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  Hypre – see detailed presentation 
  PARPACK 
  PETSc – see detailed presentation 
  SUNDIALS – see detailed presentation 
  SuperLU – see detailed presesntation 
  Trilinos-ML,NOX 

FASTMath SciDAC Institute!

Algebraic Solvers in FASTMath 
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  Capabilities: 
•  Compute a few eigenpairs of a Hermitian and non-Hermitian matrix  
•  Both standard and generalized eigenvalues 
•  Extremal and interior eigenvalues 
•  Reverse communication allows easy integration with application 
•  MPI/BLACS communication 

  Download: 
http://www.caam.rice.edu/software/ARPACK/ 

  Further information: beyond PARPACK 
•  EIGPEN (based on penalty trace minimization for computing many 

eigenpairs) 
•  Parallel multiple shift-invert interface for computing many eigenpairs 

PARPACK 
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  PPCG (Projected Preconditioned Conjugate Gradient) 
method for symmetric eigenvalue problems 
•  For computing a relatively large number of smallest 

eigenpairs 
•  Reduce Rayleigh-Ritz cost 

  GPLHR (Generalized Preconditioned Local Harmonic 
Ritz) method for interior eigenvalues of a non-Hermitian 
sparse matrix 

  Special solver for linear response eigenvalue problems 
(TDDFT linear response and Bethe-Salpeter equation) 

Other large-scale eigensolvers 
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  A list of drivers provided in $ARPACKTOPDIR/
PARPACK/EXAMPLES 

  Reverse communication interface 

 

  Hybrid MPI/OpenMP implementation 
  MATLAB interface available (eigs) 

PARPACK usage  

10 continue!
   call pdsaupd(comm, ido,….)!
   if (ido .eq. 1 .or. -1) then!
      matvec(…,workd(ipntr(1)), workd(ipntr(2)….!
   endif!
   goto 10   !
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 ML: aggregation-based algebraic multigrid algorithms!

• Support for scalar problems (diffusion, convection-diffusion), PDE 
systems (elasticity), electromagnetic problems (eddy current)!
• Various coarsening and data rebalancing options!
• Smoothers (SOR, polynomial, ILU, block variants, line, user-provided)!
• Written in C!

 MueLu: templated multigrid framework!

• Support for energy minimizing multigrid algorithms in addition to many 
algorithms from ML!
• Leverages Trilinos templated sparse linear algebra stack!
� Optimized kernels for multiple architectures (GPU, OpenMP, Xeon 
Phi)!
� Templated scalar type allowing mixed precision, UQ, …!

• Advanced data reuse possibilities, extensible by design!
• Written in C++!

 Download/further information: www.trilinos.org!
!
!

ML and MueLu: Multigrid libraries in Trilinos!
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 Magnetohydrodynamics (Drekar) 

   ML scales to 512K cores on BG/Q and to 128K cores on Titan 
 
 
 
 
 
 
 
 

 Fluid dynamics (Nalu) 

   MueLu scales to 524K cores of BG/Q 
 

ML and MueLu:  Application highlights  !
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 Component reuse in multigrid can be effective in 
reducing setup costs while maintaining solver 
convergence.  We have demonstrated that reuse can 
yield 2.5x speedup on 25K cores of Cray XE6.!

 Block systems arise naturally in mixed 
discretizations. Our new multigrid algorithm 
preserves such block structure on coarse levels for 
Stokes and Navier-Stokes systems. !

 MueLu/ML provide a specialized AMG for PISCEES 
project through semi-coarsening and line smoothers 
that exploit partial structure in meshes arising in ice 
sheet modeling.!

MueLu: Research framework!

Fig 3: Automatically 
coarsened 17x17 mesh 

Fig 3: Automatically 
coarsened 17x17 mesh 

Fig 3: Automatically 
coarsened 17x17 mesh 

Automatically generated 
coarse mesh for Q2-Q1 
discretization of a Stokes 
system.!
!

Semicoarsening followed 
by regular 2D coarsening 
for Greenland model.!
!
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  Capabilities: 
•  Newton-Based Nonlinear Solver 
�  Linked to Trilinos linear solvers for scalability 
�  Matrix-Free option 

•  Anderson Acceleration for Fixed-Point iterations 
•  Globalizations for improved robustness 
�  Line Searches, Trust Region, Homotopy methods 

•  Customizable: C++ abstractions at every level 
•  Extended by LOCA package 
�  Parameter continuation, Stability analysis, Bifurcation tracking 

 

  Download: Part of Trilinos (trilinos.sandia.gov) 

  Further information: Andy Salinger [agsalin@sandia.gov] 

Trilinos/NOX Nonlinear Solver 
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  Ice Sheets modeled by nonlinear 
Stokes’s equation 
•  Initial solve is fragile: Full Newton fails 
• Homotopy continuation on regularization 

parameter “γ” saves the day 

Trilinos/NOX: Robustness for Ice Sheet Simulation: 
PISCEES SciDAC Application project (BER-ASCR) 

Greenland Ice Sheet!
Surface Velocities!

(constant friction model)!

γ=10-1.0!

γ=10-2.5!
γ=10-6.0!

γ=10-10!

γ=10-10!

γ=10-10!
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FASTMath SciDAC Institute!

NOX and ML are part of larger Trilinos solver stack: 
Linear solvers, Equations solvers, Analysis tools 

Analysis Tools!
!
!
!
!
!

UQ (sampling)!
Parameter Studies!

Optimization!

Analysis Tools!
   (black-box)!

LinearSolvers!
!
!
!
!
!
!
!
!

Direct Solvers!

Linear Algebra!

Algebraic!
Preconditioners!

Iterative Solvers!

EquationSolvers!
!
!
!
!
!
!
!
!
!
!UQ Solver!

Nonlinear Solver!
Time Integration!

Optimization!

Continuation!
Sensitivity Analysis!
Stability Analysis!

Analysis Tools!
   (embedded)!Linear Solver 

Interface 

Nonlinear Model 
Interface 

Your Model Here 

Solved Problem 
Interface 

NOX 

Multilevel!
Preconditioners! ML 



TAO
Toolkit for Advanced Optimization
Now available as part of PETSc distribution (as of PETSc 3.5)
Solves Nonlinear Optimization Problems:

f : RN 7! R
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There is also some support for PDE-constrained applications and
general contraints



TAO Algorithms

TAO provides a suite of (iterative) nonlinear optimization
algorithms. Typically, each iteration involves calculating a search

direction d

k

, then function values and gradients along that
direction are calculated until desired conditions are met.

I Newton’s Method
Calculate the direction d

k+1 by solving the system:

r2
f (x

k

)d
k+1 = �rf (x

k

)

I Quasi-Newton Methods
Use approximate Hessian B

k

⇡ r2
f (x

k

). Choose a formula for B
k

so that B
k

relies on first derivative

information only, can be easily stored and B

k

d

k+1 = �rf (x
k

) can be easily solved.

I Conjugate Gradient

I Derivative Free



TAO Solvers

Solvers available in TAO
handles constraints requires gradient requires Hessian

Quasi-Newton (lmvm) no yes no
Newton Line Search (nls) no yes yes
Newton Trust Region (ntr) no yes yes

Newton Trust with Line Search (ntl) no yes yes
Conjugate Gradient (cg) no yes no

Nelder-Mead (nm) no no no
Quasi-Newton (blmvm) bounds yes no

Newton Trust Region (tron) bounds yes yes
Conjugate Gradient (gpcg)
(Quadratic objective only) bounds yes no
Model-based derivative free

nonlinear least-squares (pounders) yes no no
Semismooth – Feasibility-enforced

(SSFLS) complementarity yes yes
Semismooth – Feasibility not enforced

(SSILS) complementarity yes yes
Active-Set Semismooth – Feasibility-enforced

(ASFLS) complementarity yes yes
Active-Set Semismooth – Feasibility not enforced

(ASILS) complementarity yes yes
Linearly Constrained Lagrangian pde
Interior Point Method (ipm) general yes yes


	fastmath-algebraic-solvers
	taoslides_atpesc

