
Hal Finkel, Nick Frontiere,
Katrin Heitmann, Joe Insley,
Vitali Morozov, Tom Peterka,
Adrian Pope, Venkat Vishwanath
Argonne
National Laboratory

Zarija Lukic
Lawrence Berkeley
National Laboratory

David Daniel, Patricia Fasel
Los Alamos
National Laboratory

Performance and Portability Lessons
from HACC

Salman Habib
HEP and MCS Divisions
Argonne National Laboratory

Computation Institute
Argonne National Laboratory
University of Chicago

Kavli Institute for Cosmological Physics
University of Chicago

ATPESC
July 31, 2013

Not a talk for software developers!

Roadrunner
RIP

Titan

Hopper

Mira

Performance and Portability I
• Performance (assuming you are solving a new problem, not doing ‘ports’)

• Are you sure you want brute speed? (There is always a price -- realize all HPC machines are
poorly balanced)

• Or do you just want to run a ‘large’ problem with acceptable time to solution? (This is the
general case)

• Step I: Know what you want, if performance is a priority it must be designed in right at the
start, you’ll never get it afterwards (optimizing gains are often minimal to non-existent)

• Step II: If performance is needed, make sure you understand the global science problem(s)
being addressed; you may have to start from scratch! There’s no replacement for domain
knowledge

• Factor of two rule -- given human constraints (and Moore’s law), it is not usually worth it to go
for the last factor of two, but there are exceptions -- HACC is one

• Step III: Obtaining performance is painful, so design for the future -- what can you rely on,
what can disappear, what can change, what can break -- the more parameters you can
control, the better -- HPC systems are not your laptop: Learn from experience

• General Advice (mostly obvious): On-chip/node optimization comes first, minimize number of
performance ‘hot spots’ to the extent possible, ditto with data motion (aim to be compute-
bound, avoid look-ups), avoid forest/tree syndromes, think about sacrificing memory for
speed wherever possible, vectorize everything, FMAs are your friends, talk to performance
gurus, do not resort to assembly unless desperate, etc. etc.

Performance and Portability II

• Portability (assuming you are developing new code)
• Three scales of code development: individual (‘idiosyncratic’), small team (‘hot shots’), big

team to open source (‘industrial’)

• Compute environment: small-scale (‘individual PI’, low diversity hardware), medium-scale
(‘single project’, somewhat diverse hardware), large-scale (‘multiple projects’, very diverse
hardware) -- note scale here does not refer to problem size!

• Step I: Consider which categories your situation falls into, this will help set the portability
constraints

• Concrete advice is difficult; situations vary, look around you and see what other people are
doing -- learn from them (adopt/reuse what works, dump what does not, be ruthless)

• Simplicity is good (learn from Google!), avoid nonfunctional ‘adornments’

• Design for the future -- software life cycles should be long, but often are not
• Step II: Most science projects start with a compact ‘software core’ that grows in multiple

directions, pay attention to planning the structure of the core and the extension paths -- things
will often not work as expected so make sure the structure is sufficiently flexible -- starting
from scratch should be largely a reconfiguration of key software elements; identify these
elements and design around them

• Performance and portability are often in opposition, but they can be co-aligned -- as in HACC

What is HACC?

LSST

HACC (Hardware/Hybrid Accelerated
Cosmology Code) Framework

Hal

Adrian

Katrin

Joe

Zarija

Nick
Davi

Venkat

Pat

Salman

Tom

• HACC does very large cosmological
simulations
• Design Imperative: Must run at high

performance on all supercomputer
architectures at full scale

• Highest performance ever achieved on the
BG/Q by a science code

• Combines a number of algorithms using a
‘mix and match’ approach

• Perfect weak scaling

• Strong scales to better than 100 MB/core

• Currently running the world’s largest
cosmology simulation on Mira

Vitali

• Instrumentation Advances
• Cosmic Acceleration
• Nature of Dark Matter
• Primordial Fluctuations
• Neutrinos
• Cosmic Structure Formation

ROSAT (X-ray) WMAP (microwave)

Fermi (gamma ray) SDSS (optical)

Why HACC I?: ‘Precision’ Cosmology

Boyle, Smith

Perlmutter,
Riess, Schmidt

Mather, Smoot

Optical survey ‘Moore’s Law’

The Source of Knowledge: Sky Surveys

The Cosmic
Puzzle: Who
ordered the
rest of it?

Supercomputer SDSS TelescopeMock Galaxies SDSS
Galaxies

Dark
matter

Theory

Why HACC 2?: Key Role of Computation

• Three Roles of Cosmological Simulations
• Basic theory of cosmological probes

• Production of high-fidelity ‘mock skys’ for end-to-end tests of the
observation/analysis chain

• Essential component of analysis toolkits

• Extreme Simulation and Analysis Challenges
• Large dynamic range simulations; control of subgrid modeling

and feedback mechanisms

• Design and implementation of complex analyses on large
datasets; new fast (approximate) algorithms

• Solution of large statistical inverse problems of scientific
inference (many parameters, ~10-100) at the ~1% level

Analysis Software

Cosmological Simulation

Observables

Experiment-
specific output

(e.g., sky catalog)

Atmosphere

Telescope

Detector

Pipelines

P
ro

je
ct

T
h
e
o
ry

Sc
ie

n
ce

Simulating the Universe
• Key Role of Gravity

• Gravity dominates at large scales:
solve the Vlasov-Poisson equation
(VPE)

• VPE is 6-D and cannot be solved
as a PDE

• N-Body Methods
• No shielding in gravity (essentially

long range interactions)

• Technique is naturally Lagrangian

• Are errors controllable?

• More Physics
• Smaller scale ‘gastrophysics’

effects added via subgrid modeling
or post-pocessing (major topic)

• Phenomenology
• Calibrate simulations against

observations

Structure formation via gravitational Jeans instability

Cosmological Vlasov-Poisson Equation: A ‘wrong-sign’
electrostatic plasma with time-dependent particle ‘charge’,

Newtonian limit of the Vlasov-Einstein equations

The N-Body Problem: Central Issues
• Algorithms

• Naive P-P hopeless

• Particle-Mesh: solve Poisson equation on a grid, interpolate
forces onto particles, has limited resolution, but fast

• Tree Codes: overcome resolution problem, but not efficient at
long range, given required error properties

• Hybrid codes: Combine above methods as needed (TPM, P3M,
etc.)

• Time-stepping: Multi-level schemes/locally adaptive

• Parallel Implementations
• Performance and Scalability

• Portability

• Next-Generation Architectures (‘Pile of PCs’ to ‘Pile of Cell
Phones’?)
• Complex heterogeneous nodes (including power management)

• Simpler cores, lower memory/core

• Programming environments unclear

BQC:
- 16 cores
- 205 GFlops, 16 GB
- 32 MB L2, crossbar at
400 GB/s (memory
connection is 40 GB/s)
- 5-D torus at 40 GB/s

Xeon Phi:
- 60 cores
- 1 TFlops, 8 GB
- 32 MB L2, ring at 300 GB/s
(connects to cores/memory)
- 8 GB/s to host CPU

HACC’s Domain: The ‘Bleeding Edge’

• Recall: Cosmology = Physics + Statistics
• Mapping the sky with large-area surveys

• LSST: ~4 billion galaxies total; ~200,000 galaxies
per sq. deg. or ~40K galaxies over a sky patch the
size of the moon

• To ‘understand’ a dataset this large (~100 PB), we
need to model the distribution of matter down to the
scales of the individual galaxies, and over the size
of the entire survey: ~trillion particle simulations

Galaxies in a patch of sky with area roughly the size of the full
moon as seen from the ground (Deep Lens Survey). LSST will
cover an area 50,000 times this size (and go deeper)

Can the entire
observable
Universe be

‘stuffed’ inside a
supercomputer?

• Resolution:
• Force dynamic range greater than a million to one

• Local overdensity variation is ~million to one

• Computing ‘Boundary Conditions’:
• Total memory in the PB+ class

• Performance in the 10 PFlops+ class

• Wall-clock of ~days/week, in situ analysis

Can the Universe
be run as a short

computational
‘experiment’?

• Cosmological N-Body
Framework
• Designed for extreme

performance AND portability,
including heterogeneous
systems

• Supports multiple
programming models

• In situ analysis framework

Meeting the Challenge: HACC on BG/Q and CPU/GPU Systems

 0.1

 1

 10

4K 16K 64K 256K 1024K

 0.015625
 0.03125
 0.0625
 0.125
 0.25
 0.5
 1
 2
 4
 8
 16

Ti
m

e
[n

se
c]

 p
er

 S
ub

st
ep

 p
er

 P
ar

tic
le

Pe
rfo

rm
an

ce
 in

 P
Fl

op
/s

Number of Cores

Ideal ScalingTi
m

e
(n

se
c)

 p
er

 s
ub

st
ep

/p
ar

tic
le

Pe
rf

or
m

an
ce

 (P
Fl

op
s)

Number of Cores

HACC weak scaling on the
IBM BG/Q (MPI/OpenMP)

13.94 PFlops, 69.2% peak, 90% parallel efficiency on
1,572,864 cores/MPI ranks, 6.3M-way concurrency

3.6 trillion particle
benchmark

Habib et al. 2012

 0.01

 0.1

 1

 10

 100

 128 256 512 1024 2048 4096 8192 16384

CPU, 16rpn

CPU, 16rpn

CPU, 16rpn Short range solve
Sub-cycle

FFT

HACC weak scaling on
Titan (MPI/OpenCL)

Number of Nodes

HACC: Hybrid/
Hardware

Accelerated
Cosmology Code

Framework

Gordon Bell Award
Finalist 2012, 2013

Co-Design vs. Code Design
BQC:
- 16 cores
- 205 GFlops, 16 GB
- 32 MB L2, crossbar at
400 GB/s (memory
connection is 40 GB/s)
- 5-D torus at 40 GB/s
Xeon Phi:
- 60 cores
- 1 TFlops, 8 GB
- 32 MB L2, ring at 300 GB/s
(connects to cores and
memory)
- 8 GB/s to host CPU

Average performance speed-up on ~10 applications codes on Titan is
~2 (ranging from 1.few to 7), but of Titan’s 27 PFlops, only 2.5 PFlops
are in the CPU! What is wrong with this picture?

16GB

16GB

Roadrunner: The Original Driver for HACC

• HPC Myths
• The magic compiler
• The magic

programming model/
language (DSL)

• Special-purpose
hardware

• Co-Design?
• Dealing with (Current)

HPC Reality
• Follow the architecture
• Know the boundary

conditions
• There is no such thing

as a ‘code port’
• Think out of the box
• Get the best team
• Work together

• Optimize Next-Generation Code ‘Ecology’: Numerical methods,

algorithms, mixed precision, data locality, scalability, I/O, in situ
analysis -- life-cycle significantly longer than architecture timescales

• Framework design: Support a ‘universal’ top layer + ‘plug-in’
optimized node-level components; minimize data structure
complexity and data motion -- support multiple programming models

• Performance: Optimization stresses scalability, low memory
overhead, and platform flexibility; assume ‘on your own’ for software
support, but hook into tools as available (e.g., ESSL FFT)

• Optimal Splitting of Gravitational Forces: Spectral Particle-Mesh
melded with direct and RCB tree force solvers, short hand-over
scale (dynamic range splitting ~ 10,000 X 100)

• Compute to Communication balance: Particle Overloading

• Time-Stepping: Symplectic, sub-cycled, locally adaptive

• Force Kernel: Highly optimized force kernel takes up large fraction
of compute time, no look-ups due to short hand-over scale

• Production Readiness: runs on all supercomputer architectures;
exascale ready!

Opening the HACC ‘Black Box’: Design Principles

HACC force hierarchy
(PPTreePM)

Roadrunner
RIP

Titan

Hopper

Mira

 0.01

 0.1

 1

 10

 100

 64 256 1024 4096 16384 65536

Ti
m

e
[n

se
c]

 p
er

 S
te

p
pe

r P
ar

tic
le

Number of Ranks

Weak Scaling of Poisson Solver

Roadrunner
BG/P
BG/Q

Ideal Scaling

Splitting the Force: The Long-Range Solver

• Spectral Particle-Mesh Solver: Custom
(large) FFT-based method -- uses (i) 6-th
order Green function, (ii) 4th order spectral
Super-Lanczos gradients, (iii) high-order
spectral filtering to reduce grid anisotropy
noise

• Short-range Force: Asymptotically correct
semi-analytic expression for the difference
between the Newtonian and the long-range
force; uses a 5th order polynomial

• Pencil-decomposed Parallel 3-D FFT:
Fast 3D-to-2D combinatorics, FFT
performance theoretically viable to
exascale systems; HACC scalability
depends entirely on FFT performance

• Time-stepping uses Symplectic Sub-
cycling: Time-stepping via 2nd-order
accurate symplectic maps with ‘KSK’ for
the global timestep, where ‘S’ is split into
multiple ‘SKS’ local force steps

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 1 2 3 4 5 6 7 8

1/r

Noisy CIC PM force

6th-Order sinc-Gaussian
spectrally filtered PM

force

2

Distance (grid units)

Number of Ranks

Weak Scaling of
Poisson Solver

Ti
m

e
[n

se
c]

 p
er

 s
te

p
pe

r p
ar

tic
le

Tw
o-

pa
rt

ic
le

 F
or

ce

G6(k) =

45

128

�

2

"
X

i

cos

✓
2⇡ki�

L

◆
� 5

64

X

i

cos

✓
4⇡ki�

L

◆
+

1

1024

X

i

cos

✓
8⇡ki�

L

◆
� 2835

1024

#�1

S(k) = exp

✓
�1

4

k2�2

◆ ✓
2k

�

◆
sin

✓
k�

2

◆�ns

�f

�x

����
4

=

4

3

NX

j=�N+1

iC

j

e

(2⇡jx/L) 2⇡j�

L

sin(2⇡j�/L)

2⇡j�/L

�1

6

NX

j=�N+1

iC

j

e

(2⇡jx/L) 2⇡j�

L

sin(4⇡j�/L)

2⇡j�/L

where the C

j

are the coe�cients in the Fourier expansion of f

fgrid(r) =

1

r2
tanh(br)� b

r

1

cosh

2
(br)

+cr
�
1 + dr2

�
exp

�
�dr2

�
+e

�
1 + fr2

+ gr4
+ lr6

�
exp

�
�hr2

�

Particle Overloading and Short-Range Solvers

• Particle Overloading: Particle replication instead of
conventional guard zones with 3-D domain decomposition
-- minimizes inter-processor communication and allows for
swappable short-range solvers (IMPORTANT)

• Short-range Force: Depending on node architecture
switch between P3M and PPTreePM algorithms (pseudo-
particle method goes beyond monopole order), by tuning
number of particles in leaf nodes and error control criteria,
optimize for computational efficiency

• Error tests: Can directly compare different short-range
solver algorithms

Overload Zone (particle ‘cache’)

RCB Tree Hierarchy

Gafton and
Rosswog 2011

 0.997

 0.998

 0.999

 1

 1.001

 1.002

 1.003

 0 1 2 3 4 5 6 7

Ra
tio

 P(
k)

k[h/Mpc]

TPM/P3M

+/- 0.1%

HACC Force Algorithm Test: PPTreePM vs. P3M

P(k) Ratio

Next Two Talks

• Hal Finkel: Short-Range Solver

Performance (BG/Q; CPU)
• Nick Frontiere: GPU Issues

(CPU/GPU Systems)

