
© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of other

ATPESC
(Argonne Training Program on Extreme-Scale Computing)

Vectorization (SIMD), and
scaling (TBB and OpenMP*)
James Reinders, Intel
August 3, 2015, Pheasant Run, St Charles, IL

10:45 – 12:00

We resume @ 10:45am

r||ism NOW

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of other

ATPESC
(Argonne Training Program on Extreme-Scale Computing)

Vectorization (SIMD), and
scaling (TBB and OpenMP*)
James Reinders, Intel
August 3, 2015, Pheasant Run, St Charles, IL

10:45 – 12:00

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Use abstractions !!!

5

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Choosing a non-proprietary parallel abstraction

Use abstractions !!!

Avoid direct programming to the low level interfaces (like pthreads).

PROGRAM IN TASKS, NOT THREADS

Is OpenCL* low level? For HPC – YES.

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Choosing a non-proprietary parallel abstraction

Choose First

(limited functions)

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Choosing a non-proprietary parallel abstraction

Choose First

(limited functions)
Cluster

(distributed

memory)

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Choosing a non-proprietary parallel abstraction

Choose First

(limited functions)
Cluster

(distributed

memory)

Node

(shared

memory)

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Choosing a non-proprietary parallel abstraction

Choose First

(limited functions)
Cluster

(distributed

memory)

Node

(shared

memory)

Up and coming
for C++

(keywords,
compilers)

Because… you
just have to

expect “more”

Affect future
C++ standards?

(2021?)

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Choosing a non-proprietary parallel abstraction

Compare...
*

*

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Choosing a non-proprietary parallel abstraction

Compare...

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Choosing a non-proprietary parallel abstraction

Best options for Performance and Performance Portability

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Intel Threading Building Blocks
We asked ourselves:

 How should C++ be extended?

 “templates / generic programming”

 What do we want to solve?

 Abstraction with good performance
(scalability)

 Abstraction that steers toward easier (less)
debugging

 Abstraction that is readable

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Intel® Threading Building Blocks (Intel® TBB)

С++ Library for parallel programming

• Takes care of managing multitasking

Runtime library

• Scalability to available number of threads

Cross-platform

• Windows*, Linux*, Mac OS* and others

http://threadingbuildingblocks.org/

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro16

Rich Feature Set for Parallelism

Generic Parallel
Algorithms

Efficient scalable way
to exploit the power
of multi-core without
having to start from

scratch.

Concurrent Containers

Concurrent access, and a scalable alternative to
serial containers with external locking

Task Scheduler

Sophisticated work scheduling engine that
empowers parallel algorithms and the flow

graph

Threads

OS API

wrappers

Miscellaneous

Thread-safe timers

and exception

classes

Memory Allocation

Scalable memory manager and false-sharing free allocators

Synchronization Primitives

Atomic operations, a variety of mutexes with different

properties, condition variables

Flow Graph

A set of classes to
express parallelism

as a graph of
compute

dependencies
and/or data flow

Parallel algorithms and data structures

Threads and synchronization

Memory allocation and task scheduling

Thread Local Storage

Unlimited number of

thread-local variables

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro17

Rich Feature Set for Parallelism

Generic Parallel
Algorithms

Efficient scalable way
to exploit the power
of multi-core without
having to start from

scratch.

Concurrent Containers

Concurrent access, and a scalable alternative to
serial containers with external locking

Task Scheduler

Sophisticated work scheduling engine that
empowers parallel algorithms and the flow

graph

Threads

OS API

wrappers

Miscellaneous

Thread-safe timers

and exception

classes

Memory Allocation

Scalable memory manager and false-sharing free allocators

Synchronization Primitives

Atomic operations, a variety of mutexes with different

properties, condition variables

Flow Graph

A set of classes to
express parallelism

as a graph of
compute

dependencies
and/or data flow

Parallel algorithms and data structures

Threads and synchronization

Memory allocation and task scheduling

Thread Local Storage

Unlimited number of

thread-local variables

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Loop parallelization

parallel_for

parallel_reduce

- load balanced parallel execution

- fixed number of independent

iterations

parallel_scan

- computes parallel prefix

y[i] = y[i-1] op x[i]

Parallel Algorithms for Streams

parallel_do

- Use for unstructured stream or pile of work

- Can add additional work to pile while running

parallel_for_each

- parallel_do without an additional work feeder

pipeline / parallel_pipeline

- Linear pipeline of stages

- Each stage can be parallel or serial in-order

or serial out-of-order.

- Uses cache efficiently

Parallel function invocation

parallel_invoke

- Parallel execution of a number of

user-specified functions

Parallel sorting

parallel_sort

Computational graph

flow::graph

- Implements dependencies between

nodes

- Pass messages between nodes

Generic Algorithms

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro19

Parallel For

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro20

tbb::parallel_for
Has several forms.

parallel_for(lower, upper, functor);

Execute functor(i) for all i  [lower,upper)

parallel_for(lower, upper, stride, functor);

Execute functor(i) for all i  {lower,lower+stride,lower+2*stride,...}

parallel_for(range, functor);

Execute functor(subrange) for all subrange in range

Map

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro21

tbb::parallel_for
#include <tbb/blocked_range.h>
#include <tbb/parallel_for.h>
#define N 10

inline int Prime(int & x) {
int limit, factor = 3;
limit = (long)(sqrtf((float)x)+0.5f);
while((factor <= limit) && (x % factor))

factor ++;
x = (factor > limit ? x : 0);

}

int main (){
int a[N];
// initialize array here…
tbb::parallel_for (0, N, 1,

[&](int i){
Prime (a[i]);

});
return 0;

}

A call to a template function

parallel_for (lower, upper, stride, functor)

Task: loop body as C++ lambda expression

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

[Data, Data+N)

[Data, Data+N/2) [Data+N/2, Data+N)

[Data, Data+N/k)

[Data, Data+GrainSize)

tasks available to

thieves

22

Split range...

.. recursively...

...until  GrainSize

Recursive parallelism

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro23

Rich Feature Set for Parallelism

Generic Parallel
Algorithms

Efficient scalable way
to exploit the power
of multi-core without
having to start from

scratch.

Concurrent Containers

Concurrent access, and a scalable alternative to
serial containers with external locking

Task Scheduler

Sophisticated work scheduling engine that
empowers parallel algorithms and the flow

graph

Threads

OS API

wrappers

Miscellaneous

Thread-safe timers

and exception

classes

Memory Allocation

Scalable memory manager and false-sharing free allocators

Synchronization Primitives

Atomic operations, a variety of mutexes with different

properties, condition variables

Flow Graph

A set of classes to
express parallelism

as a graph of
compute

dependencies
and/or data flow

Parallel algorithms and data structures

Threads and synchronization

Memory allocation and task scheduling

Thread Local Storage

Unlimited number of

thread-local variables

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

The MOST popular

abstract parallelism

model for C++

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

The MOST popular

abstract parallelism

model for C++

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Sorry OpenMP

You just do not cut it.

(for C++)

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Sorry OpenMP

You just do not cut it.

(for C++)

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro28

The next few slides are based on
following paper from WHPCF’14:

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro29

• A vendor independent market risk analysis benchmark

• Defined by Securities Technology Analysis Center (STAC*)

• Calculate “Greeks” – sensitivity of the option price to changes
in parameters of the underlying market

• Heston option pricing model & Least Squares Monte Carlo of
Longstaff & Schwartz

• Benchmark Metrics

• Speed (GREEKS.TIME.COLD/WARM)

• Workload scalability (MAX_ASSETS, MAX_PATHS)

• Power & Space efficiency

• Quality

STAC-A2 overview (https://stacresearch.com/)

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro30

TBB used on STAC-A2 Benchmark – beat OpenMP

130829 and 140507 use
identical hardware

140507 and 140814 use
identical source code

This is portable code:
no “intrinsics”

~1.45x from each HW
generation, SW change
worth at least 2 HW
generations

0

1

2

3

4

5

6

7

8

9

10

 September 19, 2013

IVB OpenMP

(INTC130829)

 May 15, 2014 IVB

Intel TBB

(INTC140507)

September 8, 2014

HSW Intel TBB

(INTC140814)

P
e

rf
o

rm
a

n
ce

 n
o

rm
a

lis
e

d
 t

o
 J
u

n
2

6
 2

0
1

3
 (

S
N

B

O
p

e
n

M
P

)
IN

T
C

1
3

0
6

0
7

 B
ig

g
e

r
is

 b
e

tt
e

r.

Configuration details in STAC vault

1/TIME.MEAN

MAX_ASSETS

MAX_PATHS

Parallelization choices matter

OpenMP

on

Ivy Bridge

TBB

on

Ivy Bridge

TBB

on

Haswell

Higher is Better

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro31

Hold on!!!

Who is the invited
keynote speaker
for OpenMP conference
in September 2015?

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro32

OpenMP annotations work well when
 You control the whole machine
 You have one level of parallelism
 You want to take low level control of scheduling, placement,…

Intel TBB tends to out perform OpenMP when…
 You don’t know about the machine you’ll run on
 You have many levels of parallelism (recursive, or in libraries)
 You’re happy to let the runtime handle things

Both are portable: Intel TBB does not require compiler support.
Both are reasonably performance portable in practice, although
TBB is composable – which can be a significant advantage in perf. port.

How did Intel TBB beat OpenMP
annotations on STAC-A2?

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro33

I was having a little fun… to make a point.

OpenMP is very popular – and works very well on technical
applications (like HPC) with C and Fortran.

But, for C++… TBB is better.

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Nested parallelism is
important to exploit.

Trending: more and more so.

34

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro35

OpenMP Nested Parallelism: HOT TEAMS

NESTED PARALLEL:

By DEFAULT, any parallel worker that

executes a parallel construct does that

work inside the same worker thread.

PRO: controlled memory footprint (including stack space)

CON: no load balancing

OpenMP worker threads –

created ONCE PER PROGRAM

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro36

OpenMP Nested Parallelism: HOT TEAMS

OpenMP worker threads –

created ONCE PER PROGRAM

NESTED PARALLEL:

TURN ON NESTING (no code changes – done with

environment variables)

PRO: load balancing

CON: high overhead, potential oversubscription (runaway

memory/stack usage being the key issue)

Additional level(s)

created and

released repeatedly

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro37

Volume 2: August 2015

“High

Performance

Parallelism

Pearls

Volume 2” –

available

now!

Foreword
Introduction

Numerical Weather Prediction Optimization

WRF Goddard Microphysics Scheme Optimization

Pairwise DNA Sequence Alignment Optimization

Accelerated Structural Bioinformatics for Drug Discovery

Amber PME Molecular Dynamics Optimization

Low Latency Solutions for Financial Services

Parallel Numerical Methods in Finance

Wilson Dslash Kernel From Lattice QCD Optimization

Cosmic Microwave Background Analysis: Nested Parallelism In Practice

Visual Search Optimization

Radio Frequency Ray Tracing

Exploring Use of the Reserved Core

High Performance Python Offloading

Fast Matrix Computations on Asynchronous Streams

MPI-3 Shared Memory Programming Introduction

Coarse-Grain OpenMP for Scalable Hybrid Parallelism

Exploiting Multilevel Parallelism with OpenMP

OpenCL: There and Back Again

OpenMP vs. OpenCL: Difference in Performance?

Prefetch Tuning Optimizations

SIMD functions via OpenMP

Vectorization Advice

Portable Explicit Vectorization Intrinsics

Power Analysis for Applications and Data Centers

Table of Contents…

http:// lotsofcores.com

73 expert contributors
23 affiliations
10 countries
24 contributed chapters

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro38

OpenMP Nested Parallelism: HOT TEAMS
Chapter 18: Exploiting Multilevel Parallelism with OpenMP

18

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro39

OpenMP Nested Parallelism: HOT TEAMS
Chapter 10: Cosmic Microwave Background Analysis: Nested Parallelism In Practice

10

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro40

Parallel first

Vectorize second

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro41

Multithreading is more
powerful than vectorization
– by simple math:

16 way from vectorization

244 way from
thread parallelism

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro42

There is an urban legend
that Albert Einstein once
said that compounding
interest is the most powerful
force in the universe.

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro43

16 x 244 = 3904

0

1000

2000

3000

4000

vectorize parallelize both

r

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro44

How many of us here today…

have ever worried about vectorization for

your application?

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Assertion:

45

We need to embrace explicit vectorization
in our programming.

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro46

Shouldn’t we solve with better tools?

What is vectorization?

Could we just ignore it?

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Vectors Instructions (SIMD instructions)
Make things Faster

(that’s the premise)

47

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Up to 4x Performance
with Intel® Advanced Vector Extensions 512 (Intel® AVX-512) Support

Higher performance for the most demanding computational tasks

- Significant leap to 512-bit SIMD support for processors

- Intel® Compilers and Intel® Math Kernel Library
include AVX-512 support

- Strong compatibility with AVX

- Added EVEX prefix enables additional functionality

- Appears first in future Intel® Xeon Phi™ coprocessor,
code named Knights Landing

x

x

x

48

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Performance with Intel CilkPlusPerformance with Explicit Vectorization

Configuration: Intel® Core™ i7 CPU X980 system (6 cores with Hyper-Threading On), running at 3.33GHz, with 4.0GB RAM, 12M smart cache, 64-bit Windows Server 2008 R2

Enterprise SP1. For more information go to http://www.intel.com/performance

49

http://www.intel.com/performance

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

What is a Vector?

50

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Vector of numbers

51

[]

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Vector addition

52

[]
[]
[]

+
=

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

…and Vector multiplication

53

[]
[]
[]

[]
[]
[]

+
=

×

=

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

An example

54

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

vector data operations:
data operations done in parallel
void v_add (float *c,

float *a,

float *b)

{

for (int i=0; i<= MAX; i++)

c[i]=a[i]+b[i];

}

55

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

vector data operations:
data operations done in parallel
void v_add (float *c,

float *a,

float *b)

{

for (int i=0; i<= MAX; i++)

c[i]=a[i]+b[i];

}

Loop:

1. LOAD a[i] -> Ra

2. LOAD b[i] -> Rb

3. ADD Ra, Rb -> Rc

4. STORE Rc -> c[i]

5. ADD i + 1 -> i
56

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

vector data operations:
data operations done in parallel
void v_add (float *c,

float *a,

float *b)

{

for (int i=0; i<= MAX; i++)

c[i]=a[i]+b[i];

}

Loop:

1. LOAD a[i] -> Ra

2. LOAD b[i] -> Rb

3. ADD Ra, Rb -> Rc

4. STORE Rc -> c[i]

5. ADD i + 1 -> i

Loop:

1. LOADv4 a[i:i+3] -> Rva

2. LOADv4 b[i:i+3] -> Rvb

3. ADDv4 Rva, Rvb -> Rvc

4. STOREv4 Rvc -> c[i:i+3]

5. ADD i + 4 -> i
57

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

vector data operations:
data operations done in parallel
void v_add (float *c,

float *a,

float *b)

{

for (int i=0; i<= MAX; i++)

c[i]=a[i]+b[i];

}

Loop:

1. LOAD a[i] -> Ra

2. LOAD b[i] -> Rb

3. ADD Ra, Rb -> Rc

4. STORE Rc -> c[i]

5. ADD i + 1 -> i

We call this “vectorization”

Loop:

1. LOADv4 a[i:i+3] -> Rva

2. LOADv4 b[i:i+3] -> Rvb

3. ADDv4 Rva, Rvb -> Rvc

4. STOREv4 Rvc -> c[i:i+3]

5. ADD i + 4 -> i
58

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

vector data operations:
data operations done in parallel
void v_add (float *c, float *a, float *b)

{

for (int i=0; i<= MAX; i++)

c[i]=a[i]+b[i];

}

59

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

vector data operations:
data operations done in parallel
void v_add (float *c, float *a, float *b)

{

for (int i=0; i<= MAX; i++)

c[i]=a[i]+b[i];

}

PROBLEM:

This LOOP is NOT LEGAL to (automatically) VECTORIZE

in C / C++ (without more information).

Arrays not really in the language

Pointers are, evil pointers!

60

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Choice 1:
use a compiler switch for
auto-vectorization

(and hope it vectorizes)

61

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Choice 2:
give your compiler hints

(and hope it vectorizes)

62

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

C99 restrict keyword
void v_add (float *restrict c,

float *restrict a,

float *restrict b)

{

for (int i=0; i<= MAX; i++)

c[i]=a[i]+b[i];

}

63

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

IVDEP (ignore assumed vector dependencies)

void v_add (float *c,

float *a,

float *b)

{

#pragma ivdep

for (int i=0; i<= MAX; i++)

c[i]=a[i]+b[i];

}

64

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Choice 3:
code explicitly for vectors

(mandatory vectorization)

65

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

OpenMP* 4.0: #pragma omp simd

void v_add (float *c,

float *a,

float *b)

{

#pragma omp simd

for (int i=0; i<= MAX; i++)

c[i]=a[i]+b[i];

}

66

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

OpenMP* 4.0: #pragma omp declare simd

#pragma omp declare simd

void v1_add (float *c,

float *a,

float *b)

{

*c=*a+*b;

}

67

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

SIMD instruction intrinsics
void v_add (float *c,

float *a,

float *b)

{
__m128* pSrc1 = (__m128*) a;

__m128* pSrc2 = (__m128*) b;

__m128* pDest = (__m128*) c;

for (int i=0; i<= MAX/4; i++)

*pDest++ = _mm_add_ps(*pSrc1++, *pSrc2++);

}

68

Hard coded to 4 wide !

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

array operations (Cilk™ Plus)
void v_add (float *c,

float *a,

float *b)

{

c[0:MAX]=a[0:MAX]+b[0:MAX];

}

Challenge: long vector slices
can cause cache issues; fix is to
keep vector slices short.

Cilk™ Plus is supported

in Intel compilers, and

gcc (4.9).

69

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

vectorization solutions
1. auto-vectorization (use a compiler switch and hope it vectorizes)

 sequential languages and practices gets in the way
2. give your compiler hints and hope it vectorizes

 C99 restrict (implied in FORTRAN since 1956)
 #pragma ivdep

3. code explicitly
 OpenMP 4.0 #pragma omp simd
 Cilk™ Plus array notations
 SIMD instruction intrinsics
 Kernels: OpenMP 4.0 #pragma omp declare simd; OpenCL; CUDA

kernel functions

70

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

vectorization solutions
1. auto-vectorization (use a compiler switch and hope it vectorizes)

 sequential languages and practices gets in the way
2. give your compiler hints and hope it vectorizes

 C99 restrict (implied in FORTRAN since 1956)
 #pragma ivdep

3. code explicitly
 OpenMP 4.0 #pragma omp simd
 Cilk™ Plus array notations
 SIMD instruction intrinsics
 Kernels: OpenMP 4.0 #pragma omp declare simd; OpenCL; CUDA

kernel functions

71

Best at being

Reliable, predictable and portable

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Explicit parallelism

72

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

parallelization

73

Try auto-parallel capability:
-parallel (Linux* or OS X*)
-Qparallel (Windows*)

Or explicitly use…
Fortran directive (!DIR$ PARALLEL)
C pragma (#pragma parallel)
Intel® Threading Building Blocks (TBB)

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

parallelization

74

Try auto-parallel capability:

-parallel (Linux or OS X*)

-Qparallel (Windows)

Or explicitly use…

OpenMP

Intel® Threading Building Blocks (TBB)

Best at being
Reliable, predictable and portable

c$OMP PARALLEL DO

DO I=1,N B(I) = (A(I) + A(I-1)) / 2.0

END DO

c$OMP END PARALLEL DO

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

OpenMP 4.0

75

Based on a proposal from Intel based on

customer success with the

Intel® Cilk™ Plus features in Intel compilers.

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

OpenMP 4.0

76

Based on a proposal from Intel based on

customer success with the

Intel® Cilk™ Plus features in Intel compilers.

#pragma omp simd reduction(+:val) reduction(+:val2)

for(int pos = 0; pos < RAND_N; pos++) {

float callValue=

expectedCall(Sval,Xval,MuByT,VBySqrtT,l_Random[pos]);

val += callValue;

val2 += callValue * callValue;

}

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro77

Note: per the OpenMP standard, the “for-loop” must have canonical loop form.

YES – VECTORIZE THIS !!!(OpenMP 4.0)

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro78

Make VECTOR versions of this function.
(OpenMP 4.0)

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro79

Parallelize and Vectorize.

(OpenMP 4.0)

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro80

You like

directives?
Use

OpenMP 4.0

You are

not alone.

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

• Keyword versions of SIMD pragmas added:

_Simd, _Safelen, _Reduction

• __intel_simd_lane() intrinsic for SIMD enabled functions

81

for your consideration:

Intel 15.0 Compilers (in beta now) support

keywords as an alternative

Keywords / library interfaces being discussed for SIMD constructs in C and C++ standards

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

History of Intel vector instructions

82

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Intel Instruction Set Vector Extensions from 1997-2008

70 new
instructions

128 bits

4 single-
precision vector
FP

scalar FP
instructions

cacheability
instructions

control &
conversion
instructions

media
extensions

1998

Intel®

SSE

144 new
instructions

128 bits

2 double-
precision vector
FP

8/16/32/64
vector integer

128-bit integer

memory &
power
management

1999

Intel®

SSE2

1999

Intel®

SSE2

13 new
instructions

128 bits

FP vector
calculation

x87 integer
conversion

128-bit integer
unaligned load

thread sync.

2004

Intel®

SSE3

2004

Intel®

SSE3

32 new
instructions

128 bits

enhanced
packed integer
calculation

2006

Intel

SSSE3

2006

Intel®

SSSE3

47 new
instructions

128 bits

packed integer
calculation &
conversion

better
vectorization
by compiler

load with
streaming hint

2007

Intel®

SSE4.1

2007

Intel®

SSE4.1

2008

Intel®

SSE4.2

7 new
instructions

128 bits

string (XML)
processing

POP-Count

CRC32

2008

Intel®

SSE4.2

57 new
instructions

64 bits

Overload FP
stack

Integer only

media
extensions

1997

Intel®

MMX™

technology

83

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Intel Instruction Set Vector Extensions since 2011

Promotion of
128 bit FP
vector
instructions to
256 bit

2011

Intel®

AVX

7 new
instructions

16 bit FP
support

RDRAND

…

2012

“AVX-1.5”

Promotion of
integer
instruction to
256 bit

- FMA

- Gather

- TSX/RTM

2013

Intel®

AVX-2

TBD

Intel®

AVX-512

Promotion of
vector
instructions to
512 bits

Xeon Phi: FI,
CDI, ERI, PFI

Xeon: FI, CDI,
BWI, DQI, VLE

2011

Co-processor only

512

Coprocessor
predecessor to
AVX-512. New
512 bit vector
instructions for
MIC
architecture,
binary compt.
not supported
by processors –
mostly source
compatible with
AVX-512

84

Reinders blogs announced –

July 2013, and June 2014.

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

(x4)

(x2)

(x8) (x4)

(x16) (x8)

85

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Growth is in vector instructions

86

v
e

ct
o

r

sc
a

la
r

v
e

ct
o

r

sc
a

la
r

v
e

ct
o

r

sc
a

la
r

v
e

ct
o

r

sc
a

la
r

v
e

ct
o

r

sc
a

la
r

Disclaimer: Counting/attributing instructions is in inexact science. The

exact numbers are easily debated, the trend is quite real regardless.

1K

2K

3K

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Motivation for AVX-512 Conflict Detection
Sparse computations are common in HPC, but hard to vectorize due to
race conditions

Consider the “histogram” problem:

index = vload &B[i] // Load 16 B[i]
old_val = vgather A, index // Grab A[B[i]]
new_val = vadd old_val, +1.0 // Compute new values
vscatter A, index, new_val // Update A[B[i]]

for(i=0; i<16; i++) { A[B[i]]++; }

• Code above is wrong if any values within B[i] are duplicated

− Only one update from the repeated index would be registered!

• A solution to the problem would be to avoid executing the sequence

gather-op-scatter with vector of indexes that contain conflicts

87

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Motivation for AVX-512 Conflict Detection
Sparse computations are common in HPC, but hard to vectorize due to
race conditions

Consider the “histogram” problem:

index = vload &B[i] // Load 16 B[i]
old_val = vgather A, index // Grab A[B[i]]
new_val = vadd old_val, +1.0 // Compute new values
vscatter A, index, new_val // Update A[B[i]]

for(i=0; i<16; i++) { A[B[i]]++; }

• Code above is wrong if any values within B[i] are duplicated

− Only one update from the repeated index would be registered!

• A solution to the problem would be to avoid executing the sequence

gather-op-scatter with vector of indexes that contain conflicts

88

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Conflict Detection Instructions in AVX-512
improve vectorization!
VPCONFLICT instruction detects elements with
previous conflicts in a vector of indexes

 Allows to generate a mask with a subset of elements that
are guaranteed to be conflict free

 The computation loop can be re-executed with the remaining elements until all the indexes have
been operated upon

index = vload &B[i] // Load 16 B[i]
pending_elem = 0xFFFF; // all still remaining
do {

curr_elem = get_conflict_free_subset(index, pending_elem)
old_val = vgather {curr_elem} A, index // Grab A[B[i]]
new_val = vadd old_val, +1.0 // Compute new values
vscatter A {curr_elem}, index, new_val // Update A[B[i]]
pending_elem = pending_elem ^ curr_elem // remove done idx

} while (pending_elem)

CDI instr.
VPCONFLICT{D,Q} zmm1{k1}, zmm2/mem

VPBROADCASTM{W2D,B2Q} zmm1, k2

VPTESTNM{D,Q} k2{k1}, zmm2, zmm3/mem

VPLZCNT{D,Q} zmm1 {k1}, zmm2/mem

for illustration: this not even the fastest version

89

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

-vec-report

90

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

“Dear compiler, did you vectorize my loop?”
We heard your feedback…...

91

-vec-report output was hard to understand;

Messages were too cryptic to understand;

Information about one loop showing up at many places of report;

Was easy to be confused about multiple versions of one loop created
by the compiler.

We couldn’t do everything you asked,
but here are the

improvements made for 15.0 compiler (in 2014).

Expect more changes to come,

during beta and in future versions.

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

 Old functionality implemented under -opt-report, -vec-report,
-openmp-report, -par-report
replaced by unified -opt-report compiler options
 [vec,openmp,par]–report options deprecated and map to equivalent opt-report-phase

 Can still select phase with -opt-report-phase option.
For example, to only get vectorization reports,
use -opt-report-phase=vec

 Output now defaults to a <name>.optrpt file where <name>
corresponds to the output object name. This can be changed with
-opt-report-file=[<name>|stdout|stderr]

 Windows*: /Qopt-report, /Qopt-report-phase=<phase> etc.
 Optimization report integration with Microsoft* Visual Studio

planned to appear in beta update 1

Optimization Reports (since 2014)

92

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro93

NEW

(this year)

“2016

product”

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro94

NEW

(this year)

“2016

product”

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Summary

95

We need to embrace explicit vectorization
in our programming.

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

It’s messy today

96

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

DO 1 k = 1,n

1 A(k) = B(k) + C(k)

Vector code generation was straightforward

Emphasis on analysis and disambiguation

Vectorization yesterday

97

K=1

Ld C(1)

Ld B(1)

Add

St A(1)

K=2

Ld C(2)

Ld B(2)

Add

St A(2)

K=1..2

Ld C(1)

Ld B(1)

Add

St A(1)

Ld C(2)

Ld B(2)

Add

St A(2)

Scalar code Vector code

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Vectorization today

98

Vector code generation has become a more difficult problem

Increasing need for user guided explicit vectorization

Explicit vectorization maps threaded execution to simd hardware

Two fundamental problems
Data divergence
Control divergence

p=0

2
Are all
lanes done?

p=0..1

Function call

x1

y1
Vector Function call

x1, x2

y1, y2

#pragma omp simd reduction(+:….)
for(p=0; p<N; p++) {

// Blue work
if(…) {

// Green work
} else {

// Red work
}
while(…) {

// Gold work
// Purple work

}
y = foo (x);
Pink work

}

p=1

3

Function call

x2

y2

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

#pragma omp simd

for (x = 0; x < w; x++) {

for (v = 0; v < nsubsamples; v++) {

for (u = 0; u < nsubsamples; u++) {

float px = (x + (u / (float)nsubsamples) - (w / 2.0f)) / (w / 2.0f);

Ray ray; Isect isect;

….

ray.dir.x = px;

….

vnormalize(&(ray.dir));

……

ray_sphere_intersect(&isect, &ray, &spheres[0]);

……

ray_plane_intersect (&isect, &ray, &plane);

if (isect.hit) {

vec col;

ambient_occlusion_simd(&col, &isect);

fimg[3 * (y * w + x) + 0] += col.x;

……..

}

}

}

}

Loops Function calls

Conditionals

Conditional

Function calls

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Motivational Example

100

//foo.c
float in_vals[];
for(int x = 0; x < Width; ++x) {

count[x] = lednam(in_vals[x]);
}

What are the simplest changes required for the program to utilize today’s
multicore and simd hardware?

//bar.c
int lednam(float c)
{ // Compute n >= 0 such that c^n > LIMIT

float z = 1.0f;
int iters = 0;
while (z < LIMIT) {

z = z * c; iters++;
}
return iters;

}

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro101

float in_vals[];
#pragma omp simd
for(int x = 0; x < Width; ++x) {

count[x] = lednam(in_vals[x]);
}

x = 0 x = 1 x = 2 x = 3

float in_vals[];
#pragma omp parallel for simd
for(int x = 0; x < Width; ++x) {

count[x] = lednam(in_vals[x]);
}

float in_vals[];

for(int x = 0; x < Width; ++x) {
count[x] = lednam(in_vals[x]);

}

z = z * c

z = z * c

iters = 2

z = z * c

z = z * c

….

iters = 23

z = z * c

z = z * c

……….……...

iters = 255

z = z * c

z = z * c

……..

iters = 37

#pragma omp declare simd
int lednam(float c)
{ // Compute n >= 0 such that c^n > LIMIT

float z = 1.0f; int iters = 0;
while (z < LIMIT) {

z = z * c; iters++;
}
return iters;

}

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Mandelbrot

102

#pragma omp parallel for
for (int y = 0; y < ImageHeight; ++y) {

#pragma omp simd
for (int x = 0; x < ImageWidth; ++x) {

count[y][x] = mandel(in_vals[y][x]);
}

}

Intel Xeon Phi™ system, Linux64, 61 cores running 244 threads
at 1GHz, 32 KB L1, 512 KB L2 per core. Intel C/C++ Compiler
1internal build.

Mandelbrot Normalized Speedup with OpenMP* on Intel® Xeon Phi™ Coprocessor

#pragma omp declare simd
int mandel(fcomplex c)
{ // Computes number of iterations for c to escape

fcomplex z = c;
for (int iters=0; (cabsf(z) < 2.0f) && (iters < LIMIT); iters++) {

z = z * z + c;
}
return iters;

}

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Summary

103

We need to embrace explicit vectorization
in our programming.

But, generally use parallelism first
(tasks, threads, MPI, etc.)

©2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Intel Xeon, and Intel Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

Questions?

james.r.reinders@intel.com

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

James Reinders. Parallel Programming Evangelist. Intel.
James is involved in multiple engineering, research and educational efforts to increase
use of parallel programming throughout the industry. He joined Intel Corporation in
1989, and has contributed to numerous projects including the world's first TeraFLOP/s
supercomputer (ASCI Red) and the world's first TeraFLOP/s microprocessor (Intel® Xeon
Phi™ coprocessor). James been an author on numerous technical books, including
VTune™ Performance Analyzer Essentials (Intel Press, 2005), Intel® Threading Building
Blocks (O'Reilly Media, 2007), Structured Parallel Programming (Morgan Kaufmann,
2012), Intel® Xeon Phi™ Coprocessor High Performance Programming (Morgan
Kaufmann, 2013), Multithreading for Visual Effects (A K Peters/CRC Press, 2014), High
Performance Parallelism Pearls Volume 1 (Morgan Kaufmann, Nov. 2014), and High
Performance Parallelism Pearls Volume 2 (Morgan Kaufmann, Aug. 2015). James is
working on a refresh of both the Xeon Phi™ book (original Feb. 2013, revised with KNL
information by mid-2016) and a refresh of the TBB book (original June 2007, revised by
2017).

© 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Legal Disclaimer & Optimization Notice

106

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations
and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other
products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks
of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel

microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the

availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations

in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel

microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets

covered by this notice.

Notice revision #20110804

