook into tools as available (e.g., ESSL FFT)

• Optimal Splitting of Gravitational Forces: Spectral Particle-Mesh 
melded with direct and RCB tree force solvers, short hand-over 
scale (dynamic range splitting ~ 10,000 X 100)

• Compute to Communication balance: Particle Overloading

• Time-Stepping: Symplectic, sub-cycled, locally adaptive

• Force Kernel: Highly optimized force kernel takes up large fraction 
of compute time, no look-ups due to short hand-over scale

• Production Readiness: runs on all supercomputer architectures; 
exascale ready!

Opening the HACC ‘Black Box’: Design Principles

HACC force hierarchy
(PPTreePM)
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RIP

Titan

Hopper

Mira



 0.01

 0.1

 1

 10

 100

 64  256  1024  4096  16384  65536

Ti
m

e 
[n

se
c]

 p
er

 S
te

p 
pe

r P
ar

tic
le

Number of Ranks

Weak Scaling of Poisson Solver

Roadrunner
BG/P
BG/Q

Ideal Scaling

Splitting the Force: The Long-Range Solver
 

• Spectral Particle-Mesh Solver: Custom 
(large) FFT-based method -- uses (i) 6-th 
order Green function, (ii) 4th order spectral 
Super-Lanczos gradients, (iii) high-order 
spectral filtering to reduce grid anisotropy 
noise

• Short-range Force: Asymptotically correct 
semi-analytic expression for the difference 
between the Newtonian and the long-range 
force; uses a 5th order polynomial

• Pencil-decomposed Parallel 3-D FFT: 
Fast 3D-to-2D combinatorics, FFT 
performance theoretically viable to 
exascale systems; HACC scalability 
depends entirely on FFT performance 

• Time-stepping uses Symplectic Sub-
cycling: Time-stepping via 2nd-order 
accurate symplectic maps with ‘KSK’ for 
the global timestep, where ‘S’ is split into 
multiple ‘SKS’ local force steps
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Particle Overloading and Short-Range Solvers
 

• Particle Overloading: Particle replication instead of 
conventional guard zones with 3-D domain decomposition 
-- minimizes inter-processor communication and allows for 
swappable short-range solvers (IMPORTANT)

• Short-range Force: Depending on node architecture 
switch between P3M and PPTreePM algorithms (pseudo-
particle method goes beyond monopole order), by tuning 
number of particles in leaf nodes and error control criteria, 
optimize for computational efficiency

• Error tests: Can directly compare different short-range 
solver algorithms

Overload Zone (particle ‘cache’)

RCB Tree Hierarchy 

Gafton and 
Rosswog 2011
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Next Two Talks

 
• Hal Finkel: Short-Range Solver 

Performance (BG/Q; CPU)
• Nick Frontiere: GPU Issues 

(CPU/GPU Systems)


