»

45am

ATPESC We resume @ 10

2P R R R R R R R R R R
PR R R RN
PR R RN

2P IS ESSESSS
SPPPRRRRRRD SRR RRDR
‘33335355

PRI
TR RRRRR R R R R R R
SRR R R RPN
SEPRRR R R R

Program on Extreme-Scale Computing)

(SIMD), and

Ining
lon

Intel
August 3, 2015, Pheasant Run, St Charles, IL

10

t

(Argonne Tra
Vectoriza
scaling (TBB and OpenMP?)
inders,

James.Re

00

25 =2

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as th

ATPESC

(Argonne Training Program on Extreme-Scale Computing)

Vectorization (SIMD), and
scaling (TBB and OpenMP?)

James.Reinders, Intel
August 3, 2015, Pheasant Run, St Charles, IL

10:45 -12:00 (inte|®>

@ | Jge gbstractions !

Software

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed 55 th

(intel®)
Software

Choosing a non-proprietary parallel abstraction

non-proprietary BLAS, FFTW MPI OpenMP TBB Cilk™ Plus
prog. lang. Fortran, C, C++ [Fortran, C, C++ |FortranorC C++ C++

Use abstractions !ll

Avoid direct programming to the low level interfaces (like pthreads).

PROGRAM IN TASKS, NOT THREADS

Is OpenCL" low level? For HPC - YES.

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as t

(intel®)
Software

Choosing a non-proprietary parallel abstraction

non-proprietary BLAS, FFTW MPI OpenMP TBB Cilk™ Plus
prog. lang. Fortran, C, C++ [Fortran, C, C++ |FortranorC C++ C++

Choose First
(limited functions)

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as t

Software
Choosing a non-proprietary parallel abstraction
non-proprietary | BL AS, FFTW MPI OpenMP TBB Cilk™ Plus
prog. lang. Fortran, C, C++ [Fortran, C, C++ |FortranorC C++ C++
Choose First Cluster
(limited functions) (distributed
memory)

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as t

Software
Choosing a non-proprietary parallel abstraction
non-proprietary BLAS, FFTW MPI OpenMP TBB Cilk™ Plus
prog. lang. Fortran, C, C++ [Fortran, C, C++ |FortranorC C++ C++
Choose First Cluster Node
(limited functions) (distributed (shared

memory) memory)

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as t

Software
Choosing a non-proprietary parallel abstraction
non-proprietary |BLAS, FFTW MPI OpenMP TBB Cilk™ Plus
prog. lang. Fortran, C, C++ [Fortran, C, C++ |FortranorC C++ C++
Up and coming
for C++
(keywords,
compilers)
Choose First Cluster Node B_ecauhse--- you
(limited functions) (distributed (shared pect more”

memory) memory)
Affect future
C++ standards?
(20217)

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as t

Software

Choosing a non-proprietary parallel abstraction

non-proprietary |BLAS, FFTW MPI OpenMP TBB Cilk™ Plus

prog. lang. Fortran, C, C++ [Fortran, C, C++ |FortranorC C++ C++

implemented |[vendor libraries |many in compiler portable in compiler
standard open interfaces open interfaces OpenMP standard (1997-) |open source (2007, Intel) |open interfaces (MIT, Intel)

supported by

most vendors

open src & vendors

most compilers

ported most everywhere

gcec and Intel (llvm future)

Compare...
proprietary NVidia CUDA |NVidia OpenACC |Intel LEO
purpose data parallel |offload offload
target (perf.) [NVidia GPUs |NVidia GPUs portable
 alternative OpenCL OpenMP 4.0 OpenMP 4.0

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as t

Software

SRl

Choosing a non-proprietary parallel abstraction

non-proprietary |BLAS, FFTW MPI OpenMP TBB Cilk™ Plus

prog. lang. Fortran, C, C++ [Fortran, C, C++ |FortranorC C++ C++

implemented |vendor libraries |many in compiler portable in compiler
standard open interfaces open interfaces OpenMP standard (1997-) |open source (2007, Intel) |open interfaces (MIT, Intel)

supported by

most vendors

open src & vendors

most compilers

ported most everywhere

gee and Intel (llvm future)

Compare...

proprietary

idia OpenACC

purpose

target (perf.)

alternative

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as t

Software

Choosing a non-proprietary parallel abstraction

non-proprietary |BLAS, FFTW MPI OpenMP TBB Cilk™ Plus

prog. lang. Fortran, C, C++ [Fortran, C, C++ |FortranorC C++ C++

implemented ([vendor libraries |many in compiler portable in compiler
standard open interfaces open interfaces OpenMP standard (1997-) |open source (2007, Intel) |open interfaces (MIT, Intel)

supported by

most vendors

open src & vendors

most compilers

ported most everywhere

gce and Intel (llvm future)

composable? |usually YES NO YES YES

memory shared/distributed |distributed shared (in implementations) |shared memory shared memory
tasks YES YES limited keywords, TBB
explicit SIMD YES (OpenMP 4.0: SIMD) ;fi;‘::‘;"iE‘Ti";:jsf;;::“rzs keywords

offload YES (OpenMP 4.0: SIMD) |use Cilk Plus or OpenMP | keywords

Best options for Performance and Performance Portability

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as t

@ |ntel Threading Building Blocks

We asked ourselves:

= How should C++ be extended?
= “templates / generic programming”

Softwa re

= What do we want to solve?

= Abstraction with good performance
(scalability)

= Abstraction that steers toward easier (less)
debugging

0 Abstraction that is readable

her countries. *Other names and brands may be claimed as t

Intel® Threading Building Blocks (Intel® TBB) W

C++ Library for parallel programming g G for M cone Prcessr el
« Takes care of managing multitasking \

Runtime library
« Scalability to available number of threads

4
Cross-platform

« Windows?*, Linux*, Mac OS* and others

" Intel

Threading
Building Blocks

http://threadingbuildingblocks.org/

Jeamies Redneley
O'REILLY" Nrvwind by Aboneo S

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as t

Parallel algorithms and data structures

Rich Feature Set for Parallelism

Generic Parallel Flow Graph
Algorithms

Efficient scalable way || A set of classes to
to exploit the power || express parallelism

of multi-core without as a graph of
having to start from compute
scratch. dependencies

and/or data flow

Memory allocation and task scheduling

Concurrent Containers

Concurrent access, and a scalable alternative to
serial containers with external locking

Synchronization Primitives

Atomic operations, a variety of mutexes with different
properties, condition variables

Task Scheduler Thread Local Storage Threads Miscellaneous
Sophisticated work scheduling engine that Unlimited number of OS API Thread-safe timers
empowers parallel algorithms and the flow thread-local variables wrappers and exception

graph classes

Memory Allocation

Scalable memory manager and false-sharing free allocators

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claime& és t

: :
Rich Feature Set for Parallelism

Memory allocation and task scheduling

Generic Parallel Flow Graph Concurrent Containers
Algorithms

Concurrent access, and a scalable alternative to

Efficient scalable way | A set of classes to serial containers with external locking
to exploit the power express parallelism
of multi-core without as a graph of e
having to start from compute Synchronization Primitives
scratch. dependencies Atomic operations, a variety of mutexes with different
and/or data flow properties, condition variables
Task Scheduler Thread Local Storage Threads Miscellaneous
Sophisticated work scheduling engine that Unlimited number of OS API Thread-safe timers
graph classes

Memory Allocation

Scalable memory manager and false-sharing free allocators

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claime& gs t

Generic Algorithms

Loop parallelization Parallel Algorithms for Streams
parallel_for parallel_do
parallel_reduce - Use for unstructured stream or pile of work
- load balanced parallel execution - Can add additional work to pile while running
- fixed number of independent parallel_for_each
iterations

- parallel_do without an additional work feeder
pipeline / parallel_pipeline
- Linear pipeline of stages

parallel_scan
- computes parallel prefix

yIil = yli-1] op x[i] - Each stage can be parallel or serial in-order
Parallel sorting or serial out-of-order.
parallel_sort - Uses cache efficiently
Computational graph
Parallel function invocation flow::graph

parallel_invoke - Implements dependencies between
- Parallel execution of a number of nodes
user-specified functions - Pass messages between nodes

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as t

Parallel For

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. other countries. *Other names and brands may be claime& Qs t

tbb:parallel for | 229900sg

Booocooad

Has several forms.

Execute functor(i) for all i € [lower,upper)

parallel_for(lower, upper, functor);

Execute functor(i) for all i e {lower,lower+stride,lower+2*stride,...}

parallel_for(lower, upper, stride, functor),

Execute functor(subrange) for all subrange in range

parallel_for(range, functor);

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. * er names and brands may be claimed\ds

tbb:parallel for

#include <tbb/blocked_range.h>
#include <tbb/parallel for.h>
#define N 10

inline int Prime(int & x) {
int limit, factor = 3;
limit = (long)(sqrtf((float)x)+0.5f);
while((factor <= limit) && (x % factor))
factor ++;
x = (factor > limit ? x : Q);

R ;

int main (){
int a[N]; :
// initialize array here.. A call to a template function
tbbE :??rallej;?for (0, N, 1, —==—_"__ parallel_for (lower, upper, stride, functor)
&](int 1
Prime (a[i]); i Tt :
1; % Task: loop body as C++ lambda expression
return 9;

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimegés t

.'-’ﬁl

Recurslive parallelism

-
-

Split range J l &7 [Data, Data+N)
[Data, Data+N/2) ¥ W 52 N/2 DatatN)

"

. recursively.. L
@[Data, Data+N/k); A —

..until < GrainSize ﬁ &7 tasks available to

0 thieves
[Data, Data+GrainSize)*

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. * er names and brands may be claimed @s

Parallel algorithms and data structures

Rich Feature Set for Parallelism

Generic Parallel Flow Graph
Algorithms

Efficient scalable way || A set of classes to
to exploit the power || express parallelism

of multi-core without as a graph of
having to start from compute
scratch. dependencies

and/or data flow

Memory allocation and task scheduling

Concurrent Containers

Concurrent access, and a scalable alternative to
serial containers with external locking

Synchronization Primitives

Atomic operations, a variety of mutexes with different
properties, condition variables

Task Scheduler Thread Local Storage Threads Miscellaneous
Sophisticated work scheduling engine that Unlimited number of OS API Thread-safe timers
empowers parallel algorithms and the flow thread-local variables wrappers and exception

graph classes

Memory Allocation

Scalable memory manager and false-sharing free allocators

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeags t

parallelism

Outfitling Ce+ Jor Multi-core Processor

The MOST popular

abstract parallelism
model for C++

James Reinders
ander Stepanot

porerord by Alexs

© 2015, Intel
, Corporation i
. All rights res
erved. Intel, the
, Intel logo, In
, Intel Inside, Ci
, Cilk, VTune , X
, Xeon, i
and Xeon Phi are trademarks of Intel
el Corporation i
in the U.S. and/
.S. or other countri
es. *Other nam
es and brands m
ay be claimed
as tl

olism

4+ OCOSS rl’umll(
j. 1ing (&, _ﬁ»l‘ Multi-core Processo
Ouetfrrinng -

The MOST popular

abstract parallelism
model for C++

James Reinders
wandor Stepanot

Forewond by Al

© 2015, Intel Ca™poration. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as t

Sorry OpenMP
You just do not cut It.

for C++

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as t

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands may be claimed as t

The next few slides are based on
following paper from WHPCF' 14

STAC-A2 on Intel Architecture:
From Scalar Code to

Heterogeneous Application

Evgeny Fiksman Sania Salahuddin

evgeny.fiksman@intel.com sania.salahudin@intel.com

SC 14, New Orleans, November 16" 2014

STAC“AZ OVG I'VIGW (https://stacresearch.com/)

* Avendor independent market risk analysis benchmark
* Defined by Securities Technology Analysis Center (STAC¥)

* Calculate “Greeks” — sensitivity of the option price to changes
in parameters of the underlying market

* Heston option pricing model & Least Squares Monte Carlo of
Longstaff & Schwartz

 Benchmark Metrics
« Speed (GREEKS.TIME.COLD/WARM)
« Workload scalability (MAX_ASSETS, MAX_PATHS)
* Power & Space efficiency
* Quality

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeggs t

TBB used on STAC-A2 Benchmark - beat OpenMP g

~1.45x from each HW

generation, SW change B
September 19,2013 May 15,2014 IVB September 8, 2014
Worth at leaSt 2 HW IVB OpenMP Intel TBB HSW Intel TBB

generatlons (INTC130829) (INTC140507) (INTC140814)

Configuration details in STAC vault

130829 and 140507 use 0 Higher is Better —_—
identical hardware 2. o . on
gE 8 - Haswell
140507 and 140814 use 53 | vy Bridge o 1 /TIMEMEAN
identical source code - MAX_ASSETS
o m
This is portable code: 58 . Opentp TMAXPATHS
e . . " © m on
no “intrinsics £2 3 yBridge .
g= 2
g%
gé‘ 0

Parallelization choices matter

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeé@s t

Hold on!!! j

W Wit

Who is the invited O \
keynote speaker ?D e('\N\P f?
for OpenMP conference Op u

in September 20157

ow did Intel TBB beat OpenMP
annotations on STAC-AZ27

OpenMP annotations work well when

* You control the whole machine

*= You have one level of parallelism

* You want to take low level control of scheduling, placement,...

Intel TBB tends to out perform OpenMP when...

= You don't know about the machine you'll run on

*= You have many levels of parallelism (recursive, or in libraries)
= You're happy to let the runtime handle things

Both are portable: Intel TBB does not require compiler support.
Both are reasonably performance portable in practice, although
TBB is composable — which can be a significant advantage in perf. port.

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeé@s t

OpenMP is very popular —and works very well on technical W
applications (like HPC) with C and Fortran.

But, for C++... TBB is better.

| was having a little fun... to make a point.

Nested parallelism is
Important to exploit.

Trending: more and more so.

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeégﬁs t

OpenMP Nested Parallelism: HOT TEAMS

OpenMP worker threads -
created ONCE PER PROGRAM
NESTED PARALLEL:
By DEFAULT, any parallel worker that
executes a parallel construct does that
work inside the same worker thread.

PRO: controlled memory footprint (including stack space)

CON: no load balancing

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeégs t

OpenMP Nested Parallelism: HOT TEAMS

OpenMP worker threads -
created ONCE PER PROGRAM
Additional level(s)

created and
released repeatedly

NESTED PARALLEL:

TURN ON NESTING (no code changes - done with
environment variables)

PRO: load balancing

CON: high overhead, potential oversubscription (runaway
memory/stack usage being the key issue)

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeéés t

Table of Contents...

Foreword
Introduction

Numerical Weather Prediction Optimization
[}
http.// |OtS Ofco res-com WRF Goddard Microphysics Scheme Optimization
Pairwise DNA Sequence Alignment Optimization
Accelerated Structural Bioinformatics for Drug Discovery

ngh Performance ”Hi h Amber PME Molecular Dynamics Optimization
Parallelism Pearls g Low Latency Solutions for Financial Services
PElformance Parallel Numerical Methods in Finance
Para”elism Wilson Dslash Kernel From Lattice QCD Optimization
Pearls Cosmic Microwave Background Analysis: Nested Parallelism In Practice

Visual Search Optimization
Radio Frequency Ray Tracing

Volume 2" -

available Exploring Use of the Reserved Core
| High Performance Python Offloading
now. Fast Matrix Computations on Asynchronous Streams

MPI-3 Shared Memory Programming Introduction
Coarse-Grain OpenMP for Scalable Hybrid Parallelism
Exploiting Multilevel Parallelism with OpenMP
OpenCL: There and Back Again
OpenMP vs. OpenCL: Difference in Performance?

. Prefetch Tuning Optimizations
Volume 2: AUQUSt 2015 SIMD functions via OpenMP
Vectorization Advice
Portable Explicit Vectorization Intrinsics
Power Analysis for Applications and Data Centers

73 expert contributors
23 affiliations

10 countries

24 contributed chapters

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeags t

8 OpenMP Nested Parallelism: HOT TEAMS

Chapter 18: Exploiting Multilevel Parallelism with OpenMP

Nested OpenMP is an optional feature of the OpenMP standard. Its support is subject to the com- OpenMP 4.0 AFFINITY AND HOT TEAMS OF INTEL OpenMP RUNTIME
pilers and runtime Hbraries. The default s to ignore OpenMP parallel regions within a running
parallel region: in OpenMP parlance, the nested regions are serialized. This can be overridden by set-
ting OMP_NESTED=true. The Intel OpenMP runtime has greatly improved performance for nested
OpenMP since releasing Intel Composer XE 15,1 with so-called HOT_TEAMS. They are enabled in
our expertments by setting these environment variables:

A node contains mulifple paratlel unmits—multiple cores, multiple sockets, multiple hardware threads,
and optionally coprocessors, The ability to bind OpenMP threads to physical processing units has be-
come increasingly important to achieve high performance on these modem CPUs. OpenMP 4.0 affinity
features provide standard ways to control thread affinity that can have a dramatic performance effect,
This impact is especially true on current gencration Intel Xeon Phi coprocessors: four hurdware threads
share the L1/L2 cache of an in-order core. We use OpenMP nuntime environments to optimally bind
MPI 1asks and OpenMP threads. For instance, when using 5 MPI and 12 OpeaMP threads for the band
loop and 4 OpenMP threads for compute, they are set as

export KMP_HOT_TEAMS_MODE=1
export KHP_HOT_TEAMS_MAX_LEVEL=7
export MKL_DYNAMIC=false

export OMP_NESTE
export OMP_NUM_’
export OMP_PLAC

export OMP_PROD/

e
Note that we set MKL_DYNAMIC=falss xpﬁrl k
for DGEMM or FFT when they are uss

HOT TEAMS MOTIVATION

“Hot teams™ 1s an extension to OpenMP supported by the Intel runu..
the overhead of OpenMP paralielism, It works with standard OpenMP code but g,
It is a logical extension that may inspire similar capabilities in other implementations,

To understand “hot teams,” it 15 important {0 know that any modem implementation of OpenMP, in
order to avoid the cost of creating and destroying pthreads, has the OpenMP runtime maintain a pool of
0OS threads (pthreads on Linux) that it has already created. This is standard practice in OpenMP nun-
imes because OS thread creation is normally quite expensive.

However. OpenMP also has a concept of a thread team, which is the set of pthreads that will execute

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeg’gs t

10 OpenMP Nested Parallelism: HOT TEAMS

Chapter 10: Cosmic Microwave Background Analysis: Nested Parallelism In Practice

CHAPTER 10 COSMIC MICROWAVE BACKGROUND ANALYSIS

costs are prohibitively expensive when the nested regions are encountered often, such as when the
threads are spawned for an inner-most loop.

There is, however, support for an experimental feature in the Intel® OpenMP runtime (Version 15
Update 1 or later) known as “hot teams” that is able to reduce these overheads, by keeping a pool of
threads alive (but idle) during the execution of the non-nested parallel code. The use of hot teams is 1ok Poricrmanca
controlled by two environment variables: KMP_HOT_TEAMS_MODE and KMP_HOT_TEAMS_MAX_LEVEL. To Parallelism Pearls
keep unused team members alive when team sizes change we set KMP_HOT_TEAMS_MODE=1, and because
we have two levels of parallelism we set KMP_HOT_TEAMS_MAX_LEVEL=2.

Care must also be taken with thread affinity settings. OpenMP 4.0 provides new environment vari-
ables for handling the physical placement of threads, OMP_PROC_BIND and OMP_PLACES, and these are
compatible with nested parallel regions. To place team leaders on separate cores, and team members on
the same core, we set OMP_PROC_BIND=spread,close and OMP_PLACES=threads.

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeégs t

Parallel first

Vectorize second MOLTITHREADING ron VISUAL EEFEGTS

Martin Watt ® Erwin Coumans » George ElKoura © Renald Henderson
Manuel Kraemer » Jeff Lait James Reinders

%
N :’ 9

-5

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claime&@s t

Multithreading is

powerful than vectorization

— by simple math:

16 way from vectorization

244 way
thread parallelism

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , X

eon, and Xeon

maore

Floating Point (FP)

from

MIC-512

Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other n

ames and brands may be claimed &s t

There is an urban legend
that Albert Einstein once
sald that compounding
interest is the most powerful
force in the universe.

16 x 244 =3904

4000

3000

2000

1000

vectorize parallelize both

MULTIPLICATION
EINSTEIN WAS RIGHT

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries

. *Other na

mes a

nd brands may be claimed3s t

Software

How many of us here today...

have ever worried about vectorization for

your application?

Software

Assertion:

We need to embrace explicit vectorization
In our programming.

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeéés t

Software

Shouldn't we solve with better tools?

What is vectorization?

Could we just ignore it?

Software

Vectors Instructions (SIMD instructions)
Make things Faster

(that's the premise)

Up to 4x Performance

with Intel® Advanced Vector Extensions 512 (Intel® AVX-512) Support

4x- - Significant leap to 512-bit SIMD support for processors

- Intel® Compilers and Intel® Math Kernel Library
include AVX-512 support

- Strong compatibility with AVX

2X T
- Added EVEX prefix enables additional functionality

1Xx- 1 : - Appears first in future Intel® Xeon Phi™ coprocessor,
H code named Knights Landing

SSE2 AVX / AVX2 AVX-512

’ Higher performance for the most demanding computational tasks

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeégs t

Performance with Explicit Vectorization

SIMD Speedup using C/C++ Vector Extensions built with SSE4.2
a0
4. .00
3.50
3.00
2.50
2.00
1.50
1.00
0.50
0.00
& & o <& S & % 5
& =& 7 & ST & F =S
_30{\{) @ X2 q"S \}&%qga &
Cﬁ?"} W Serial m MNormalized SIMD Speedup 4&

Configuration: Intel® Core™ i7 CPU X980 system (6 cores with Hyper-Threading On), running at 3.33GHz, with 4.0GB RAM, 12M smart cache, 64-bit Windows Server 2008 R2
Enterprise SP1. For more information go to http://www.intel.com/performance

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeégs t

http://www.intel.com/performance

Software

Whatis a Vector?

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeégs t

Vector of numbers

4.4 1.1 3.1 -85 -13 1.7 7.5 5.6 -3.2 3.6 4.8

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeéés t

.'1ﬁ|

Vector addition

4.4 11 3.1 -85 -13 1.7 7.5 5.6 -3.2 3.6 4.8

+ -0.3 -0.5 0.5 0 0.1 0.8 0.9 0.7 1 0.6 -0.5

..and Vector multiplication

4.4 11 3.1 -85 -13 1.7 7.5 5.6 -3.2 3.6 4.8

X -0.3 -0.5 0.5 0 0.1 0.8 0.9 0.7 1 0.6 -0.5

— -1.32 -0.55 1.55 0 -0.13 136 675 392 -32 216 -24

Software

An example

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeéés t

vector data operations: S
data operations done in parallel

void v_add (float *c,
float *a,
float *b)

for (int i=0; i<= MAX; i++)
c[i]=a[i]+b[1i];

vector data operations: A
data operations done in parallel

void v_add (float *c,

Float) Loop:
U s ot 1o0s 1< MAs see) 1. LOAD a[i] -> Ra
clil=alil+b[il; 2. LOAD D[i] -> Rb
ADD Ra, Rb -> Rc
STORE Rc -> c[i]

ADDi+1->1i

3.
4.
5.

vector data operations: A
data operations done in parallel

Loop:
1. LOADv4 a[i:i+3]
2. LOADv4 b[ii+3

Loop:
->Rva 1. LOAD a[i] -> Ra
->Rvb 2. LOAD b[i]-> Rb

3. ADDv4 Rva, Rv
4,
5.

S
ADDi+4->|

b ->Rvc 3. ADD Ra, Rb -> Rc

TOREvV4 Rvc -> c[ii+3] 4. STORE Rc -> ([i]

5. ADDi+1->1

- ,‘._.:‘}
\

We call this “vectorization”

Loop:
1. LOADv4 a[i:i+3]
2. LOADv4 b[ii+3

Loop:
->Rva 1. LOAD a[i
->Rvb 2. LOAD Db[i]

-> Ra
->Rb

3. ADDv4 Rva, Rv
4,
5.

S
ADDi+4->|

TOREV4 Rvc -> c[iii+3] 4. ST

b ->Rvc 3. ADD Ra,

5. ADDi+1

Rb -> Rc

"ORE Rc -> [i]

_>i

vector data operations: S
data operations done in parallel

void v_add (float *c, float *a, float *b)
{

for (int i=0; i<= MAX; i++)
c[i]=a[1]+b[1];

S Ll

vector data operations:
data operations done in parallel

void v_add (float *c, float *a, float *b)

{
for (int i=0; i<= MAX; i++)
cl[i]=a[i]+b[1];
}
PROBLEM:

This LOOP is NOT LEGAL to (automatically) VECTORIZE
in C / C++ (without more information).

re trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claime®@

Phi a

tel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon

Choice 1:
use a compiler switch for
auto-vectorization

(and hope it vectorizes)

Choice 2:
give your compiler hints

and hope it vectorizes

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. a other countries. *Other names and brands may be claimeégs t

.'1ﬁ|

C99 restrict keyword

void v_add (float *restrict c,
float *restrict a,
float *restrict b)

for (int i=0; i<= MAX; i++)
c[i]=a[i]+b[1i];

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeégs t

.'-’ﬁl

IVDEP (ignore assumed vector dependencies)

void v_add (float *c,
float *a,
float *b)
{
#pragma ivdep
for (int i1=0; i<= MAX; i++)
c[i]=a[i]+b[i];

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeéés t

Choice 3;
code explicitly for vectors

mandatory vectorization

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeéés t

OpenMP* 4.0: #pragma omp simd

void v_add (float *c,
float *a,
float *b)
{
#pragma omp simd
for (int i=0; i<= MAX; i++)
c[i]=a[i]+b[i];

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeéés t

W
OpenMP* 4.0: #pragma omp declare simd

#pragma omp declare simd
void vl add (float *c,
float *a,
float *b)

*c=*a+*b;

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other

names and brands may be claime®és t

SIMD Instruction intrinsics

void v_add (float *c,
float *a,
float *b)

Hard coded to 4 wide !

__ml28* pSrcl = (_ ml28%*) a;
__ml28* pSrc2 = (_ ml28%*) b;
__ml28* pDest = (_ ml28%) c;
for (int i=0; i<= MAX/4; i++)
*pDest++ = mm add ps (*pSrcl++, *pSrc2++);

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeégs t

array operations (Cilk™

void v_add (float *c,
float *a,
float *b)

{
c[0:MAX]=a[0:MAX]+b[0:MAX] ;

}

Challenge: long vector slices
can cause cache issues; fix is to
keep vector slices short.

Plus)

vectorization solutions

1. auto-vectorization (use a compiler switch and hope it vectorizes)
= sequential languages and practices gets in the way
2. give your compiler hints and hope it vectorizes
= C99 restrict (implied in FORTRAN since 1956)
= #pragma ivdep
3. code explicitly
* OpenMP 4.0 #pragma omp simd
= Cilk™ Plus array notations
= SIMD instruction intrinsics

= Kernels: OpenMP 4.0 #pragma omp declare simd; OpenCL; CUDA
kernel functions

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be cIaimeZ@s t

vectorization solutions

1. auto-vectorization (use a compiler switch and hope it vectorizes)
= sequential languages and practices gets in the way

2. give your compiler hints and hope it vectorizes
= C99 restrict (implied in FORTRAN since 1956)
= #pragma ivdep

3. code explicitly

= OpenMP 4.0 #pragma omp simd
= Cilk™ Plus array notations
= SIMD instruction intrinsics

= Kernels: OpenMP 4.0 #pragma omp declare simd; OpenCL; CUDA
kernel functions

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeggs t

Software

Explicit parallelism

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeggs t

parallelization

Try auto-parallel capability PROGRAM TEST
-parallel (Linux* or OS X?*) PARAMETER (N=12800888)

-Qparallel (Windows?) E.EAE 5115{:}

A=2*1-1

C(I) = SQRT(A)

ENDDO

PRINT*, N, C(1), C(N)
END

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeggs t

parallelization

licitl cSOMP PARALLEL DO
Orexp icitly use... DO I=1,N B(I) = (A(I) + A(I-1)) / 2.0
OpenMP END DO

Intel® Threading Building Blocks (] ¢¥OMP END PARALLEL DO

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimegﬁs t

O p e n M P 4 ’ O Based on a proposal from Intel based on

customer success with the
Intel® Cilk™ Plus features in Intel compilers.

simd construct

Summary

The simd construct can be applied to a loop to indicate that the loop can be transformed
into a SIMD loop (that 1s. multiple iterations of the loop can be executed concurrently

using SIMD instructions).

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimegés t

OpenMP 4.0

Based on a proposal from Intel based on
customer success with the
Intel® Cilk™ Plus features in Intel compilers.

simd construct

#pragma omp simd reduction(+:val) reduction(+:val2)
for(int pos = O; pos < RAND_N; pos++) {
float callValue=
expectedCall(Sval,Xval,MuByT,VBySqrtT,|_Random[pos]);

val += callValue;
valZ += callValue * callValue;

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be cIaimegés t

imd construct
e O openP 40) YES - VECTORIZE THIS It

Summary

The simd construct can be applied to a loop to indicate that the loop can be transformed Fortran

into a SIMD loop (that 1s. multiple iterations of the loop can be executed concurrently
using SIMD instructions).

1$omp simd [clause[[,] clause ...]
do-loops

CiC++ [!$omp end simd]

where clause 1s one of the following:
#pragma omp simd [clausef[,] clause] ...] new-line £

for-loops
safelen (length)
where clause is one of the following: linear (list[:linear-step])
aligned (list/-alignment])
safelen (length)

private (list)

linear (list[:linear-step])
lastprivate (list)

aligmed (list[-alignment])
reduction (reduction-identifier:list)

private (list)
collapse(n)

lastprivate (list)

reduction (reduction-identifier:list) If an end simd directive 1s not specified. an end simd directive 1s assumed at the end

of the do-loops.
collapse (n)

All associated do-loops must be do-constructs as defined by the Fortran standard. If an

The simd directive places restrictions on the structure of the associated for-loops. end sil_nd directive follows a dq-construct in which several loop statements share a DO
Specifically, all associated for-loops must have canonical loop form (Section 2.6 on termination statement, then the directive can only be specified for the outermost of these
page 51). D@statepianthe OpenMP standard, the “for-loop” must have canonical loop form.

C/C++ Fortran

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeggs t

declare simd construct . . :
(OpenMP 4.0) Make VECTOR versions of this function.

Summary

The declare simd construct can be applied to a function (C, C++ and Fortran) or a
subroutine (Fortran) to enable the creation of one or more versions that can process
multiple arguments using SIMD instructions from a single invocation from a SIMD
loop. The declare simd directive 1s a declarative directive. There may be multiple
declare simd directives for a function (C. C++, Fortran) or subroutine (Fortran).

C/C++ Fortran

#pragma omp declare simd [clause[[,] clause] ...] new-line | !$omp declare simd(proc-name) [clause[],] clause] ...]

[#pragma omp declare simd [clause[[,] clause] ...] new-line]
[-]

Jfunction definition or declaration

where clause is one of the following: where clause 1s one of the following::

simdlen (length) simdlen (/ength)

linear (argument-list[:constant-linear-step]) linear (argument-list[:constant-linear-step])

aligned (argument-list[:alignment]) aligned (argument-list[:alignment])

uniform (argument-list) uniform (argument-list)

inbranch inbranch

notinbranch notinbranch

C/C++ Fortran

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeggs t

Loop SIMD construct Parallelize and Vectorize.

(OpenMP 4.0)

Summary

The loop SIMD construct specifies a loop that can be executed concurrently using SIMD
mstructions and that those iterations will also be executed in parallel by threads in the

team.
Syntax
C/C++ Fortran
#ipragma omp for simd [clausef[] clausef .. [new-line l$omp do simd [clausef].] clause] ._.J
for-loops do-loops
[1$omp end do simd /nowait]]

where clause can be any of the clauses accepted by the for or simd directives with
identical meanings and restrictions. where clause can be any of the clauses accepted by the simd or do directives, with
C/IC++ identical meanings and restrictions.

If an end do simd directive is not specified, an end do simd directive is
assumed at the end of the do-loop.

Fortran

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeggs t

You like
directives?

y Use
®S™\ OpenMP 4.0

MNo

You are
not alone.

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be cIaimeB@s t

Software

for your consideration:
Intel 15.0 Compilers (in beta now) support
keywords as an alternative

« Keyword versions of SIMD pragmas added:
~Simd, Safelen, Reductilon
. intel simd lane () intrinsic for SIMD enabled functions

Keywords / library interfaces being discussed for SIMD constructs in C and C++ standards

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimegés t

Software

History of Intel vector instructions

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeggs t

Intel Instruction Set Vector Extensions from 1997-2008

1997 1998 1999 2004 2006 2007 2008
Inte' ® ® ® ® ® ®
MMX™ Intel Intel Intel Intel Intel Intel
technology SSE SSE2 SSE3 SSSE3 SSE4.1 SSE4.2
57 new_ 70 new 144 new 13 new, 32 new. 47 new, 7 new
instructions instructions instructions instructions instructions instructions instructions
64 bits 128 bits 128 bits 128 bits 128 bits 128 bits 128 bits
Overload FP 4 single- 2 double- FP vector enhanced packed integer string (XML)
stack Brecmon vector Erecmon vector calculation packed integer calculation processing
P P , calculation conversion
Integer only x87 integer POP-Count
. scalar FP 8/16/32/64 conversion better,
media instructions vector integer " vectorization CRC32
extensions N o 128-bit integer by compiler
cacheability 128-bit integer unaligned load
instructions load with
control & power
conversion management
instructions
media
extensions

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be cIaimeggs t

Intel Instruction Set Vector Extensions since 2011

2011 2011 2012 2013 TBD
Intel® Co-processor only “AVX-1.5" Intel® Intel®
AVX 2l AVX-2 AVX-512
Promotion of Coprocessor 7 new Promotion of Promotion of
128 bit FP predecessor to instructions integer vector
vector AVX-512.New . instruction to instructions to
gstru.ctlons to 51% bltt yect]cc)r ;Eptﬁ'érﬁp 256 bit 512 bits
BeliL chruc o Tor RDRAND - FMA Xeon Phi: Fl,
architecture, __Gather CDlI, ERI, PFI
Rl(?tasrg FEI?CT t;['cl TSX/RTM Xeon: Fl, CDI,
by prlocessors - ElR0 e
Enoorﬁt gtisﬁlejr\fﬁth Reinders blogs announced -
AVX-512 July 2013, and June 2014.

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimegés t

width

S
-t
W
©
O
©

1997 MMX | 64 v

1999 SSE 128 v V(x4)

2001 SSE2 128 v v v(x)
2004 SSE3 128 v v
2006 SSSE 3 128 v v
2006 SSE 4.1 128 v v
2008 SSE 4.2 128 v v
2011 AVX 256 v v(x8) v(x4)
2013 AVX2 256 v v

<
X
)
9
X
=
@

future AVX-512 512

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. * er names and brands may be claime®as

Growth is In vector instructions

3K

Disclaimer: Counting/attributing instructions is in inexact science. The
exact numbers are easily debated, the trend is quite real regardless.

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimegés t

Motivation for AVX-512 Conflict Detection

Sparse computations are common in HPC, but hard to vectorize due to
race conditions

for(i=0; i<16; i++) { A[B[i]]++; }

Consider the “histogram” problem: l

index = &B[1] // Load 16 B[1i]

old val A, index // Grab A[B[i]]

new_val old val, +1.0 // Compute new values
A, index, new_val // Update A[B[i]]

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be cIaime@Zs t

Motivation for AVX-512 Conflict Detection

Sparse computations are common in HPC, but hard to vectorize due to
race conditions

for(i=0; i<16; i++) { A[B[i]]++; }

Consider the “histogram” problem: l

index = vload &B[i] // Load 16 B[1i]
old_val = vgather A, index // Grab A[B[i]]

new_val = vadd old_val, +1.0 // Compute new values
vscatter A, index, new_val // Update A[B[i]]

= Code above is wrong if any values within B[i] are duplicated
— Only one update from the repeated index would be registered!

= A solution to the problem would be to avoid executing the sequence
gather-op-scatter with vector of indexes that contain conflicts

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be cIaime@@s t

Conflict Detection Instructions in AVX-512 W

Improve vectorization!
VPCONFLICT instruction detects elements with

previous conflicts in a vector of indexes VPCONFLICT{D.Q} zmm1{kT}, zmme/mem
VPBROADCASTM{W2D,B2Q} zmm1, k2

» Allows to generate a mask with a subset of elements that VPTESTNM{D,Q} k2{k1}, zmm2, zmm3/mem
are guaranteed to be conflict free VPLZCNT{D,Q} zmm1 {k1}, zmm2/mem

» The computation loop can be re-executed with the remaining elements until all the indexes have
been operated upon

index = &B[1i] // Load 16 B[1i]
pending elem = OXFFFF; // all still remaining
do {

curr_elem = (index, pending_elem)

old val = {curr_elem} A, index // Grab A[B[i]]
new_val = old val, +1.0 // Compute new values
A {curr_elem}, index, new_val // Update A[B[i]]
pending_elem = pending_elem ~ curr_elem // remove done idx
} while (pending_elem)

for illustration: this not even the fastest version

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimegfgs t

Software

-vec-report

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be cIaime@@s t

“Dear compiler, did you vectorize my loop?” %
We heard your feedback......

-vec-report output was hard to understand;
Messages were too cryptic to understand;
Information about one loop showing up at many places of report;

Was easy to be confused about multiple versions of one loop created
by the compj

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeg’gs t

Optimization Reports ince 2014)

= Old functionality implemented under —opt-report, -vec-report,
—openmp-report, -par-report _ _
replaced by unified —opt-report compiler options

. [vec,openmp,par]-report options deprecated and map to equivalent opt-report-phase

= Can still select phase with —opt-report-phase option.
For example, to only get vectorization reports,
use —opt-report-phase=vec

= Qutput now defaults to a <name>.optrpt file where <name>
corresponds to the output object name. This can be changed with
-opt-report-file=[<name>|stdout|stderr]

= Windows*: /Qopt-report, /Qopt-report-phase=<phase> etc.

= Optimization report integration with Microsoft* Visual Studio
planned to appear in beta update 1

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be cIaime@@s t

NEW

(thisyear) ~ “Vectorization Advisor” — Advisor XE
2016
product” 1. “All the data you need in one place”

Leverages Intel Compiler opt-report+ and dynamic profile.
Support for other compilers, C, C++, Fortran, for MPI env.

2. Detects “hot"” un-vectorized or “under
vectorized” loops.

Identifies what is blocking efficient vectorization, where to
add it

3. Identify performance penalties and
recommend fixes

Explicit advices with “true intelligence”, covering OpenMP4.x.
4. Memory layout analysis

5. Increase the confidence that
vectorization is safe

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeg’és t

NEW Vectorization Advisor.
(this year) Assist code modernization for x86 SIMD

“2016 .
" 1. Compiler diagnostics + Performance 2. Guidance: detect problem and
product Data + SIMD efficiency information recommend how to fix it

LA 2

‘ [RN b baadonloonaateatany |
@ 1l 3. “Accurate” Trip Counts: understand " oo

Function Coll Sites and Loopra hel loop. Read more at s £ A

o nocTotanbop e | parallelism granularity and overheads

#{locp in runCFoesiilembdal o |

nop in shik: Comples base cr bestrict € 4 Lo
\ ey b . ~ o Loty Imory accesses in the source loop does not
308 5903 SR3 Lowp yrocissing Tieardds Pioethd deta Goe otal Tme = J the compiler your memory access Is aligned.
: 2 chssk Medana Mo |Max 0 Duste

¥ [locp in std:Dasic_stang ccha, % st schar_traks <chard clast stdzalo 008 1 1
¥ loop m 12d: aes shdcalo.. 0008 54 ', x
¥ [locp in edsnum_put chas cluss tdostresmbed derstorcchae muct 2. 000ds | - -
3
5 <0008 131315
.
5. Memory Access Patterns Analysis
‘e Narme Lae indo Loop Camed Dependencies Stndes Dutnbution Access Pattern
loop, ste) runlRantoops renlRanloopsonci0s) @RAWL o mformation v adsble No nformation avadeble
2 loop ste 139 runCRandoops i Raadcopromtll No ifommation svailable PNL N/ TR fxed rides
D o Type Site Name Sources Modules State foop_ ste 160 runCRawloops nnCRanlooproncils No iformation svailable 100% 70%/0% A1 unat strides
P1 @ Paallel site information site2 dqtest2 cpp dqtest2 v/ Not aproblem |\ e Pamerms
P2 @ Read afer witte dependency site2 dqtest2 cpp dqtes2 R New D ® Sndev Type Source Modules Alignment
P3 @ Read after witte dependency site2 dqrest2 cpp dqtest2 R New 2 @ ool Une stnde nin Rawtoopt.cmtdl icakoe
[Pa | | Wiite after write dependency|site2 datest2 cpp .
&y sl = 203302
PS @ Wiite after wiite dependency site2 dqtest2 cpp dqtest2 R New .
3 Wiite atter re e v site2 ! est2 Ne
Pé @ Wiite ater read dependency site2 dgtest2 cpp dqtest2 R New B ® 6o o O e
P7 @ Wiite after read dependency site2 dqtest2 cpp. idle h dgtes2 R New PO B A9 43 2% 2% 101 2% M 63 206401 Variable stride runCRant copr.oactds sl ere

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeaés t

Software

Summary

We need to embrace explicit vectorization
In our programming.

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeaés t

Software

[t's messy today

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeaés t

Vectorization yesterday

DO1k=1,n
1 A(k) = B(k) + C(k)
K=1 K=2 K=1..2
@ Wde(l) W)
Ld B(1) LdB(2) LdB(1) LdB(Q)
Add Add Add Add
StA(1) StAQR) StA(1) StAQR)
Scalar code Vector code

Vector code generation was straightforward
Emphasis on analysis and disambiguation

S Ll

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other cou

ntries. *Other names and brands may be claime®és t

Vectorization today

#pragma omp simd reduction(+..... p=1 p=0..1
for(p=0; p<N; p++){]
/] Blue work ﬁ)
() {
}else {

, /I Red work
while(...) {
/1 Purple work

Are all
lanes done?

y = foo (x);
Pink work

Two fundamental problems L
Data divergence

Hoe) ehEgEme Vector code generation has become a more difficult problem

Increasing need for user guided explicit vectorization
Explicit vectorization maps threaded execution to simd hardware

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimegjgs t

#pragma omp simd
for (x = 0; x < w; x++) {
for (v = 0; v < nsubsamples; v++) {
for (u = 0; u < nsubsamples; u++) {
float px = (x + (u / (float)nsubsamples) - (w / 2.0f)) / (w / 2.0f);
Ray ray; Isect isect;

ray.dir.x = px;

vnormalize(&(ray.dir));

ray_sphere_intersect(&isect, &ray, &spheres[0]);

ray_plane_intersect (&isect, &ray, &plane); Conditionals

if (isect.hit) {
vec col;

ambient_occlusion_simd(&col, &isect); Conditional
fimg[3 * (v * w + x) + 0] += col.x; .
Function calls

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as t

Motivational Example

//foo.c

float in_vals[];
for(int x = 0; x < Width; ++x) {

) count[x] = lednam(in_val '

//bar.c
int lednam(float c)
{ // Compute n >= 0 such that c*n > LIMIT
float z = 1.0f;
int iters = 0;
while (z < LIMIT) {
) Z =z * c; iters++;

return iters;

What are the simplest changes required for the program to utilize today's
multicore and simd hardware?

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. * er names and brands may be clai

#pragma omp declare simd
int lednam(float c)
{ // Compute n >= @ such that c*n > LIMIT
float z = 1.0f; int iters = 0;
while (z < LIMIT) {

zZ =z * c; iters++;

return iters;

iters = 2 iters = 23 iters = 255 iters = 37

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimé@és t

Mandelbrot

#pragma omp parallel for
for (int y = 0; y < ImageHeight; ++y) {
#pragma omp simd
for (int x_= @; x < ImageWidth; ++Xx)
count[y][x] = mande1%1n_vals[y][x] H

#pragma omp declare simd
int mandel(fcomplex c) . .
// Computes number of iterations for c to escape
fcomplex z = c; . .
for (int 1t$rs=0; (cabsf(z) < 2.0f) && (iters < LIMIT); iters++) {

Z =2z %*2z+C;

return iters;

Mandelbrot Normalized Speedup with OpenMP* on Intel® Xeon Phi™ Coprocessor

1580.03
MW Serial N OpenhfMP PAR OpenifP SR D N OpentfAP PARASIMAD
253.55
510.88
1607 15.0 PR Gp— 15,76 15.99 = I IS5 1618 . 21505 [i —r e
100 0.93 16. . 100 7.78 16 T.00 15, . 100 51 - 100 o= . 1.00 . 1.00 X

1 Thread 8 Threads 16 Threads 32 Threads 61 Threads 122 Threads 244 Threads

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimé@gs t

Software

Summary

We need to embrace explicit vectorization
In our programming.

But, generally use parallelism first

(tasks, threads, MPI, etc.)

Questions?

tel.

James.r.reinders@intel.com

°2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Intel Xeon, and Intel Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

Software

James Reinders. Parallel Programming Evangelist. Intel.

James is involved in multiple engineering, research and educational efforts to increase
use of parallel programming throughout the industry. He joined Intel Corporation in
1989, and has contributed to numerous projects including the world's first TeraFLOP/s
supercomputer (ASCI Red) and the world's first TeraFLOP/s microprocessor (Intel® Xeon
Phi™ coprocessor). James been an author on numerous technical books, including
VTune™ Performance Analyzer Essentials (Intel Press, 2005), Intel® Threading Building
Blocks (O'Reilly Media, 2007), Structured Parallel Programming (Morgan Kaufmann,
2012), Intel® Xeon Phi™ Coprocessor High Performance Programming (Morgan
Kaufmann, 2013), Multithreading for Visual Effects (A K Peters/CRC Press, 2014), High
Performance Parallelism Pearls Volume 1 (Morgan Kaufmann, Nov. 2014), and High
Performance Parallelism Pearls Volume 2 (Morgan Kaufmann, Aug. 2015). James is
working on a refresh of both the Xeon Phi™ book (original Feb. 2013, revised with KNL
information by mid-2016) and a refresh of the TBB book (original June 2007, revised by

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as t

@ed Legal Disclaimer & Optimization Notice

Software

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations
and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other
products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks
of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations
in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets
covered by this notice.

Notice revision #20110804

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimé@és t

