
Combining Performance and Portability

Jeff Hammond (jhammond@anl.gov)

Argonne Leadership Computing Facility

https://wiki.alcf.anl.gov/parts/index.php/User:Jhammond

Jeff Hammond ATPESC 2013

Outline

Portable performance 101

Superficial but necessary portability in MPI

Communication abstractions

Distributed data-structures and methods

Challenges with MPI+Threads

Globalization of tasks and data

Jeff Hammond ATPESC 2013

Jeff Hammond ATPESC 2013

Jeff Hammond ATPESC 2013

Portable performance 101

Software monoliths are huge barriers to performance and
portability.

There’s probably a library for that.

If not, write a library for that (and make it OSS).

Trade performance for portability most of the time.

Mitigate risk by encapsulating non-portable elements.

“The best performance improvement is the transition from the
nonworking state to the working state.” – John Osterhout

Jeff Hammond ATPESC 2013

Portable MPI Communication

Jeff Hammond ATPESC 2013

Portable MPI

“But MPI is portable. WTF is portable MPI?!?!?”

The MPI standard is perfect.

Implementations are not perfect.

Hardware is never ideal.

We have to deal with:

Lack of latest features.

Broken features.

Performance quirks.

Ambiguity in the standard.

Wrapping MPI costs cycles but has a
huge payoff in many contexts.

Jeff Hammond ATPESC 2013

Examples

#ifdef WORKAROUND_BGQ_BUG

int junk[1];

MPI_Isend(junk,1,MPI_INT,rank,tag,comm,req);

#else

MPI_Isend(NULL,0,MPI_INT,rank,tag,comm,req);

#endif

Optimization of ssend created bug for count=0 on BGQ. It was
fixed in a matter of days but GFMC folks don’t like to lose days.

I only had to instantiate this workaround 27 times in their code...

Jeff Hammond ATPESC 2013

Here we deal with features, syntax, performance and memory.

#if defined(__bg__)

if defined(__bgq__)

MPI_Barrier(...); /* yeah... */

endif

MPI_Allreduce(...); /* faster than MPI_Reduce */

memcpy(...); /* faster than MPI_Scatter */

#elif (MPI_VERSION > 3)

MPI_Reduce_scatter_block(const void *sendbuf, ...);

#elif (MPI_VERSION == 2) && (MPI_SUBVERSION == 2)

MPI_Reduce_scatter_block(void *sendbuf, ...);

#elif defined(AVOID_UNNECESSARY_VECTOR_ARGS)

MPI_Reduce(...); /* loss of fusion could hurt perf */

MPI_Scatter(...); /* avoids vector arg */

#else

MPI_Reduce_scatter(...); /* MPI_Scatterv-like args */

#endif

Jeff Hammond ATPESC 2013

From https://github.com/elemental/Elemental/blob/

master/src/core/imports/mpi.cpp:

template<typename R>

void Send(const R* buf, int count, int to, int tag,

Comm comm)

{

MpiMap<R> map;

SafeMpi(MPI_Send(const_cast<R*>(buf), count,

map.type, to, tag, comm));

}

MpiMap is C++ magic for MPI type inference. Even before they
were deleted, the MPI C++ bindings didn’t do this.

Jeff Hammond ATPESC 2013

https://github.com/elemental/Elemental/blob/master/src/core/imports/mpi.cpp
https://github.com/elemental/Elemental/blob/master/src/core/imports/mpi.cpp

Summary

Wrapping MPI allows you to:

Work around bugs and performance quirks.

Deal with different MPI standards and implementations.

Write your own language bindings (C++ and Fortran 200X
are both compelling cases).

Add your own performance instrumentation as O(1) not
O(N) LOC.

Parallel debugging, e.g. replace Send with Ssend to identify
unsafe assumptions about buffering.

Jeff Hammond ATPESC 2013

Beyond MPI

I am not suggesting you stop using MPI!!!

IBM (PAMI) and Cray (DMAPP) both provide non-MPI
communication libraries that exploit their hardware in ways
that MPI cannot or does not (in some case due to
shortcomings in their own MPI libraries).

In some cases, you can replace MPI calls with non-portable
ones (inside of your communication wrappers, of course) and
see better performance.

For the most part, MPI-3 renders this unnecessary w.r.t.
features since nonblocking collectives and remote atomics are
now present.

In the latency-sensitive regime, software overhead matters and
non-portable APIs can lead to a significant speedup.

Jeff Hammond ATPESC 2013

MPI vs. PAMI on Blue Gene/Q

Jeff Hammond ATPESC 2013

What not to do

From http://www.sns.ias.edu/~adler/talks/memo.txt:

(1) If your program uses subroutines, put all MPI

statements (MPI_Send, MPI_Recv, etc.) in your

main program, not in the subroutines. You can

always do this by transferring information from

the subroutines to the main program through the

subroutine arguments.

Jeff Hammond ATPESC 2013

http://www.sns.ias.edu/~adler/talks/memo.txt

Performance Characteristics of MPI
Thanks to Bob Walkup at IBM for the first slide.

Jeff Hammond ATPESC 2013

Jeff Hammond ATPESC 2013

Jeff Hammond ATPESC 2013

(Total count i.e. count argument times nproc)

Jeff Hammond ATPESC 2013

MPI Performance Artifacts

Not all networks saturate at the same rate.

Topology effects are huge. (Google for papers)

You get what you pay for w.r.t. optimizations.

Unexpected type-dependent performance.

Protocol cutoffs have dramatic effects on performance.

Many supercomputers benefit from barrier before other
collectives; implementation degradation from non-ideal
usage can be 10-1000x.

Jeff Hammond ATPESC 2013

Deadlock as a canary for protocol effects

See ./code/deadlock.c.

#define MCW MPI_COMM_WORLD

{

int dst = (rank+1)%size;

int src = (rank-1)%size;

#if DEADLOCK

MPI_Send(s, n, MPI_INT, dst, 0, MCW);

MPI_Recv(r, n, MPI_INT, src, 0, MCW, MPI_STATUS_IGNORE);

#else

MPI_Request req[2];

MPI_Isend(s, n, MPI_INT, dst, 0, MCW, &(req[0]));

MPI_Irecv(r, n, MPI_INT, src, 0, MCW, &(req[1]));

MPI_Waitall(2, req, MPI_STATUSES_IGNORE);

#endif

}

Jeff Hammond ATPESC 2013

Deadlock Exercise

How does the behavior of the deadlock version of the program
change with (1) process count and (2) message size?

Example invocation:

./deadlock.x

mpiexec -n 1 ./deadlock.x 1000

mpiexec -n 2 ./deadlock.x 1000000

Jeff Hammond ATPESC 2013

Nobs

A good MPI implementation will expose nobs for tuning.

Lots of assumptions go into the defaults:
(1) vendor wants to get paid so acceptance tests have to
pass with defaults;
(2) MPI-1 usage is common in applications.

Eager-rendezvous cutoff is all about space-time trade-offs.

Be wary of flow-control effects on irregular applications.

Asynchronous progress is usually disabled by default; see
https://wiki.alcf.anl.gov/parts/index.php/MPI#

Performance_Considerations for details.

Jeff Hammond ATPESC 2013

https://wiki.alcf.anl.gov/parts/index.php/MPI#Performance_Considerations
https://wiki.alcf.anl.gov/parts/index.php/MPI#Performance_Considerations

Homework

Run OSU or other OSS MPI benchmarks on different
machines.

Write your own halo-exchange simulator and see how many
different cartesian dimensions. are required to saturate the
total node bandwidth.

https://code.google.com/p/mpi-qoit/ (just look at
collectives).

http://www.mcs.anl.gov/events/workshops/p2s2/

2012/slides/Morozov-P2S2-MPI_benchmark.pdf has
additional examples.

Jeff Hammond ATPESC 2013

https://code.google.com/p/mpi-qoit/
http://www.mcs.anl.gov/events/workshops/p2s2/2012/slides/Morozov-P2S2-MPI_benchmark.pdf
http://www.mcs.anl.gov/events/workshops/p2s2/2012/slides/Morozov-P2S2-MPI_benchmark.pdf

Case Study: Elemental
Jack Poulson is the lead author and PI of Elemental.

Jeff Hammond ATPESC 2013

Elemental Background

Home page:
http://www.libelemental.org/

Documentation:
http://poulson.github.io/Elemental/

There’s lots of information about Elemental on the
internet. . .

Jeff Hammond ATPESC 2013

http://www.libelemental.org/
http://poulson.github.io/Elemental/

Porting Elemental to New Platforms

Blue Gene/P: Jack was working at ALCF and the design was
in-flux. C++ compiler bugs and lack of MPI-2.2 were the only
real issues (that I remember).

Mac: Jeff learns about “-framework Accelerate” and CMake.
Port takes 5 minutes.

Blue Gene/Q: It took an entire day to port CMake, at which
point Elemental worked immediately. In 2011.

Cray XC30: Dealt with CMake problem related to shared
libraries, then Elemental worked immediately.

(immediately = rate-limited by login node environment.)

Jeff Hammond ATPESC 2013

Why is Elemental so easy to port?

Despite the annoyances, CMake captures machine-specific
details effectively. For supercomputers, toolchain files
have correct defaults.

Restrained use of C++ templates (they are statically
instantiated). No Fortran. No premature optimization.

BLAS, LAPACK and MPI are all wrapped.

Handling all known MPI portability issues inside of the
wrapper once-and-for-all.

Robust build systems and conscientious developers are critical
if you want portability in HPC. If you build a good library,
good people will line up to help you.

Jeff Hammond ATPESC 2013

Elemental on Blue Gene/Q

(rank 10,000 matrix)

Jeff Hammond ATPESC 2013

Portable performance of Elemental

Elemental uses the best known algorithms just like
ScaLAPACK. You should not underestimate the effort
that goes into this. Algorithms trump software.

Essentially all of the flops happen in BLAS, which is tuned
by someone else.

Using MPI collectives whenever possible. This is very
BG-friendly but generally punts the communication
problem to someone else.

Exploiting subcommunicators in a topology-friendly way.

Tuning parameters are runtime options.

Jeff Hammond ATPESC 2013

Programmer productivity

/* generic setup */

const int blocksize = 128;

SetBlocksize(blocksize);

Grid G(MPI_COMM_WORLD);

/* problem-specific data */

DistMatrix<T> A(n, n, G), B(n, n, G);

DistMatrix<double> X(n, n, G); // eigenvectors

DistMatrix<double,VR,STAR> w(n, n, G); // eigenvalues

/* solve problem */

HermitianGenDefiniteEigType eigType = AXBX; // Ax=wBx

UpperOrLower uplo = CharToUpperOrLower(’U’);

HermitianGenDefiniteEig(eigType, uplo, A, B, w, X);

Jeff Hammond ATPESC 2013

Case Study: NWChem

Jeff Hammond ATPESC 2013

NWChem Background

Home page: http://www.nwchem-sw.org/

Began at the dawn of the MPP age, before MPI.

Attempted to reuse existing code; most of this was a waste of
time.

Designed to be object-oriented but constrained by Fortran 77
(i.e. non-viability of C++ at the time).

Global Arrays programming model abstracted away explicit
communication.

Most of the gross bits of non-portability (outside of ARMCI)
live in src/util.

Uses its own memory allocator, IO layer, runtime database,
hooks resource managers, low-level timers, etc.

Jeff Hammond ATPESC 2013

http://www.nwchem-sw.org/

Porting NWChem to New Platforms

Some of this is historical. . .

1 Port ARMCI to low-level network interface. This is hard.

2 Workaround Fortran compiler bugs; detect them in classic
Make build system.

3 Example: XLF doesn’t preprocess the normal way and the
workaround is nasty.

4 Workaround operating system quirks (lots of Unixen prior to
Linux era).

5 All sorts of Fortran integer crap that shortens my life to even
think about.

Summary: The only thing that is still hard about porting NWChem
is ARMCI, but more on that later. . .

Jeff Hammond ATPESC 2013

NWChem Portability

Supported: Cray SV1, YMP, X1, XT/XE/XK/XC;
Intel Delta; KSR; NEC, Fujitsu;
Linux; Unix; Windows; Cygwin; Mac;
x86, PPC, Itanium, etc.;
Ethernet; Myrinet; Infiniband, etc.;
IBM POWER, Blue Gene/L, P, Q;
NVIDIA GPGPU (partial).

Unsupported: SiCortex; iPhone.

Summary: If NWChem doesn’t run on it, there’s a 50-50
change you’ll go out of business :-)

Jeff Hammond ATPESC 2013

Solving the ARMCI problem

Attempts at portability:

TCP/IP performs poorly and isn’t available on some
supercomputers.

Cray-oriented MPI Send+Spawn implementation of ARMCI.

Cluster-oriented MPI Send+Threads implementation of
ARMCI.

ARMCI-MPI (from Argonne) is the first implementation using
MPI one-sided.

ARMCI-MPI is fundamentally limited by the underlying RMA
implementation. Historically, these have been lacking. Also, MPI-2
lacks atomics and other essential features.

Jeff Hammond ATPESC 2013

NWChem with ARMCI-MPI

 0

 0.75

 1.5

 2.25

 3

 3.75

 4.5

 192 224 256 288 320 352 384
 0

 17

 34

 51

 68

 85

 102

C
C

S
D

 T
im

e
 (

m
in

)

(T
)

T
im

e
 (

m
in

)

Number of Cores

InfiniBand Cluster

ARMCI-MPI CCSD
ARMCI-Native CCSD

ARMCI-MPI (T)
ARMCI-Native (T)

Jeff Hammond ATPESC 2013

NWChem with ARMCI-MPI

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2048 4096 6144 8192 10240 12288

C
C

S
D

 T
im

e
 (

m
in

)

Number of Cores

Cray XT5

ARMCI-MPI CCSD
ARMCI-Native CCSD

Jeff Hammond ATPESC 2013

NWChem with ARMCI-MPI

 0

 5

 10

 15

 20

 25

 30

 35

 0 256 512 768 1024

C
C

S
D

 T
im

e
 (

m
in

)

Number of Nodes

Blue Gene/P

ARMCI-MPI CCSD
ARMCI-Native CCSD

Jeff Hammond ATPESC 2013

NWChem with ARMCI-MPI

 0

 3

 6

 9

 12

 15

 18

 744 1488 2232 2976 3720 4464 5208 5952
 0

 5

 10

 15

 20

 25

 30

C
C

S
D

 T
im

e
 (

m
in

)

(T
)

T
im

e
 (

m
in

)

Number of Cores

Cray XE6

ARMCI-MPI CCSD
ARMCI-Native CCSD

ARMCI-MPI (T)
ARMCI-Native (T)

Jeff Hammond ATPESC 2013

Porting NWChem to Blue Gene/Q

What a difference MPI makes. . .

1 Global Arrays ran immediately with ARMCI-MPI at SC11.

2 NWChem trunk was ported sans ESSL, PeIGS and
ScaLAPACK in 3 hours at workshop.

3 Voodoo bug in C kernel fixed by restoring original Fortran.

Remaining issues:

NWChem is frequently memory-limited ∴ need fewer ppn.

GA/ARMCI is not thread-safe ∴ fork-join threading.

F77 common blocks are not thread-safe ∴ careful OpenMP.

MPI RMA performance is lacking; working on ARMCI-PAMI.

Jeff Hammond ATPESC 2013

Optimizing NWChem for modern architectures

Quantum chemistry is flop-rich; offload to GPU/MIC is
mostly fine.

Critical to exploit vectorization and fine-grain parallelism.

DGEMM and loop-heavy CCSD(T) now runs better in hybrid
mode.

MIC kernels are scaling to more than 100 threads.

GPU vs. MIC? Rewrite in CUDA vs. refactor and add
pragmas. . .

Jeff Hammond ATPESC 2013

Homework

Google or measure offload bandwidth and DGEMM flop-rate;
determine for what matrix size offload is worthwhile.

Repeat first exercise for something more interesting (e.g. your
code).

Compare OpenMP scaling of simple loop kernels on Blue
Gene vs. Intel and AMD, particularly multi-socket nodes (i.e.
heavy NUMA).

Write a simple vectorizable kernel in F77, F95 (with colon
and/or array notation), and C/C++; does the compiler
auto-vectorize for you? When?

Jeff Hammond ATPESC 2013

Challenges with MPI+X

Jeff Hammond ATPESC 2013

The future is MPI+X

MPI+OpenMP is too often fork-join.

Pthreads scare people; can’t be used from Fortran (easily).

TBB and Cilk come from Intel (FYI: TBB now runs on BGQ).

OpenCL is an eye chart and has no abstraction for
performance variability.

CUDA is an X for only one type of hardware (ignoring Ocelot).

Never confuse portability with portable performance!

Jeff Hammond ATPESC 2013

Using MPI+OpenMP effectively

Private data should behave like MPI but with load-store
for comm.

Shared data leads to cache reuse but also false sharing.

NUMA is going to eat you alive. BG is a rare exception.

OpenMP offers little to no solution for NUMA.

If you do everything else right, Amdahl is going to get you.

Intranode Amdahl and NUMA are giving OpenMP a bad name;
fully rewritten hybrid codes that exploit affinity behave very
different from MPI codes evolved into MPI+OpenMP codes.

Jeff Hammond ATPESC 2013

Fork-Join vs. Parallel-Serialize

Jeff Hammond ATPESC 2013

Fork-Join vs. Parallel-Serialize

#pragma omp parallel

{
/* thread-safe */

#pragma omp single

/* thread-unsafe */

#pragma omp parallel for

/* threaded loops */

#pragma omp sections

/* threaded work */

}

/* thread-unsafe */

#pragma omp parallel for

{
/* threaded loops */

}
/* thread-unsafe */

#pragma omp parallel for

{
/* threaded loops */

}
/* thread-unsafe work */

Jeff Hammond ATPESC 2013

NUMA

See ./src/omp/numa.c

> for n in 1e6 1e7 1e8 1e9 ; do ./numa.x $n ; done

n = 1000000 a: 0.009927 b: 0.009947

n = 10000000 a: 0.018938 b: 0.011763

n = 100000000 a: 0.123872 b: 0.072453

n = 1000000000 a: 0.915020 b: 0.811122

The first-order effect requires a multi-socket system so you will not
see this on your laptop. Run on an AMD Magny Cours for the
“best” effect.

For more complicated data access patterns, you may see this even
with parallel initialization. In this case, consider (1) hiding latency,
(2) not being bandwidth bound, and (3) task parallelism.

Jeff Hammond ATPESC 2013

MPI+Y

If you use OpenMP libraries built with multiple compilers,
you may get multiple thread pools.

OpenMP, TBB, etc. all use Pthreads. So do many apps
and libraries. Oversubscribe much?

MPI THREAD MULTIPLE adds overhead; some apps use
their own mutex but internal mutexes are invisible to
other MPI clients.

The stark reality is that general MPI+Y – i.e. MPI+X for
X6=OpenMP – is heavily dependent upon an MPI
implementation that is designed to be used in a truly
multithreaded way. Today, only Blue Gene/Q as this.

Based on https://www.ieeetcsc.org/activities/blog/

challenges_for_interoperability_of_runtime_systems_in_

scientific_applications

Jeff Hammond ATPESC 2013

https://www.ieeetcsc.org/activities/blog/challenges_for_interoperability_of_runtime_systems_in_scientific_applications
https://www.ieeetcsc.org/activities/blog/challenges_for_interoperability_of_runtime_systems_in_scientific_applications
https://www.ieeetcsc.org/activities/blog/challenges_for_interoperability_of_runtime_systems_in_scientific_applications

Acknowledgments

ALCF, Pavan Balaji, Jim Dinan, Robert Harrison, Karol Kowalski,
Jack Poulson, Robert van de Geijn, and many others.

Jeff Hammond ATPESC 2013

