MPI for Scalable Computing

Bill Gropp, University of lllinois at Urbana-Champaign
Rusty Lusk, Argonne National Laboratory

Rajeev Thakur, Argonne National Laboratory

The MPI Part of ATPESC

= We assume everyone has some MPI experience

= We will focus more on understanding MPI concepts than on
coding details

= Emphasis will be on issues affecting scalability
= There will be some code walkthroughs and exercises

= We will use MPICH on your (Linux or MacOS) laptop for initial
experiments

— Supports the new MPI-3 standard

= Vesta (BG/Q) will also be available for larger runs

Outline of MPI Material in ATPESC

= Today = Tomorrow afternoon
— MPI concepts — Using remote memory access to
— MPI-1, MPI-2, and MPI-3 avoid extra synchronization and data
motion

— Blocking and non-blocking

communication — The MPI-3 standard

— MPICH — The importance of process topologies
— Installing MPICH on your personal — Example: neighborhood collectives
machine — Work with halo exchange example

— Running some example code

= Tomorrow morning
— Scalability issues in MPI programs
— Sources of scalability problems

— Avoiding communication delays
e understanding synchronization
— Minimizing data motion
e using MPI datatypes

— Topics in collective communication

What is MPI?

MPI is a message-passing library interface standard.
— Specification, not implementation

— Library, not a language

— Classical message-passing programming model

= MPI-1 was defined (1994) by a broadly-based group of
parallel computer vendors, computer scientists, and
applications developers.
— 2-year intensive process
" Implementations appeared quickly and now MPI is taken for

granted as vendor-supported software on any parallel
machine.

" Free, portable implementations exist for clusters and other
environments (MPICH, Open MPI)

Timeline of the MPI Standard

= MPI-1(1994), presented at SC’'93

— Basic point-to-point communication, collectives, datatypes, etc
= MPI-2(1997)

— Added parallel I/O, Remote Memory Access (one-sided operations), dynamic processes,
thread support, C++ bindings, ...

= -—--Unchanged for 10 years ----

= MPI-2.1(2008)

— Minor clarifications and bug fixes to MPI-2
= MPI-2.2 (2009)

— Small updates and additions to MPI 2.1
= MPI-3.0(2012)

— Major new features and additions to MPI

= MPI-3.1(2015)
— Small updates to MPI 3.0

Defining Some Terms

A process consists of an address space, a program, and one or more
threads of control, each with its own subroutine-call stack and program
counter. The threads share the address space, which has advantages and
disadvantages.

— an old-fashioned Unix process is a single-threaded process.

In MPI-1, a parallel program was thought of as a fixed-size collection of
old-fashioned Unix processes, each identified by its MPI rank.

— Note that MPIl was never SPMD (Single Program Multiple Data); different MPI
ranks could always be executing different programs.

In MPI-2, semantics were defined that enable MPI processes to be
multithreaded (see “hybrid programming”, later this week) and for more
processes to be added at run time.

Programming and Address Spaces

= Sequential programming = one single-threaded process

Parallel programming =

— One process, multiple threads (OpenMP, pthreads) OR
— Multiple single-threaded processes (MPI-1) OR

— Multiple multiple-threaded processes (MPI-2)

= Shared-memory parallel programming is harder than it looks.

" Yet, processes (or threads) need to communicate, or else one
has just a collection of sequential programs rather than a
parallel program.

— e.g., an old-fashioned batch system

= MPIis for communication among processes (with separate
address spaces).

MPI Communication

= MPI limits in both time and space the exposure of one
process's address space to action by (the threads of) another

process
MPI|_Recv | MPI_Send |
OR
MPI_IRecv MPI_Isend

| [P |
I [

MPI_Wait MPI_Wait

MPI Non-blocking Communication - 1

= MPI_lIrecv exposes part of its address space to the “system” (OS
+ MPIl implementation code + non-portable communication
hardware/software)
— the “system” may utilize internal buffers, perhaps smaller than the
application’s buffers, requiring multiple data transfers by the system
= MPI_Isend tells the system where the data to be moved is
located and into what process’s receive buffer it is to be placed.

= Both buffers at this point belong to the “system”.

= MPI_Wait on both sides delays its caller until the system no
longer needs to access the buffer

— Receiver can now make use of the new data in the buffer

— Sender can now reuse the buffer

MPI Non-blocking Communication - 2

= The blocking operations (MPI_Send, MPI_Recv) can be dangerous.

— The MPI Forum only included them because users of earlier systems would
expect them.

= Deadlock danger: exchanging large messages

0 1
MPI_Send(1) MPI_Send(0)
MPI_Recv(1) MPI_Recv(0)

— Deadlocks if the system cannot absorb the sent message, thus allowing the
send to complete before the corresponding receive is posted.

= Performance danger: delayed receive of large message

0 1
MPI_Send(1)

MPI Recv(O)
— Send blocks untll corresponding receive is posted, perhaps much later.

Non-blocking Communication - 3

= Using the non-blocking receive (MPI_Irecv) solves both problems by
providing the system a place on the receiving side to put the message

when it is needed by the send.

0 1
MPI_Irecv(1) MPI_Irecv(0)
MPI_Send(1) MPI_Send(0)
MPI_Wait MPI_Wait

and

0 1
MPI_Send(1) MPI_Irecv(0)

MPI_Wait

= Such a place can be provided on the sending side by the use of the
buffered send (MPI_Bsend).

Overlapping Communication and Computation

= Some believe that the purpose of non-blocking communication is to
specify that communication and computation are occur simultaneously,
and are disappointed when it doesn’t always happen.

= Non-blocking communication allows an implementation to do this if the
“system” (hardware, MPIl implementation, specialized communication
software) can do so, but the real purpose is as described above.

= A standard-conforming MPI implementation on a specific platform is
allowed to

— Utilize a system thread or hardware support in order to move data in parallel
with local computation between the Isend/Irecv and the Wait.

— Move all or part of the message during some other MPI call (e.g., MPI_Test)
between the Isend/Irecv and the Wait.

— Complete an operation during the Isend call (if the “system” can absorb the
message or the Irecv has been posted).

— Delay the initiation of the data transfer until the corresponding Wait.

Summary of Types of Send

= MPI_Send blocks until the message has been absorbed by the “system”.
This does not mean that the message has been received.

= MPI_Isend doesn’t block (should always return quickly).

= MPI_Ssend blocks until a matching receive has been posted (supplying the
space for the message).

= MPI_Rsend assumes that the corresponding receive has been posted. The

programmer is responsible.

0 1
MPI_Irecv(answer,1)
MPI_Send(question,1) MPI_Recv(question,0)

MPI_Rsend(answer,1)
MPI_Wait

= MPI_Bsend copies the message into a local buffer (provided by the user
with MPI_Buffer_attach) in order to avoid blocking.

Collective Operations

= MPI provides many collective communication patterns, some with
computation included. Custom computation operations are possible.

= Multiple algorithms used in implementations, based on messages sizes,
machine topologies, machine capabilities.
— Scalable algorithms a research topic

= Common feature: called by all processes in a communicator

= Performance note: Measuring time taken by a collective operation can
obscure what is really a load balancing problem.

compute allreduce

compute allreduce

compute allreduce

= MPI-3 has non-blocking and neighborhood collective operations.

MPI-2

* MPI-2 introduced dynamic process management, remote
memory access (one-sided operations), parallel I/O, thread
safety, C++ (since removed) and Fortran-90 bindings.

= We won’t discuss here dynamic process management (not
universally implemented, particularly on large systems, since
it involves process management at the OS level).

* Thread safety will be covered under Hybrid Programming,
later.

= Avery brief conceptual discussion of RMA is here...

MPI-2 RMA: Remote Memory Access, or One-sided

Operations
= The RMA window object can be thought of as a generalization of the

MPI-1 communication buffer.
= Allocating a window object exposes a larger part of a process’s address
space for access by other processes, and (usually) for a longer time.
— room for multiple, simultaneously active communication buffers.
— MPI window = union of all processes’ window objects
= Separates “buffer” allocation, data movement initiation, and
synchronization (checking for completion).

MPI_Win_create

MPI_Put All are non-blocking; multiple
MPI_Get operations can be active in same window

MPI_Accumulate : ,
object simultaneously

MPI_Fence, Post-Start-Complete-Wait, Lock-Unlock

"= More on RMA tomorrow...

MPI-2 Parallel I/0

= MPI-IO is based on an analogy: Reading from and writing to
files is “like” receiving and sending messages from/to the
(parallel) file system.

= Concepts from MPI-1 are reused:
— datatypes to describe non-contiguous data (in memory and in files)
— non-blocking operations

— collective operations

= More on parallel I/0 next week

= MPI-3 tomorrow

End of General MPI Part

One Specific MPI Implementation -- MPICH

What is MPICH?

MPICH is a high-performance and widely portable implementation of MPI

It provides all features of MPI that have been defined so far (including
MPI-1, MPI-2.0, MPI-2.1, MPI-2.2, and MPI-3.)

Serves as foundation for most vendor MPI implementations

Active development lead by Argonne National Laboratory and University
of lllinois at Urbana-Champaign

— Several close collaborators who contribute many features, bug fixes, testing
for quality assurance, etc.

e |IBM, Microsoft, Cray, Intel, Ohio State University, Queen’s University, Myricom,
and many others

Current release is MPICH-3.1.4

You can run experiments here on your Linux or MacOS laptop or a cluster
back home

20

Getting Started with MPICH
Download MPICH

— Go to http://www.mpich.org and follow the downloads link

— The download will be a zipped tarball

— You don’t have to download hydra as well, it is included in MPICH.

Build MPICH
— Unzip/untar the tarball:

tar -xzvf mpich-3.1.4.tar.gz

cd mpich-3.1.4

./configure —--prefix=/where/to/install/mpich |& tee c.log
make |& tee m.log

make install |& tee mi.log

Add /where/to/install/mpich/bin to your PATH

If there is no Fortran compiler on your machine, add

—-disable-fc —-disable-£77 to the configure line

21

Compiling MPI programs with MPICH

= Compilation Wrappers
— For Cprograms: mpicc mytest.c -o mytest
— For C++ programs: mpicxx mytest.cpp —-o mytest
— For Fortran 77 programs: mpif77 mytest.f -o mytest
— For Fortran 90 programs: mpif90 mytest.£90 -o mytest
" You can link in other libraries as required

— Tolinkina math library: mpicc mytest.c —-o mytest -1m

" You can just assume that “mpicc” and friends have replaced
your regular compilers (gcc, gfortran, etc.)

22

Running MPI programs with MPICH

= Launch 16 processes on the local node (e.g. your laptop):
- mpiexec -np 16 ./mytest
= Launch 16 processes on 4 nodes (each has 4 cores)
— mpiexec -hosts hl:4,h2:4,h3:4,h4:4 -np 16 ./mytest
e Runs the first four processes on h1, the next four on h2, etc.
— mpiexec -hosts hl,h2,h3,h4 -np 16 ./mytest
e Runs the first process on h1, the second on h2, etc., and wraps around
e So, h1 will have the 15t, 5th, 9th and 13t processes
= |f there are many nodes, it might be easier to create a host file
— cat hf
hl:4
h2:2
— mpiexec -hostfile hf -np 16 ./mytest

23

Trying some example programs

MPICH comes packaged with several example programs using
almost ALL of MPICH’s functionality

A simple program to try out is the pi example written in C
(cpi.c) — calculates the value of it in parallel (available in the
examples directory when you build MPICH)

— mpiexec -np 16 ./examples/cpi
The output will show how many processes are running, and
the error in calculating

Next, try it with multiple hosts
— mpiexec -hosts hl:2,h2:4 -np 16 ./examples/cpi

If things don’t work as expected, send an email to
discuss@mpich.org

24

Interaction with Resource Managers

= Resource managers such as SGE, PBS, SLURM or Loadleveler
are common in many managed clusters

— MPICH automatically detects them and interoperates with them

= For example with PBS, you can create a script such as:
#'! /bin/bash

cd $PBS_O WORKDIR
No need to provide -np or -hostfile options
mpiexec ./mytest

= Job can be submitted as: gsub -1 nodes=2:ppn=2 test.sub

— “mpiexec” will automatically know that the system has PBS, and ask
PBS for the number of cores allocated (4 in this case), and which nodes
have been allocated

= The usage is similar for other resource managers

25

Running on BG/Q

scp cpi.c you@vesta.alcf.anl.gov:

See
http://www.alcf.anl.gov/user-guides/overview-how-compile-and-link

ssh vesta.alcf.anl.gov

Add +mpiwrapper-x| to ~/.soft file (if not already there)

Run the command "resoft”

mpixlc -o cpi cpi.c

See http://www.alcf.anl.gov/user-guides/how-queue-job

qgsub -A ATPESC2015 -n 10 -t 10 ./cpi

Run gstat to see status in queue

Output will be in "job_number".output file

Debugging MPI programs

= Parallel debugging is trickier than debugging serial programs
— Many processes computing; getting the state of one failed process is usually

hard
— MPICH provides in-built support for some debugging

— And it natively interoperates with commercial parallel debuggers such as

Totalview and DDT
= Using MPICH with totalview:

- totalview —a mpiexec -np 6 ./test

= Using MPICH with ddd (or gdb) on one process:
-~ mpiexec -np 4 ./mytest : -np 1 ddd ./mytest : -np 1 ./mytest

— Launches the 5™ process under “ddd” and all other processes normally

27

MPI Sources

= The Standard itself:

— At http://www.mpi-forum.org
e All MPI official releases. Latest version is MPI 3.0
e Download pdf versions

= Online Resources

— http://www.mcs.anl.gov/mpi

e pointers to lots of stuff, including other talks and tutorials, a FAQ,
other MPI pages

— Tutorials; http://www.mcs.anl.gov/mpi/learning.html|
— Google search will give you many more leads

New Tutorial Books on MPlI (November 2014)

SCIENTIFIC
AND
ENGINEERING
COMPUTATION

SERIES

Using MPI
Portable Parallel Programming
with the Message-Passing Interface

third edition

William Gropp
Ewing Lusk

Anthony Skjellum

Basic MPI

SCIENTIFIC
AND
ENGINEERING

COMPUTATION

SERIES

Using Advanced MPI
Modern Features of the

Message-Passing Interface

William Gropp

Torsten Hoefler

Rajeev Thakur

Ewing Lusk

Advanced MPI, including MPI-2 and MPI-3

Some Example Codes

www.cs.illinois.edu/~wgropp/advmpi-15.tgz

The End

