Argonne°

NATIONAL LABORATORY

HPC 1/0 for Computational Scientists

Rob Latham and Phil Carns Scot Breitenfeld
Math and Computer Science Division The HDF Group
Argonne National Laboratory brtnfld@hdfgroup.org

robl@mcs.anl.gov, carns@mcs.anl.gov

Rachana Ananthakrishnan
Computation Institute
ranantha@uchicago.edu

Many thanks for their contributions go to:

Rob Ross William Gropp Rusty Lusk

Argonne National Laboratory University of lllinois Argonne National Laboratory
rross@mcs.anl.gov wgropp@illinois.edu lusk@mcs.anl.gov

Brent Welch Katie Antypas Rajeev Thakur

Google NERSC Argonne National Laboratory
Welch.breng@gmail.com kantypas@Ibl.gov thakur@mcs.anl.gov

é %, U.S. DEPARTMENT OF

Computational Science

= Use of computer simulation as a tool for
greater understanding of the real world

Complements experimentation and theory

= Problems are increasingly computationally
expensive

Large parallel machines needed to perform
calculations
Critical to leverage parallelism in all phases

= Data access is a huge challenge

Using parallelism to obtain performance
Finding usable, efficient, and portable
interfaces

Understanding and tuning /0

e

IBM Blue Gene/Q system at Argonne
National Laboratory.

Visualization of entropy in Terascale
Supernova Initiative application. Image from
Kwan-Liu Ma’s visualization team at UC Davis.

Goals and Outline

= Goals:
— Share our view of HPC I/O hardware and software
— Discuss interfaces that you can use to access 1/O resources
— Point to emerging and future trends in HPC /O

= Qutline (roughly)
— Ways of thinking about I/O systems
— How It Works: HPC 1/O Systems
— Using 1/O systems
— Emerging and future trends

= Notes
— There will be slides that are hidden, don’t be alarmed
— After the morning break, we’ll be looking through some of this code:

https://xgitlab.cels.anl.gov/ATPESC-I0/hands-on-2015

About Us (Before Lunch)

= Rob Latham

— Principal Software Development Specialist, MCS Division
Argonne National Laboratory

— ROMIO MPI-IO implementation

— Parallel netCDF high-level 1/0O library

— Application outreach

= Phil Carns

— Principal Software Development Specialist, MCS Division,
Argonne National Laboratory

— Darshan characterization tool

— PVFS file system

About Us (After Lunch)

= Scot Breitenfeld

HDF5 Team Lead

— Applications Specialist
Rachana Ananthakrishnan

Globus team, UChicago and Argonne

Distributed systems, recent focus on data management

Started on engineering team and now work on architecture and product
management

Works with researchers across various domains from economists,
physicists, radiologists, cancer biologists, to climate scientists

Thinking about HPC 1/0 Systems

HPC 1/0 Systems

HPC 1/0 system is the hardware and software that assists in
accessing data during simulations and analysis and retaining
data between these activities.

= Hardware: disks, disk enclosures, servers, networks, etc.

= Software: parallel file system, libraries, parts of the OS
— More about these aspects of HPC /O systems in upcoming slides

= Two “flavors” of I/O from applications:
— Defensive: storing data to protect results from data loss due to system
faults
— Productive: storing/retrieving data as part of the scientific workflow
— Note: Sometimes these are combined (i.e., data stored both protects
from loss and is used in later analysis)

= “Flavor” influences priorities:
— Defensive 1/0: Spend as little time as possible
— Productive |/O: Capture provenance, organize for analysis

Data Complexity in Computational Science

= Applications have data models
appropriate to domain
— Multidimensional typed arrays, images
composed of scan lines, ...
— Headers, attributes on data

= |/O systems have very simple data

models
— Tree-based hierarchy of containers
— Some containers have streams of bytes
(files)
— Others hold collections of other
containers (directories or folders)

= Mapping from one to the other is
increasingly complex.

Images from T. Tautges (ANL) (upper left), M. Smith
(ANL) (lower left), and K. Smith (MIT) (right).

Model complexity:

Spectral element mesh (top)
for thermal hydraulics
computation coupled with
finite element mesh (bottom)
for neutronics calculation.

Scale complexity:
Spatial range from
the reactor core in
meters to fuel pellets
in millimeters.

Data Volumes in Computational Science

Science teams are routinely working with tens and hundreds of
terabytes (TBs) of data.

Data requirements for select 2012 INCITE applications at ALCF (BG/P)
On-line Data Off-line Data

Pl Project (TBytes) (TBytes)
Lamb Supernovae Astrophysics 100 400
Khokhlov Combustion in Reactive Gases 1 17
Lester CO2 Absorption 5 15
Jordan Seismic Hazard Analysis 600 100
Washington Climate Science 200 750
Voth Energy Storage Materials 10 10
Vashista Stress Corrosion Cracking 12 72
Vary Nuclear Structure and Reactions 6 30
Fischer Reactor Thermal Hydraulic Modeling 100 100
Hinkel Laser-Plasma Interactions 60 60
Elghobashi Vaporizing Droplets in a Turbulent Flow 2 4

Data Volumes in Computational Science

It’s not just checkpoints — scientists are reading large volumes
of data into HPC systems as part of their science.

Write
Read s
1000 F
1]
|_
2100 F
o)
Qo
&
)
pd
10 £
1 A2 A
Qo o o T o S % % % %
% % Ly B, e T Ry S %
Project G, B, B B, Yy . B Uy B
2R Y T, @ %, S,
% (3 &)

Top 10 data producer/consumers instrumented with Darshan from August 2014 to January 2015 (Mira).

10

Views of Data Access in HPC Systems

Two useful ways of thinking about data access are the “logical”
view, considering data models in use, and the “physical” view,
the components that data resides on and passes through.

Application

Application Data Model

Transformations

Storage Data Model

/O Hardware

Logical (data model) view
of data access.

t

Data
Movement

\ 4

Compute Node Memory

System Network

/O Hardware

Physical (hardware) view
of data access.

1"

Data Access in Past HPC Systems*

For many years, application teams wrote their own translations
from their data models into files, and hardware model was
relatively simple.

Application | Compute Node Memory

o | EhemetSwitch |
Movement

/O Hardware ‘ Servers with RAID

Logical (data model) view Physical (hardware) view
of data access. of data access.

* We're simplifying the story here somewhat ...
12

Data Access in Current Large-scale Systems

Current systems have greater support on the logical side, more
complexity on the physical side.

Application Compute Node Memory

vt |GG

Movement
/O Servers
/O Hardware SAN and RAID Enclosures
Logical (data model) view Physical (hardware) view
of data access. of data access.

» Does this mean that applications must be more complex as well? No!
« More responsibility is assumed by system software and hardware in this

model. It's just that there are more components to be aware of.
13

Thinking about HPC 1/0 Systems

= Two (intertwined) challenges when thinking about data
access:

— Mapping application data model onto storage
— Driving all the components so you don’t have to wait too long for 1/O

= Often these two can be at odds
— “Richer” data models might require more I/O

— Transformations that make writing fast might make reading slow
(or vice versa)

= Lots of computer science R&D has gone into tackling these
two problems

= Next we will dive down into some of the details of HPC I/O

14

What to expect from HPC I/0 Systems

How do large-scale HPC I/O systems differ from conventional file
systems (on servers, clusters, or even your laptop)?

= \astly more bandwidth
— You must read/write in parallel to exploit it

= ... butalso higher latency
— Multiple network/bus hops to get from application to disk

Most of the optimizations discussed in this presentation revolve
around a central theme: organizing your data so that you can
take advantage of the bandwidth while avoiding the latency.

15

AAAAAAAAAAAAAAAAAA

How It Works: HPC I/0 Systems

{2} ENERGY

How It Works

= HPC /O systems provide a
file system view of stored data

File (i.e., POSIX) model of access
Shared view of data across the system
Access to same data from the outside
(e.g., login nodes, data movers)

= Topics:

How is data stored and organized?
What support is there for application
data models?

How does data move from clients to
servers?

How is concurrent access managed?
What transformations are typically
applied?

[fusion

Ipfs

/disc

N

ckpoint43.h50\ | sky4325.img sky8792.img
B232 B089 B756
B443
B78I

File system view consists of directories
(ak.a. folders) and files. Files are broken
up into regions called extents or blocks.

Storing and Organizing Data: Storage Model

HPC 1/0 systems are built around a parallel file system that
organizes storage and manages access.

= Parallel file systems (PFSes) are distributed systems that
provide a file data model (i.e., files and directories) to users

= Multiple PFS servers manage access to storage, while PFS
client systems run applications that access storage

= PFS clients can access storage resources in parallel!
— This is critical for performance!

= On the surface it looks just like any other file system (home
directory, laptop, etc.) but with different performance
properties.

18

Reading and Writing Data (etc.)

PFS client software . Ll Ll
requests operations on behalf of
applications. Requests are sent
as messages (RPC-like), often to
multiple servers.

Application }
y

[Application }
y

[Application
y

A

Parallel FS
Client

Parallel FS
Client

Parallel FS
Client

Requests pass over the

interconnect, thus each
request incurs some —_— Interconnection Network

jatency. o T e P

Parallel FS Parallel FS Parallel FS Parallel FS
Server Server Server Server

4 4 4

PFS servers manage local
storage, services incoming
requests from clients.

/disc Ipfs B443 B78I
RAID enclosures protect N
against individual disk failures B89 B756 ffusion B232

and map regions of data onto
specific devices.

; 19

Leadership Systems have an additional HW layer

External Disk
network arrays

L [

- HEHEEENN

| | T

Compute nodes run 1/0 forwarding nodes Storage nodes run the
application processes. Data model (or I/O gateways) shuffle data parallel file system.
software also runs here, and some between compute nodes and

/O transformations are external resources, including

performed here. storage.

S 20

Aggregate BW (MB/sec)

Request Size and I/0 Rate

Interconnect latency has a significant impact on effective rate
of 1/0. Typically 1/Os should be in the O(Mbytes) range.

IOR shared file performance Vs requeSt size IOR shared file performance vs request size:

8192 MPI processes, c4 mode (2 racks)

3500 5000

write —s—
3000 b read ——

write ——
4500 |

4000 p

2500 ¢ 3500 |

2000 | 3000 }

2500 f

1500 ¢} 2000 b

Aggregate BW (MB/sec)

1000 } 1500 F

1000

500 500 |

128 256 512 1024 2048 4096 8192 16384

4 8 32 128 1024 4098 Request Blocksize (kilobytes)
Request Blocksize (kilobytes)

2K processes of IBM Blue Gene/P at ANL. 8k processes of IBM Blue Gene /Q at ANL

21

Data Distribution in Parallel File Systems

Distribution across multiple servers allows concurrent access.

Logically a file is an

extendable sequence 4 checkpoint32.nc Offset in File

HO1|[Ho2|[Ho3][Ho4]| [EOO [EOITEO2 JEO3] [E05] E06 EO7] EOS [E09] EI0 JEN

of bytes that can be
referenced by offset
into the sequence. PES Server

Space is allocated on demand, so
unwritten "holes" in the logical

Metadata associated file do not consume disk space.
—

with the file specifies
a mapping of this

PFS Server
sequence of bytes
into a set of objects HO2 | EOT [EO5 | EQ9 |
on PFS servers. A static mapping from logical file
. PES Server to objects allows clients to easily
Extents in the byte sequence calculate server(s) to contact for
are mapped into objects on —— specific regions, eliminating need

HO3 [E02 [EO6 [EIQ |

PFS servers.This mapping is
usually determined at file
creation time and is often a
round-robin distribution of a HO04 [EO3[EO7 [EIT]
fixed extent size over the
allocated objects.

to interact with a metadata
server on each |/O operation.

PFS Server

S 22

N
Storing and Organizing Data: Application Model(s)

Application data models are supported via libraries that map
down to files (and sometimes directories).

Application Data Structures netCDF File "checkpoint07.nc"

Variable "temp” { netCDF header describes
Double temp type = NC_DOUBLE, :
dims = {1024, 1024, 26}, the contents of the file:
start offset = 65536, — typed, multi-dimensional
— attributes = {"Units" = "K"}} . .
A variables and attributes
IR Variable "surface_pressure" { on variables or the dataset
26 R s type = NC_FLOAT, .
oo dims = {512, 512}, ieself.
start offset = 218103808,

attributes = {"Units" = "Pa"}}

Data for variables is stored
in contiguous blocks,

)
N
N
314 U1 3940

Float surface_pressure < Data for "temp" >

512 -

— encoded in a portable binary
< Data for "surface_pressure" > format according to the
512 variable's type.

A

23

HPC I/0 Software Stack

The software used to provide data model support and to
transform 1/0 to better perform on today’s 1/O systems is often
referred to as the 1/0 stack.

Data Model Libraries map
application abstractions onto
storage abstractions and provide
data portability.

HDFS5, Parallel netCDF, ADIOS

Parallel file system maintains
logical file model and provides
efficient access to data.

PVFS, PanFS, GPFS, Lustre

N

Application

Data Model Support

Transformations

Parallel File System

/O Hardware

1/0 Middleware organizes

accesses from many processes,
especially those using collective
I/O.

MPI-10, GLEAN, PLFS

1/0 Forwarding transforms 1/O
from many clients into fewer, larger
request; reduces lock contention;

and bridges between the HPC
system and external storage.

IBM ciod, IOFSL, Cray DVS

24

How It Works: HPC 1/0 Performance

{2} ENERGY

Managing Concurrent Access

Files are treated like global shared memory regions. Locks are
used to manage concurrent access:

= Files are broken up into lock units
— Unit boundaries are dictated by the storage system regardless of access pattern

= Clients obtain locks on units that they will access before
|/O occurs

= Enables caching on clients as well (as long as client has a lock,
it knows its cached data is valid)

= Locks are reclaimed from clients when others desire access

If an access touches any

Offset in File
data in a lock unit, the | | | | ‘ ‘ | | :---|----‘--.)) “’“
lock for. that region must S — —
be obtained before access Lock Lock File Access
occurs. Boundary Unit

S 26

Implications of Locking in Concurrent Access

2D WView of Dara

The left diagram shows a row- =
block distribution of data for —

three processes. On the right
we see how these accesses
map onto locking units in the
file.

In this example a header
(black} has been prepended to
the data. If the header is not
aligned with lock boundaries,
false sharing will occur.

In this example, processes n

exhibit 2 block-block access
pattern {e.g. accessing a
subarray). This results in many
interleaved accesses in the file,

COffset in File

¥

T T

¥When accesses are to large contiguous

regions, and aligned with lock boundaries,
locking overhead is minimal.

These two regions exhibit false sharing:

no bytes are accessed by both processes, but
because each block is accessed by more than
one process, there is contention for locks.

When a block distribution is used, sub-rows

cause a higher degree of false sharing,
especially if data is not aligned with lock

boundaries.

27

/0 Transformations

Software between the application and the PFS performs
transformations, primarily to improve performance.

= Goals of transformations:
— Reduce number of operations to

PFS (avoiding latency) NN T \ Lt

— Avoid lock contention
(increasing level of concurrency)
— Hide number of clients (more on :
this later) Filefoo
= With “transparent”
transformations, data ends

up in the same locations in

Process 0 Process | Process 2

When we think about /O
transformations, we consider the
mapping of data between
the file application processes and
— i.e., the file system is still aware locations in file.
of the actual data organization

28

Reducing Number of Operations

Since most operations go over the network, 1/0 to a PFS incurs

more latency than with a local FS. Data sieving is a technique to

address /0O latency by combining operations:

= When reading, application process reads a large region
holding all needed data and pulls out what is needed

= When writing, three steps required (below)

= Somewhat counter-intuitive: do extra I/O to avoid contention

Application Process
Memory
; . ¥ ¥
Buffer » »

%1’% o N %L:I [i V|
i I e e g o &4#4}%

S | O | S | N W
Step |:Data in region to be Step 2: Elements to be Step 3: Entire region is
modified are read into written to file are replaced written back to storage with
intermediate buffer (I read). in intermediate buffer. a single write operation.

S 29

Avoiding Lock Contention

To avoid lock contention when writing to a shared file, we can
reorganize data between processes. Two-phase 1/0 splits |/0
into a data reorganization phase and an interaction with the
storage system (two-phase write depicted):

= Data exchanged between processes to match file layout

= 0% phase determines exchange schedule (not shown)

Process |

m

<

Process 0 Process | Process 2 Process 0 Process 2
HE B BN

wefl B8 8w E m B E @
BufFer. \“i:i:]‘/ |
»> 753

>
Server 0 Server | Server 2 _ Se Tr I Servzr;?
File L EEN [T I [_

Phase |:Data are exchanged between Phase 2: Data are written to file (storage
processes based on organization of data servers) with large writes, no contention.
in file.

Two-Phase 1/0 Algorithms

(or, You don’t want to do this yourself...)

Imagine a collective I/O access Offset in File -
using four aggregators to a file CTTT T /O [[[DN [[[DO [[[
striped over four file servers — A |
(indicated by colors): Stripe Unit Lock Extent of Accesses

Boundary
One approach is to evenly . Aggregator | | Aggregator2 ! Aggregator3 | Aggregator4 |
divide the region accessed LT T D T [| S | [[D [| [.

e = = = =

across aggregators. - -

Aligning regions with lock —> —>
. . . ol Ll il ol il === ============ '
Eg;’?ednat';"ae: eliminates lock “ Aggregator | E Aggregator 2 ! Aggregator 3 i Aggregator 4
5 e e c e e e e e e e === i

Mapping aggregators to servers
reduces the number of
concurrent operations on a
single server and can be helpful
when locks are handed out on
a per-server basis (e.g., Lustre).

For more information, see W.K. Liao and A. Choudhary, “Dynamically Adapting File Domain Partitioning Methods for Collective
I/O Based on Underlying Parallel File System Locking Protocols,” SC2008, November, 2008.

s) 31

S3D Turbulent Combustion Code

= S3Dis a turbulent combustion
application using a direct numerical
simulation solver from Sandia
National Laboratory
= Checkpoints consist of four global
arrays
— 2 3-dimensional
— 2 4-dimensional

— 50x50x50 fixed
subarrays
,Z
o
¥
4H a4 o sl 31
2 33 o 3= 33
A AR 8 |
Thanks to Jackie Chen (SNL), Ray Grout f plp plp /z’;s
(SNL), and Wei-Keng Liao (NWU) for ot Bl 3
providing the S3D 1/0O benchmark, Wei- Fe| B R | /”:f“
Keng Liao for providing this diagram, C. ' ' e
: Fo| B Ro| Bq| /1.0
Wang, H.Yu, and K.-L. Ma of UC Davis for LIy
image. Po| B3 R4| Bs //

é

40 subarray i1 A : P
s ; vy
process F, n=m-I A 4
A : - i
oecal te globa | .
.. Mapping o]

s s n=ru—l

it length of the dth dimension

n=d n index of tae dth dimension

32

Impact of Transformations on S3D 1/0

= Testing with PnetCDF output to single file, three configurations,
16 processes
— All MPI-10 optimizations (collective buffering and data sieving) disabled
— Independent I/O optimization (data sieving) enabled
— Collective 1/0O optimization (collective buffering, a.k.a. two-phase I/0) enabled

Coll. Buffering and | Data Sieving Coll. Buffering
Data Sieving Enabled Enabled (incl.
Disabled Aggregation)

POSIX writes 102,401 81 5

POSIX reads 0 80 0

MPI-10O writes 64 64 64

Unaligned in file 102,399 80 4

Total written (MB) 6.25 87.11 6.25

Runtime (sec) 1443 11 6.0

Avg. MPI-I0 time 1426.47 4.82 0.60

per proc (sec)

33

Transformations in the 1/0 Forwarding Step

External Disk
network arrays

1 L

IIIIIIT D

L]

]

I |
Compute nodes 1/0 forwarding nodes Storage nodes
(or I/O gateways) shuffle data
between compute nodes and

external resources, including
storage.

34

Transformations in the 1/0 Forwarding Step

Another way of transforming data access by clients is by
introducing new hardware: I/0 forwarding nodes.

= |/O forwarding nodes serve a number of functions:
— Bridge between internal and external networks
— Run PFS client software, allowing lighter-weight solutions internally
— Perform I/O operations on behalf of multiple clients
— Transparently transform data on its way to and from the file system

®= Transformations can take many forms:
— Performing one file open on behalf of many processes
— Combining small accesses into larger ones
— Caching of data (sometimes between I/O forwarding nodes)
Note: Current vendor implementations don’t aggressively aggregate.

= Compute nodes can be allocated to provide a similar service

35

“Not So Transparent” Transformations

Some transformations result in file(s) with different data
organizations than the user requested.

= |f processes are writing to different files, then
they will not have lock conflicts
= What if we convert writes to the same file into writes to
different files?
— Need a way to group these files together

— Need a way to track what we put where
— Need a way to reconstruct on reads

= Parallel Log-Structured File System software does this

— Itis transparent from the application/user perspective (it presents a
virtual view of the data) but not from the storage system perspective

See J. Bent et al. PLFS: a checkpoint filesystem for parallel applications. SC2009. Nov. 2009.
36

Parallel Log Structured File System

Process O Process | Process 2 Process O Process | Process 2

NN N/ \NA ~ /S / [/] [LA

Filefoo \File data.0 File data.| File data.2
File index.0 File index.| File index.ZE
Folder foo/

Application intends to interleave data regions

into single file. |
PLFS remaps 1/0 into separate log files

Transparent transformations such as data per process, with indices capturing locations of
sieving and two-phase 1/O preserve data order data in these files.
on the file system.

PLFS software needed when reading
to reconstruct the file view.

See J. Bent et al. PLFS: a checkpoint filesystem for parallel applications. SC2009. Nov. 2009.

Vs) 37

Why not just write a file per process?

File per process vs. shared file access as function
of job size on Intrepid Blue Gene/P system

TO0 o o oo
Used at least 1 file per process
Used MPI-IO messssn

BO % [

60 %

40 %

20 %

Percentage of core-hours in job size category

0 %

Small jobs Medium jobs Large jobs
(up to 4K procs) (up to 16K procs) (up to 160K procs)

38

I/0 Transformations and the Storage Data Model

Historically, the storage data model has been the POSIX file
model, and the PFS has been responsible for managing it.

= Transparent transformations work within these limitations
= When data model libraries are used:
— Transforms can take advantage of more knowledge

e e.g., dimensions of multidimensional datasets
— Doesn’t matter so much whether there is a single file underneath
— Orin what order the data is stored
— As long as portability is maintained

= Single stream of bytes in a file is inconvenient for parallel

dCCess
— Future designs might provide a different underlying model

39

How It Works: Today’s I/0 Systems

{2} ENERGY

An Example HPC I/0 Software Stack

This example 1/0 stack captures the software stack used in
some applications on the IBM Blue Gene/Q, system at Argonne.

Parallel netCDF is used in Application ROMIO is the basis for virtually all
numerous climate and weather MPI-IO implementations on all
applications running on DOE platforms today and the starting

systems. point for nearly all MPI-|O research.
Built in collaboration with NWU. '_ Incorporates research from NWU and

patches from vendors.

ciod is the /O forwarding
implementation on the IBM Blue

Gene/P and Blue Gene/Q systems. GPFS is a production parallel file

system provided by IBM.

/O Hardware

Mira Blue Gene/Q and its Storage System

BG/Q Optical QDR InfiniBand Serial ATA
2x 16 Gbit/sec 32 Gbit/sec 6.0 Gbit/sec

— |

am 1 13 0001

Compute nodes Gateway nodes Commodity Storage nodes Enterprise storage
run applications and run parallel file system network primarily run parallel file system controllers and large racks
some |/O middleware. client software and carries storage traffic. software and manage of disks are connected via

forward I/O operations incoming FS traffic InfiniBand.

from HPC clients. from gateway nodes.
768K cores with | Gbyte 384 |6-core PowerPC QDR Infiniband SFAI 2KE hosts VM 32 DataDirect SFA | 2KE;
of RAM each A2 nodes with 16 Gbytes Federated Switch running GPFS servers 560 3 Thbyte drives + 32

of RAM each 200 GB SSD; 16

InfiniBand ports per pair

s) 42

Takeaways

= Parallel file systems provide the underpinnings of HPC I/O
solutions

= Data model libraries provide alternative data models for

applications
— PnetCDF and HDF5 will both be discussed in detail later in the day

= Characteristics of PFSes lead to the need for transformations

in order to achieve high performance
— Implemented in a number of different software layers
— Some preserving file organization, others breaking it

= Number of layers complicates performance debugging
— Some ways of approaching this discussed later in the day

43

AAAAAAAAAAAAAAAAAA

Building an 1/0 API

{2} ENERGY

Conway’s Game of Life

= We use Conway’s Game of Life as a simple example to
illustrate the program issues common to many codes that use

regular meshes, such as PDE solvers
— Allows us to concentrate on the I/O issues

= Game of Life is a cellular automaton
— Described in 1970 Scientific American
— Many interesting behaviors; see:

* http://www.ibiblio.org/lifepatterns/october1970.html

45

Rules for Life

= Matrix values A(i,j) initialized to 1 (live) or O (dead)

= |n each iteration, A(i,j) is set to
— 1 (live) if either
e the sum of the values of its 8 neighbors is 3, or
* the value was already 1 and the sum of its 8 neighbors is 2 or 3
— 0 (dead) otherwise

O
A 4
r

)|

4 A
v v

A A\

10+

46

Implementing Life

= Forthe non-parallel version, we:
— Allocate a 2D matrix to hold state

e Actually two matrices, and we will swap them between steps
— Initialize the matrix

* Force boundaries to be “dead”

* Randomly generate states inside
— At each time step:

* Calculate each new cell state based on previous cell states (including
neighbors)

e Store new states in second matrix
* Swap new and old matrices

All code examples in this tutorial can be found in hands-on repo:
xgitlab.cels.anl.gov/ATPESC-I0/hands-on-2015

47

Steps in Designing a Parallel Game of Life

= Start with the “global” array as the main object
— Natural for output — result we’re computing

= Describe decomposition in terms of global array

= Describe communication of data, still in terms of the global
array

= Define the “local” arrays and the communication between
them by referring to the global array

48

Step 1: Description of Decomposition

= By rows (1D or row-block)
— Each process gets a group of adjacent rows

-

Rows

Columns

Vs) 49

Step 2: Communication

I)I

“Stencil” requires read access to data from neighbor cells

We allocate extra space on each process to store neighbor cells
Use send/recv or RMA to update prior to computation

|

—

50

Step 3: Define the Local Arrays

= Correspondence between the local and global array

“Global” array is an abstraction
— There is no one global array allocated anywhere

Instead, we compute parts of it (the local arrays) on each
process

= Provide ways to output the global array by combining the
values on each process (parallel I/O!)

51

Boundary Regions

= |n order to calculate next state of cells in edge rows, need data
from adjacent rows
= Need to communicate these regions at each step

52

Building an I/0 API for Game of Life

{2} ENERGY

Supporting Checkpoint/Restart

For long-running applications, the cautious user checkpoints
Application-level checkpoint involves the application saving its

own state
— Portable!
A canonical representation is preferred
— Independent of number of processes
Restarting is then possible

— Canonical representation aids restarting with a different number of
processes

Also eases data analysis (when using same output)

54

Defining a Checkpoint

= Need enough to restart
— Header information

* Size of problem (e.g. matrix dimensions)

* Description of environment (e.g. input parameters)
— Program state

* Should represent the global (canonical) view of the data
= |deally stored in a convenient container
— Single file!
= |f all processes checkpoint at once, naturally a parallel,
collective operation

55

Life Checkpoint/Restart API

Define an interface for checkpoint/restart for the row-block

distributed Life code
Five functions:

MLIFEIO_Init
MLIFEIO_Finalize
MLIFEIO_Checkpoint
MLIFEIO_Can_restart
MLIFEIO_Restart

All functions are collective

i.e., all processes must make the call

We can implement API for different back-end formats

56

Life Checkpoint

" MLIFEIO Checkpoint (char *prefix,
int **matrix,
int rows,
int cols,
int iter,

MPI Info info);

= Prefixis used to set filename

= Matrix is a reference to the data to store

= Rows, cols, and iter describe the data (header)
= |nfo is used for tuning purposes

57

Life stdout “checkpoint”

= The first implementation is one that simply prints out the
“checkpoint” in an easy-to-read format
= MPI standard does not specify that all stdout will be collected

in any particular way
— Pass data back to rank O for
printing
— Portable!
— Not scalable, but ok for the
purpose of stdio

NNONDNDMNDN A A A A
ARDON20ODNDDRWNROLRXNRANEWN =

lteration 9
** **% **% *%k *

* %% * % * % *kk%k * * *%k*%k **
** ** **% * * % %% * *%*
**% * * %%k %%k k%%

* % **% *%k % % *%k% % % %
* * ** * * % %% *
%k%k * *% % *%k*%k
*k%k * *%k k%% * * kkkkk *k%kk k%%
%k%k % * %% % *%k*%k *%k k%
* % * * *k%k % *
* **% ** **% * *
* %% *kk% * *%k kkk%k *
**% *k%k * %% * *%k%k * *
* *% % * * k*%k%
*%k k% *kkkkk * * *
*kk% *kkk%k * * *
%k%k *%k*%k * *%k*%k *kk%
%k%k *%k %%
* **% **% * ** *

* * * k% ** *%k*%k
:** * %% * % % %% *%k*%k * % %%
: * * ** * *k*k% * **% * * *%k%k %%

* **% *kkk kk*%k *%k*%k * * * ** *

%k%k * * **% * *kk%k *
%k%k **% *kk%

58

stdio Life Checkpoint Code Walkthrough

= Points to observe:
— All processes call checkpoint routine

* Collective I/O from the viewpoint of the program
— Interface describes the global array
— Output is independent of the number of processes

See mlife-io-stdout.c pp. 1-3 for code example.

59

File: mlife-io-stdout.c Page 1 of 8
1: /* SLIDE: stdio Life Checkpoint Code Walkthrough */
2: /* -*- Mode: C; c-basic-offset:4 ; —-*- */

3: /*
4: * (C) 2004 by University of Chicago.
5: * See COPYRIGHT in top-level directory.
6: */
7
8: #include <stdio.h>
9: #include <stdlib.h>
10: #include <unistd.h>
11:
12: #include <mpi.h>
13:

14: #include "mlife.h"
15: #include "mlife-io.h"

17: /* stdout implementation of checkpoint (no restart) for MPI Life
18: *

19: * Data output in matrix order: spaces represent dead cells,
20: * ’'*’'s represent live ones.

21: */

22: static int MLIFEIO Type create rowblk (int **matrix, int myrows,
23: int cols,

24 MPI Datatype *newtype);

25: static void MLIFEIO Row print (int *data, int cols, int rownr);
26: static voild MLIFEIO msleep (int msec);

28: static MPI Comm mlifeio comm = MPI COMM NULL;

60

File: mlife-io-stdout.c Page 2 of 8

29: /* SLIDE: stdio Life Checkpoint Code Walkthrough */
30: int MLIFEIO Init (MPI Comm comm)

31: {

32: int err;

33:

34: err = MPI Comm dup (comm, &mlifeio comm);
35:

36: return err;

37: }

38:

39: int MLIFEIO Finalize (void)

40: |

41: int err;

42

43: err = MPI Comm free(&mlifeio comm) ;
44 .

45: return err;

46: }

61

File:

47 :
48 :
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64 :
65:
66:
67:
68:
69:
70:
71:

mlife-io-stdout.c Page 3 of 8

/* SLIDE: Life stdout "checkpoint" */
/* MLIFEIO Checkpoint

*

* Parameters:

* prefix - prefix of file to hold checkpoint (ignored)
* matrix - data values

* rows - number of rows in matrix

* cols - number of columns in matrix

* iter - iteration number of checkpoint

* info - hints for I/O (ignored)

*

*

Returns MPI SUCCESS on success, MPI error code on error.

*/

int MLIFEIO Checkpoint (char *prefix, int **matrix, 1int rows,

{

int cols, int iter, MPI Info info)

int err = MPI SUCCESS, rank, nprocs, myrows, myoffset;
MPI Datatype type;

MPI Comm size(mlifeio comm, &nprocs);
MPI Comm rank (mlifeio comm, &rank);

myrows = MLIFE myrows (rows, rank, nprocs);
myoffset = MLIFE myrowoffset (rows, rank, nprocs);

62

File: mlife-io-stdout.c Page 4 of 8
72: /* SLIDE: Describing Data */
73: if (rank != 0) {
74 : /* send all data to rank 0 */
75:
76: MLIFEIO Type create rowblk(matrix, myrows, cols, &type);
77 : MPI Type commit (&type);
78: err = MPI Send(MPI BOTTOM, 1, type, 0, 1, mlifeio comm);
79: MPI Type free (&type);
80: }
81: else {
82: int i, procrows, totrows;
83:
84 : printf ("\033[H\033[2J# Iteration %d\n", iter);
85:
86: /* print rank 0 data first */
87: for (i=1; i < myrows+1l; i++) {
88: MLIFEIO Row print (&matrix([i][1], cols, 1);
89: }
90: totrows = myrows;

91:

63

File:

92:
93:
94 .
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:

mlife-io-stdout.c Page 5 of 8

/* SLIDE: Describing Data */
/* receive and print others’ data */
for (i=1; i < nprocs; i++) {
int j, *data;

procrows = MLIFE myrows (rows, 1, nprocs);
data = (int *) malloc(procrows * cols * sizeof (int));

err = MPI Recv(data, procrows * cols, MPI INT, i, 1,
mlifeio comm, MPI STATUS IGNORE) ;

for (3J=0; j < procrows; J++) {
MLIFEIO Row print (&datal[j * cols], cols,
totrows + j + 1);
}
totrows += procrows;
free (data) ;
}
MLIFEIO msleep(250); /* give time to see the results */

return err;

64

Describing Data

Need to save this
region in the array

d

= | ots of rows, all the same size
— Rows are all allocated as one big block
— Perfect for MPI_Type_vector
MPI_Type_vector(count = myrows,
blklen = cols, stride = cols+2, MPI_INT, &vectype);
— Second type gets memory offset right (allowing use of MPI_BOTTOM in
MPI_File_write_all)
MPI_Type_hindexed(count =1, len=1,
disp = &matrix[1][1], vectype, &type);

matrix[1][0..cols+1]

matrix[myrows][0..cols+1]

See mlife-io-stdout.c pp. 4-6 for code example.

s) 65

File:

117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:

mlife-io-stdout.c Page 6 of 8

/* SLIDE: Describing Data */

/* MLIFEIO Type create rowblk

*
Creates a MPI Datatype describing the block of rows of data
for the local process, not including the surrounding boundary
cells.

* ok % X %

Note: This implementation assumes that the data for matrix is
* allocated as one large contiguous block!
*/
static int MLIFEIO Type create rowblk (int **matrix, int myrows,
int cols,
MPI Datatype *newtype)

int err, len;
MPI Datatype vectype;
MPI Aint disp;

/* since our data is in one block, access is very regular! */

err = MPI Type vector (myrows, cols, cols+2, MPI INT,
&vectype) ;

if (err != MPI SUCCESS) return err;

/* wrap the vector in a type starting at the right offset */
len = 1;

MPI Address (&matrix[1][1], &disp);

err = MPI Type hindexed(l, &len, &disp, vectype, newtype);

MPI Type free(&vectype); /* decrement reference count */

66

File:

146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
lol:
162:
163:
164:
165:
166:
167:
168:
169:
170:

mlife-io-stdout.c Page 7 of 8

}

return err;

static void MLIFEIO Row print (int *data, int cols, 1nt rownr)

{

int

int i;
printf ("s3d: ", rownr);
for (i=0; i < cols; i++) {
printf ("%c", (data[i] == BORN) 2 "*" : " 7);

}
printf ("\n");

MLIFEIO Can restart (void)

return 0O;

MLIFEIO Restart (char *prefix, int **matrix, int rows,
int cols, int iter, MPI Info info)

return MPI_ERR_IO;

67

AAAAAAAAAAAAAAAAAA

Parallelizing our 1/0 API

{2} ENERGY

Parallel I/0 and MPI

= The stdio checkpoint routine works but is not parallel
— One process is responsible for all I/0
— Wouldn’t want to use this approach for real
= How can we get the full benefit of a parallel file system?
— We first look at how parallel 1/O works in MPI
— We then implement a fully parallel checkpoint routine
= MPIis a good setting for parallel I/0
— Writing is like sending and reading is like receiving
— Any parallel I/0 system will need:

* collective operations
* user-defined datatypes to describe both memory and file layout

* communicators to separate application-level message passing from 1/O-related
message passing

* non-blocking operations
— i.e., lots of MPI-like machinery

70

Collective 1/0

= A critical optimization in parallel I/0
= All processes (in the communicator) must call the collective
|/O function

= Allows communication of “big picture” to file system
— Framework for /0 optimizations at the MPI-IO layer
— e.g., two-phase I/O

Small individual
requests

—=

Large collective
access

"

/V

71

Collective MPI I/0 Functions

= Not going to go through the MPI-10 APl in excruciating detail
— Can talk during hands-on

= MPI_File_write_at_all, etc.
— _allindicates that all processes in the group specified by the
communicator passed to MPI_File_open will call this function
— _atindicates that the position in the file is specified as part of the call;
this provides thread-safety and clearer code than using a separate
“seek” call

= Each process specifies only its own access information
— the argument list is the same as for the non-collective functions

72

MPI-10 Life Checkpoint Code Walkthrough

= Points to observe:

— Use of a user-defined MPI datatype to handle the local array
— Use of MPI_Offset for the offset into the file

e “Automatically” supports files larger than 2GB if the underlying file system
supports large files
— Collective 1/0 calls

* Extra data on process 0

See mlife-io-mpiio.c pp. 1-2 for code example.

73

Data Layout in MPI-10 Checkpoint File

File Layout

PO

Rows Columns Iteration

P1

P2

P3

Global Matrix

Note: We store the matrix in global, canonical order with no ghost cells.

See mlife-io-mpiio.c pp. 1-9 for code example.

74

Life MPI-IO Checkpoint/Restart

= We can map our collective checkpoint directly to a single
collective MPI-I0 file write: MPI_File_write_at_all
— Process 0 writes a little extra (the header)

= On restart, two steps are performed:

— Everyone reads the number of rows and columns from the header in the
file with MPI_File_read_at_all

* Sometimes faster to read individually and bcast (see later example)
— If they match those in current run, a second collective call used to read
the actual data

* Number of processors can be different

See mlife-io-mpiio.c pp. 3-6 for code example.

77

File: mlife-io-mpiio.c Page 3 of 9
56: /* SLIDE: Life MPI-IO Checkpoint/Restart */
57: 1int MLIFEIO Checkpoint (char *prefix, int **matrix, int rows,
58: int cols, int iter, MPI Info info)
59: {
60: int err;
61: int amode = MPI MODE WRONLY | MPI MODE CREATE |
62: MPI MODE UNIQUE OPEN;
63: int rank, nprocs;
64 : int myrows, myoffset;
65:
66: MPI File fh;
67: MPI Datatype type;
68: MPI Offset myfileoffset;
69: char filename[64];
70:
71: MPI Comm size (mlifeio comm, &nprocs);
72 MPI Comm rank (mlifeio comm, &rank):;
73:
74 myrows = MLIFE myrows (rows, rank, nprocs);
715: myoffset = MLIFE myrowoffset (rows, rank, nprocs);
76:
77 : snprintf (filename, 63, "%“s-%d.chkpt", prefix, iter);
78: err = MPI File open(mlifeio comm, filename, amode, info, &fh);
79: if (err != MPI SUCCESS) {
80: fprintf (stderr, "Error opening %s.\n'", filename) ;
81: return err;
82: }
83:

84:

78

File: mlife-io-mpiio.c Page 4 of 9

85: /* SLIDE: Life MPI-IO Checkpoint/Restart */

86: 1if (rank == 0) {

87: MLIFEIO Type create hdr rowblk(matrix, myrows, &rows,
88: &cols, &iter, &type);

89: myfileoffset = 0;

90: }

91: else {

92: MLIFEIO Type create rowblk(matrix, myrows, cols, &type);
93: myfileoffset = ((myoffset * cols) + 3) * sizeof (int);

94 . }

95:

96: MPI Type commit (&type);

97: err = MPT_File_write_at_all(fh, myfileoffset, MPI BOTTOM, 1,
98: type, MPI STATUS IGNORE) ;
99: MPI Type free (&type);
100:
101: err = MPI File close(&fh);
102: return err; B
103: }

104:

79

File:

105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:

mlife-io-mpiio.c Page 5 of 9

/* SLIDE: Life MPI-IO Checkpoint/Restart */
int MLIFEIO Restart (char *prefix, int **matrix, 1int rows,

{

int cols, 1nt iter, MPI Info info)

int err, gErr;

int amode = MPI MODE RDONLY | MPI MODE UNIQUE OPEN;
int rank, nprocs;

int myrows, myoffset;

int buf[3]; /* rows, cols, iteration */

MPI File fh;

MPI Datatype type;

MPI Offset myfileoffset;
char filename[64];

MPI Comm size(mlifeio comm, &nprocs);
MPI Comm rank(mlifeio comm, &rank);

myrows = MLIFE myrows (rows, rank, nprocs);
myoffset = MLIFE myrowoffset (rows, rank, nprocs);

snprintf (filename, 63, "“s-5d.chkpt", prefix, iter);
err = MPI File open(mlifeio comm, filename, amode, info, &fh);
if (err != MPI SUCCESS) return err;

/* check that rows and cols match */

err = MPI File read at all(fh, 0, buf, 3, MPI INT,
MPI STATUS IGNORE) ;

80

File: mlife-io-mpiio.c Page 6 of 9
134: /* SLIDE: Life MPI-IO Checkpoint/Restart */
135: /* Have all process check that nothing went wrong */
136: MPI Allreduce (&err, &gErr, 1, MPI INT, MPI MAX, mlifeio comm);
137: if (gErr || buf[0] != rows || buf[l] != cols) {
138: if (rank == 0) fprintf(stderr, "restart failed.\n");
139: return MPI ERR OTHER;
140: }
141:
142: MLIFEIO Type create rowblk (matrix, myrows, cols, &type);
143: myfileoffset = ((myoffset * cols) + 3) * sizeof (int);
144:
145: MPI Type commit (&type);
146: err = MPT_File_read_at_all(fh, myfileoffset, MPI BOTTOM, 1,
147 type, MPI STATUS IGNORE) ;
148: MPI Type free (&type);
149:
150: err = MPI File close(&fh);
151: return err; B
152: }

153:

81

Describing Header and Data

= Datais described just as before
= Create a struct wrapped around this to describe the header as

well:
— no. of rows
— no. of columns
— Iteration no.
— data (using previous type)

See mlife-io-mpiio.c pp. 7 for code example.

82

File: mlife-io-mpiio.c Page 7 of 9

154: /* SLIDE: Describing Header and Data */
155: /* MLIFEIO Type create hdr rowblk

156: *

157: * Used by process zero to create a type that describes both
158: * the header data for a checkpoint and its contribution to
159: * the stored matrix.

160: *

161: * Parameters:

162: * matrix - pointer to the matrix, including boundaries
163: * myrows - number of rows held locally

164: * rows p - pointer to # of rows in matrix (so we can get its
l165: * address for use in the type description)

166: * cols p - pointer to # of cols in matrix

167: * iter p - pointer to iteration #

168: * newtype - pointer to location to store new type ref.

169: */

170: static int MLIFEIO Type create hdr rowblk (int **matrix,

171: int myrows,

172: int *rows p,

173: int *cols p,

174: int *iter p,

175: MPI Datatype *newtype)
176: {

177: int err;

178: int lens(4] = { 1, 1, 1, 1 };

179: MPI Aint disps|[4];

180: MPI Datatype types[4];

181: MPI Datatype rowblk;

182:

83

File: mlife-io-mpiio.c Page 8 of 9
183: /* SLIDE: Describing Header and Data */
184: MLIFEIO Type create rowblk (matrix, myrows, *cols p, &rowblk);
185:
186: MPI Address(rows p, &disps([0]);
187: MPI Address(cols p, &disps[1l]);
188: MPI Address(iter p, &disps([2]);
189: disps[3] = (MPI Aint) MPI BOTTOM;
190: types[0] = MPI INT;
191: types[1] = MPI INT;
192: types[2] = MPI INT;
193: types[3] = rowblk;
194:
195: #if defined(MPI_VERSION) && MPI VERSION >= 2
196: err = MPI Type create struct (3, lens, disps, types, newtype);
197: #else
198: err = MPI Type struct(3, lens, disps, types, newtype);
199: #endif
200:
201: MPI Type free(&rowblk);
202: N N
203: return err;
204: }
205:

84

MPI-I0 Takeaway

= Sometimes it makes sense to build a custom library that uses

MPI-IO (or maybe even MPI + POSIX) to write a custom format
— e.g., a data format for your domain already exists, need parallel API

= We’ve only touched on the API here
— There is support for data that is noncontiguous in file and memory
— There are independent calls that allow processes to operate without
coordination

= |n general we suggest using data model libraries
— They do more for you
— Performance can be competitive

86

Using Data Model Libraries:
A Parallel netCDF Example

HPC I/0 Software Stack

The software used to provide data model support and to
transform 1/0 to better perform on today’s 1/O systems is often
referred to as the 1/0 stack.

Data Model Libraries map
application abstractions onto
storage abstractions and provide
data portability.

HDFS5, Parallel netCDF, ADIOS

Parallel file system maintains
logical file model and provides
efficient access to data.

PVFS, PanFS, GPFS, Lustre

N

Application

Data Model Support

Transformations

Parallel File System

/O Hardware

1/0 Middleware organizes

accesses from many processes,
especially those using collective
I/O.

MPI-10, GLEAN, PLFS

1/0 Forwarding transforms 1/O
from many clients into fewer, larger
request; reduces lock contention;

and bridges between the HPC
system and external storage.

IBM ciod, IOFSL, Cray DVS

88

Data Model Libraries

= Scientific applications work with structured data and desire
more self-describing file formats
= PnetCDF and HDF5 are two popular “higher level” I/O libraries

— Abstract away details of file layout
— Provide standard, portable file formats
— Include metadata describing contents

= For parallel machines, these use MPI and probably MPI-IO
— MPI-10 implementations are sometimes poor on specific platforms, in
which case libraries might directly call POSIX calls instead

89

netCDF Data Model

The netCDF model provides a means for storing multiple,
multi-dimensional arrays in a single file.

Application Data Structures netCDF File "checkpoint07.nc"

Variable "temp” { netCDF header describes
Double temp type = NC_DOUBLE,
dims = {1024, 1024, 26}, the contents of the file:
start offset = 63536, — typed, multi-dimensional
S— attributes = {"Units" = "K"}} . .
A variables and attributes
,’ Variable "surface_pressure" { on variables or the dataset
26 R type = NC_FLOAT, .

------------ dims = {512, 512}, itself.

start offset = 218103808,

attributes = {"Units" = "Pa"}}

Data for variables is stored
in contiguous blocks,

N
N
ClIFREENTG)

Float surface_pressure < Data for "temp" >

512 -

A encoded in a portable binary
< Data for "surface_pressure" > format according to the
512 variable's type.

vy

90

Parallel netCDF (PnetCDF)

= (Serial) netCDF

— API for accessing multi-dimensional data sets
— Portable file format

— Popularin both fusion and climate communities

Parallel netCDF

Very similar APl to netCDF

Tuned for better performance in today’s
computing environments

Retains the file format so netCDF and PnetCDF
applications can share files

PnetCDF builds on top of any MPI-IO
implementation

Cluster

PnetCDF

ROMIO

L ustre

IBM Blue Gene

PnetCDF

IBM MP

ciod

GPFS

91

PnetCDF Life Checkpoint/Restart Code Walkthrough

= Stores matrix as a two-dimensional array of integers
— Same canonical ordering as in MPI-10 version

= |teration number stored as an attribute

integer iter integer “matrix” [rows][cols]
lteration PO
P1
P2
P3
Global Matrix

See mlife-io-pnetcdf.c pp. 1-5 for code example.

92

File: mlife-io-pnetcdf.c Page 3 of 7
45: /* SLIDE: PnetCDF Life Checkpoint Code Walkthrough */
46: 1int MLIFEIO Checkpoint (char *prefix, int **matrix, int rows,
477 : int cols, int iter, MPI Info info)
48: |
49: int err;
50: int cmode = 0;
51: int rank, nprocs;
52: int myrows, myoffset;
53:
54: int ncid, wvarid, coldim, rowdim, dims[2];
55: MPI Offset start([2];
56: MPI Offset count[2];
57: int i, 7j, *buf;
58: char filename[64];
59:
60: MPI Comm size (mlifeio comm, &nprocs);
6l: MPI Comm rank (mlifeio comm, &rank):;
62 :
63: Mmyrows = MLIFE myrows (rows, rank, nprocs);
64 : myoffset = MLIFE myrowoffset (rows, rank, nprocs);
65:
66: snprintf (filename, 63, "%“s-%d.nc", prefix, iter);
67:
68: err = ncmpli create(mlifeio comm, filename, cmode, info, &ncid);
09: 1f (err !'= 0) {
70: fprintf (stderr, "Error opening %s.\n'", filename) ;
71 return MPI ERR I0O;
72 }

73:

95

____________________________ |
Describing Subarray Access in PnetCDF

= PnetCDF provides calls for reading/writing subarrays in a

single (collective) call:
ncmpi put vara all(ncid,
rarid,

—
ouf, count,

datatype)

Local Sub-matrix
in memory

Global Matrix in PnetCDF File

96

File: mlife-io-pnetcdf.c Page 4 of 7

74: /* SLIDE: PnetCDF Life Checkpoint Code Walkthrough */

75: ncmpl def dim(ncid, "col", cols, &coldim);

76: ncmpl def dim(ncid, "row", rows, &rowdim);

77 dims[0] = coldim;

78: dims[1l] = rowdim;

79: ncmpi def var(ncid, "matrix", NC INT, 2, dims, &varid);

80:

81: /* store iteration as global attribute */

82: ncmpi put att int(ncid, NC GLOBAL, "iter", NC INT, 1, é&iter);
83:

84 : ncmpl enddef (ncid) ;

85:

86: start[0] = 0; /* col start */

87: start[1l] = myoffset; /* row start */

88: count[0] = cols;

89: count[1l] = myrows;

90:

91: MLIFEIO Type create rowblk (matrix, myrows, cols, &type);

92: MPI Type commit (&type);

93:

94 ncmpl put vara all(ncid, varid, start, count, MPI BOTTOM, 1,
95: type);

96:

97: MPI Type free (&type);

98:

99: ncmpl close (ncid);
100: return MPI SUCCESS;
101: }

102:

97

File: mlife-io-pnetcdf.c Page 5 of 7

103: /* SLIDE: PnetCDF Life Checkpoint Code Walkthrough */
104: int MLIFEIO Restart (char *prefix, int **matrix, int rows,

105: int cols, int iter, MPI Info info)
106: {

107: int err = MPI SUCCESS;

108: int rank, nprocs;

109: int myrows, myoffset;

110: int flag;

111:

112: int cmode = 0;

113: int ncid, wvarid, dims[2];

114: MPI Offset start([2];

115: MPI Offset count[2];

116: MPI Offset coldimsz, rowdimsz;

117: int i, 7j, *buf;

118: char filename[64];

119:

120: MPI Comm size (mlifeio comm, &nprocs);

121: MPI Comm rank (mlifeio comm, &rank);

122:

123: Mmyrows = MLIFE myrows (rows, rank, nprocs);

124: myoffset = MLIFE myrowoffset (rows, rank, nprocs);
125:

126: snprintf (filename, 63, "%“s-%d.nc", prefix, iter);
127: err = ncmpli open(mlifeio comm, filename, cmode, info, é&ncid);
128: if (err !'= 0) {

129: fprintf (stderr, "Error opening %s.\n'", filename) ;
130: return MPI ERR IO;

131: }

98

Discovering Variable Dimensions

= Because netCDF is self-describing, applications can inquire
about data in netCDF files:

err = ncmpi ing dimlen (ncid,
dims[O0],
&coldimsz) ;

= Allows us to discover the dimensions of our matrix at restart
time

See mlife-io-pnetcdf.c pp. 6-7 for code example.

99

File: mlife-io-pnetcdf.c Page 6 of 7
132: /* SLIDE: Discovering Variable Dimensions */
133: err = ncmpl ing varid(ncid, "matrix", &varid);
134: if (err !'= 0) {
135: return MPI ERR IO;
136: }
137:
138: /* verify that dimensions in file are same as input row/col */
139: err = ncmpi ing vardimid(ncid, wvarid, dims);
140: if (err !=0) {
141 : return MPI ERR IO;
142: } -
143:
144: err = ncmpli ing dimlen (ncid, dims[0], &coldimsz);
145: if (coldimsz != cols) {
146: fprintf (stderr, "cols does not match\n'");
147 : return MPI ERR I0O;
148 }
149:
150: err = ncmpli ing dimlen(ncid, dims[1l], &rowdimsz);
151: if (rowdimsz != rows) {
152: fprintf (stderr, "rows does not match\n'");
153: return MPI ERR IO;
154 : }

155:

100

File: mlife-io-pnetcdf.c Page 7 of 7
156: /* SLIDE: Discovering Variable Dimensions */
157: buf = (int *) malloc (myrows * cols * sizeof (int));
158: flag = (buf == NULL);
159: /* See 1f any process failed to allocate memory */
160: MPI Allreduce (MPI IN PLACE, &flag, 1, MPI INT, MPI LOR,
161: mlifeio comm) ;
162: if (flag) |
163: return MPI ERR IO;
164: }
165:
166: start[0] = 0; /* col start */
167: start[1l] = myoffset; /* row start */
168: count[0] = cols;
169: count[1l] = myrows;
170: ncmpl get vara int all(ncid, varid, start, count, buf);
171:
172: for (i=0; i < myrows; i++) {
173: for (3J=0; j < cols; Jj++) {
174: matrix[i+1][]j] = buf[(i*cols) + J];
175: }
176: }
177:
178: free (buf) ;
179:
180: return MPI SUCCESS;

181:

101

Takeaway from PnetCDF Game of Life Example

= PnetCDF abstracts away the file system model, giving us

something closer to (many) domain models
— Arrays
— Types
— Attributes
= Captures metadata for us (e.g., rows, columns, types) and
allows us to programmatically explore datasets
= Uses MPI-I0 underneath, takes advantage of data sieving and

two-phase I/0 when possible

= Next we will spend a bit of time on PnetCDF itself

102

AAAAAAAAAAAAAAAAAA

How It Works: The Parallel netCDF
Interface and File Format

Thanks to Wei-Keng Liao, Alok Choudhary, and Kui

Gao (NWU) for their help in the development of
PnetCDF.

www.mcs.anl.eov/parallel-netcdf

(@) ENERGY

Record Variables in netCDF

Record variables are defined to have a

single “unlimited” dimension

Convenient when a dimension size is
unknown at time of variable creation
Record variables are stored after all the

other variables in an interleaved format
— Using more than one in a file is likely to result
in poor performance due to number of

noncontiguous accesses

Record Data

Fixed—sized data

e

7
L

e

netCDF Header

l1st non—record variable

Z2nd non-record variable

nth non—record wariable

(1zt Record for 1st Eecord ¥Yar |

1zt Record for ?nd Record ?ar'J

3k

LR

L ¥

1zt Record for rth Eecord ¥ar

Z2nd Record for lst,
Znd,...,rth Record

Variables 1n order

| L=
Eecords grow in the TNLINITED

v dimension for 1,2,..., rth wvar

LAY

-

104

Inside PnetCDF Define Mode

= |n define mode (collective)

— Use MPI_File_open to create file at create time
— Set hints as appropriate (more later)
— Locally cache header information in memory
e All changes are made to local copies at each process
= At ncmpi_enddef
— Process 0 writes header with MPI_File_write at
— MPI_Bcast result to others

— Everyone has header data in memory, understands placement of all
variables

* No need for any additional header 1/O during data mode!

105

Inside PnetCDF Data Mode

B Inside ncmpi_put_vara_all (once per variable)
— Each process performs data conversion into internal buffer
— Uses MPI_File set view to define file region

* Contiguous region for each process in FLASH case
— MPI_File_write_all collectively writes data

B At ncmpi_close
— MPI_File_close ensures data is written to storage

B MPI-10 performs optimizations
— Two-phase possibly applied when writing variables

B MPI-1I0 makes PFS calls

— PFS client code communicates with servers and stores data

106

N
Inside Parallel netCDF: Jumpshot view
1: Rank 0 write header

3: Collectively
(independent 1/O) write 4 variables
| |

N ng |€||>|F|@%||ﬁ'll@§lf EIEIEY F%f

- 1/O
Aggregator

41
& L »
* 2| Fit All Ry
6.00 6.05 615 0 B35 640 245 EIEEI EISS E‘EJ QW‘
nnnnnnnnnnnnn I E
2: Collectively write

app grid, AMR data

4: Close file

Indep. Write- Collective write

File open

File close

107

Parallel-NetCDF write-combining optimization

ncmpi iput vara(ncfile, wvaridl,
&start, &count, é&data,
count, MPI INT, &requests[0]);

ncmpi wait all(ncfile, 2, requests, statuses);

= netCDF variables laid out
IR contiguously

= Applications typically store data in
HEADER VAR1 VAR2 separate variables

— temperature(lat, long, elevation)
— Velocity x(x, y, z, timestep)

= QOperations posted independently,

completed collectively
— Defer, coalesce synchronization
— Increase average request size

s) 108

Example: FLASH Astrophysics

= FLASH is an astrophysics code for

studying events such as supernovae
— Adaptive-mesh hydrodynamics

— Scales to 1000s of processors

— MPI for communication

= Frequently checkpoints:
— Large blocks of typed variables
from all processes
— Portable format
— Canonical ordering (different than
in memory)
— Skipping ghost cells

CIrrr11...03
Vars 0,1, 2,3, ... 23

B Ghost cell
B Stored element

109

FLASH Astrophysics and the write-combining
optimization

= FLASH writes one variable at a time
= Could combine all 4D variables (temperature, pressure, etc) into
one 5D variable
— Altered file format (conventions) requires updating entire analysis toolchain
= Write-combining provides improved performance with same file

conventions
— Larger requests, less synchronization.

FLASH checkpont I1/0

_I||-5 T T T
Blocking e
7 FHonblocking i

GBS/ sec

\h
4036 g19z 16384 32768 65536

nprocs

110

HACC: understanding cosmos via simultin -

= “Cosmology = Physics + Simulation “

(Salman Habib)
= Sky surveys collecting massive amounts

of data

— (~100 PB) Aty el
= Understanding of these massive datasets (S EIEEEEEE .

rests on modeling distribution of cosmic @ Gt

entites L [
= Seed simulations with initial conditions e ANpeEEEEELETE
= Run for 13 billion (simulated) years o
= Comparison with observed data

validates physics model.

= |/O challenges:
— Checkpointing
— analysis

Parallel NetCDF Particle Output
Collaboration with Northwestern and Argonne

= Metadata, index, and particle

data Metadata Particles
= Self-describing portable format | | |pomain size pidx.y,z|vx.vy.vz|phi
= Can be read with different Notes
number of processes than e S
written
Index

= Can be queried for particles
within spatial bounds

Block| Bounds Start|End

n |[min,max| ¢ | e

File schema for analysis output enables spatial
queries of particle data in a high-level self-
describing format.

112

"
HACC particles with pnetcdf: metadata (1/2)

/* class constructor creates dataset */
I0::I0(int mode, char *filename, MPI Comm comm) {
ncmpi create (comm, filename, NC_64BIT DATA,

MPI_INFO NULL, &ncfile);

/* describe simulation metadata, not pnetcdf metadata */
void IO: :WriteMetadata(char *notes, float *block size,
float *global min, int *num blocks,
int first time step, int last time step,
int this time step, int num secondary keys,
char **secondary keys) ({
ncmpi put att text(ncfile, NC_GLOBAL, "notes",
strlen (notes), notes);
ncmpi put att float(ncfile, NC GLOBAL, '"global min z",
NC FLOAT, 1,&global min[2]);

113

HACC particles with pnetcdf: metadata (2/2)

void IO: :DefineDims () {
ncmpi def dim(ncfile, "KeyIndex", key index,
&dim keyindex) ;
char str attribute[100 =
"num blocks x * num blocks y * num blocks z *
num kys";

/* wvariable with no dimensions: “scalar” */
ncmpi def var(ncfile, "KeyIndex", NC INT, O,
NULL, &var keyindex);
ncmpi put att text(ncfile, var keyindex, "Key Index",
strlen(str attribute), str attribute);
/* pnetcdf knows shape and type, but application must
annotate with units */
strcpy (unit, “km/s”) ;
ncmpi def var(ncfile, “Velocity”, NC FLOAT,
ndims, dimpids, &var velid);
ncmpi put att text(ncfile, var velid,
“unit of velocity”, strlen(unit), unit);

114

HACC particles with pnetcdf: data

void IO::WriteData(int num particles, float *xx, float *yy, float
*zz,
float *vx, float *vy, float *vz,
float *phi, inté64 t *pid, float *mins,
float *maxs) {
// calculate total number of particles and individual array offsets
nParticles = num particles; // typecast to MPI Offset
myOffset = 0; // particle offset of this process
MPI Exscan(&nParticles, &myOffset, 1, MPI OFFSET, MPI SUM, comm) ;
MPI Allreduce (MPI IN PLACE, &nParticles, 1, MPI OFFSET,
MPI SUM, comm) ;

start[0] = myOffset; start[l] = O;
count[0] = num particles; count[l] = 3; /* ZYX dimensions */

// write "Velocity" in parallel, partitioned

// along dimension nParticles

// "Velocity" is of size nParticles x nDimensions

// data vel array set up based on method parameters

ncmpi put vara float all(ncfile, var velid, start, count,
&data vel[0] [0]) ;

115

Parallel-NetCDF Inquiry routines

Talked a lot about writing, but what about reading?
= Parallel-NetCDF QuickTutorial contains examples of several
approaches to reading and writing

= General approach
1. Obtain simple counts of entities (similar to MPI datatype “envelope”)
2. Inquire about length of dimensions
3. Inquire about type, associated dimensions of variable

= Real application might assume convention, skip some steps
= A full parallel reader would, after determining shape of
variables, assign regions of variable to each rank

(“decompose”).
— Next slide focuses only on inquiry routines. (See website for I/0 code)

116

Parallel NetCDF Inquiry Routines

int min(int arge, char **argv) ({
/* extracted from
*http://trac.mcs.anl.gov/projects/parallel-netcdf/wiki/QuickTutorial
* "Reading Data via standard API" */
MPI Init(&argc, &argv);
ncmpi open (MPI _COMM WORLD, argv[l], NC_NOWRITE,
MPI INFO NULL, &ncfile);

/* reader knows nothing about dataset, but we can interrogate with
* query routines: ncmpi_ ing tells us how many of each kind of
* "thing" (dimension, variable, attribute) we will find in file */

<::> ncmpi_ing(ncfile, &ndims, &nvars, &ngatts, &has unlimited);
/* no communication needed after ncmpi open: all processors have a
* cached view of the metadata once ncmpi open returns */

dim sizes = calloc(ndims, sizeof (MPI_Offset))
/* netcdf dimension identifiers are allocated sequentially starting
* at zero, same for variable identifiers */
for (i=0; i<ndims; i++) {
ncmpi_ing dimlen(ncfile, i, &(dim sizes[i]));
}
for (i=0; i<nvars; i++) {
ncmpi_ing var(ncfile, i, varname, &type, &var ndims, dimids,
&var natts);
printf(“variable % has nanme % with % di nensi ons”
" and %d attributes\n",
i, varname, var ndims, var natts);

ORO,

}
ncmpi close(ncfile);
MPI Finalize();

117

PnetCDF Wrap-Up

= PnetCDF gives us
— Simple, portable, self-describing container for data
— Collective 1/0
— Data structures closely mapping to the variables described

= |f PnetCDF meets application needs, it is likely to give good

performance
— Type conversion to portable format does add overhead

= Some limits on (old, common CDF-2) file format:
— Fixed-size variable: <4 GiB
— Per-record size of record variable: < 4 GiB
— 232-1 records
— New extended file format to relax these limits (CDF-5, released in
pnetcdf-1.1.0, November 2009)

118

Additional I/0 Interfaces

Data Model Libraries map
application abstractions onto
storage abstractions and provide
data portability.

HDF5, Parallel netCDF, ADIOS

Parallel file system maintains
logical file model and provides
efficient access to data.

PVFS, PanFS, GPFS, Lustre

Application

N

/O Hardware

1/0 Middleware organizes

accesses from many processes,
especially those using collective
I/O.

MPI-IO, GLEAN, PLFS

1/0 Forwarding transforms 1/O
from many clients into fewer, larger
request; reduces lock contention;
and bridges between the HPC
system and external storage.

IBM ciod, IOFSL, Cray DVS

119

Data Model I/0 libraries

= Parallel-NetCDF: http://www.mcs.anl.gov/pnetcdf
= HDF5: http://www.hdfgroup.org/HDF5/
= NetCDF-4: http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
— netCDF APl with HDF5 back-end
= ADIOS: http://adiosapi.org
— Configurable (xml) I/O approaches
= S|LO: https://wci.llnl.gov/codes/silo/
— A mesh and field library on top of HDF5 (and others)
= H5part: http://vis.lbl.gov/Research/AcceleratorSAPP/
— simplified HDF5 API for particle simulations
= GIO: https://svn.pnl.gov/gcrm
— Targeting geodesic grids as part of GCRM
= PIO:
— climate-oriented I/O library; supports raw binary, parallel-netcdf, or serial-
netcdf (from master)
= ... Many more: consider existing libs before deciding to make your own.

120

Argonne°

NATIONAL LABORATORY

Understanding I/0 Behavior and
Performance

Thanks to the following for much of this material:

Kevin Harms, Charles Bacon, Sam Yushu Yao and Katie Antypas
Lang, Bill Allcock National Energy Research Scientific
Math and Computer Science Division and ~ Computing Center

Argonne Leadership Computing Facility Lawrence Berkeley National Laboratory

Argonne National Laboratory

For more information, see:

- P.Carns et al. Understanding and improving computational science storage
access through continuous characterization. ACM TOS. 2011.

- P.Carns et al. Production |/O characterization on the Cray XE6. CUG 2013.
May, 2013.

(@) ENERGY

Characterizing Application 1/0

How are applications using the 1/0 system, and how successful
are they at attaining high performance?

= The best way to answer these Simplified HPC 1/O stack
guestions is by observing
behavior at the application and
library level

= What did the application intend
to do, and how much time did it
take to do it? File system access

" |n this portion of the training File system
course we will focus on Darshan,
a scalable tool for characterizing
application I/O activity. ‘

Application

Application 1/O access

Runtime libraries

Block access

Storage devices ‘

122

What does Darshan do

Darshan (Sanskrit for “sight”) is a tool we developed for I/O characterization
at extreme scale:

No code changes, easy to enable

— Enabled by default at ALCF and NERSC, optionally available at OLCF

Negligible performance impact: just “leave it on”
= Produces a summary of 1/O activity for each job

= Captures:

Counters for file I/O and MPI-10 calls,
some PnetCDF and HDF5 calls
Counters for unaligned, sequential,
consecutive, and strided access
Timing of opens, closes, first and last
reads and writes

Cumulative data read and written
Histograms of access, stride, datatype,
and extent sizes

1 BE

sequential

consecutive

1.2.3

strided

123

The technology behind Darshan

= |ntercepts /O functions using link-time wrappers
— No code modification
— Can be transparently enabled in MPI compiler scripts
— Compatible with all major C, C++, and Fortran compilers

= Record statistics independently at each process, for each file
— Bounded memory consumption
— Compact summary rather than verbatim record

= Collect, compress, and store results at shutdown time
— Aggregate shared file data using custom MPI reduction operator
— Compress remaining data in parallel with zlib
— Write results with collective MPI-10
— Result is a single gzip-compatible file containing characterization
information

= Works for Linux clusters, Blue Gene, and Cray systems

124

How to use Darshan

= Compilea C, C++, or FORTRAN program that uses MPI
= Run the application

= Look for the Darshan log file
= This will be in a particular directory (depending on your

system’s configuration)
— <dir>/<year>/<month>/<day>/<username>_<appname>*.darshan.gz
— Mira: see /projects/logs/darshan/
— Edison: see /scratch1/scratchdirs/darshanlogs/

= Application must run to completion and call MPI_Finalize() to
generate a log file

= Use Darshan command line tools to analyze the log file

= Warning/disclaimer: Darshan does not currently work for F90
programs on Mira

125

Darshan analysis example

rbturb.x (9/25/2013) lof3

= Each job instrumented with Darshan
produces a single characterization log file
= Darshan command line utilities are used to

Jobkid: 149563 il 7Y mprocs: THO43Z runtime: 27531 seconds

1O Opeprighin Conts

analyze these log files
= Example: Darshan-job-summary.pl produces "~
a 3-page PDF file summarizing various
aspects of I/O performance 'T‘ . I | |

= This figure shows the I/O behavior of a
786,432 process turbulence simulation
(production run) on the Mira systematANL | | /.|

= Application is write intensive and benefits
greatly from collective buffering

File Count Sumimuary
(estimaned by 170 aceess offserst

|

Cinint type number of files vy size max size

210977 total openud 17 199G L&T

. . Q8RR yead-only files 1 20K 20K

Percentage of runtime in 1/O 2508 el fle 13 206 1er
9 readAwrine files 0 0 0

creaed files 13 2606 16T

Access size histogram
Access type histograms
File usage

s prsiests W e ben cwhamian woeehngr thiashoy 1] e o

126

Darshan analysis example (page 2)

MPI Ranks

00:45:00

00:30:00 00235200 00c20:00

00:15:00 00:20:00 00:25:00

Time

This graph (and others like it) are on the second page of the darshan-
job-summary.pl output. This example shows intervals of I/O activity

from each MPI process.

Available Darshan analysis tools

= http://www.mcs.anl.gov/research/projects/darshan/docs/dar
shan-util.html

= Key tools:

— Darshan-job-summary.pl: creates pdf with graphs for initial analysis

— Darshan-summary-per-file.sh: similar to above, but produces a separate
pdf summary for every file opened by application

— Darshan-parser: dumps all information into text format

Darshan-parser example (see all counters related to write operations):
“darshan-parser user_app_numbers.darshan.gz |grep WRITE”

See documentation above for definition of output fields

128

Looking for 1/0 Performance Problems

= Many I/O problems can be seen from these logs
= The next few slides will show some examples

129

____________________________ |
Example: checking user expectations

jobid: | uid: | nprocs: 4096 | runtime: 175 seconds
Average |/O cost per process 1/0 Operation Counts.

100 3000
E 80 ’52500 - .
= User opened 129 files
,éf’ C=L1500 o 124 .
(one “control” file, and

20 = r

& .
: - B 128 data files)
%4 © o | i
ea rite Open Stat Seel map Fsync
I T e e ™ Should be one header,
Other (including application compute) s MPI-1O Indep. mss

o 1/0 Sizes o 110 Pattern a bo ut 40 KI B’ pe r d ata
2000 2500 | f i I e
§1500 H EZOUO .
= This example shows 512
g 500 §1000 I d b 1 1

| headers being written
0 A M
" ; — Code bug: header was

Read mmmmm Write ssmsem SequeTr(l]ll\:: = Conseclive s Writte n 4X pe r fi I e

File Count Summary

Most Common Access Sizes - -
- type | number of files | avg. size | max size
access size count

total opened 129V 1017M 1.1G

67108864 2048 .
41120 read-only files 0 0 0
3 write-only files 129 | 1017M 1.1G
4 3 read/write files 0 0 0
created files 129 1017M 1.1G

130

Performance Debugging: Simulation Output

= HSCD combustion physics application
— HSCD was writing 2-3 files per process with up to 32,768 cores
— Darshan attributed 99% of the I/O time to metadata (on Intrepid BG/P)

| jobid: 0 | uid: 1817 | nproc(C:\8192\) | runtime: 863 seconds |

Average /O cost per process

—_
o
o

File Count Summary
type ‘ number of ﬁLei[avg. size | max size

(o]
o

(0]
'*E total opened @) 2.5M 8.1M
2 60 read-only files 0 0 0
° write-only files 16388 2.5M 8.1M
g 40 read/write files 0 0 0
8 created files 16388 2.5M 8.1M
()
o

\S]
o

o

Read s

Write moomamm

Metadata s

Other (including application compute) mmm—"

131

MiB/s

Simulation Output (continued)

HSCD 1/0 performance with 32,768 cores

2500

2000 -

1500 -

1000

500 -

With help from ALCF catalysts and Darshan instrumentation,
we developed an I/0 strategy that used MPI-IO collectives and

a new file layout to reduce metadata overhead

Impact: 41X improvement in 1/O throughput for production

application

File Count Summary

type ‘ number of files | avg. size ‘ max size

I

total opened
ead-only files

write-only files

re

ad/write files
created files

8 515M 2.0G
QQ’D 2.2K 3.7K
6 686M 2.0G
0 0 0

6 686M 2.0G

2,296 MiB/s

1,611 MiB/s
56 MiB/s
I
nsa:
f‘/e/ . f@ate
s/oo o

Percentage of run time

100

o]
o

D
o

IS
o

N
o
T

o

Average |/O cost per process

Read mmm

Write noassan

Metadata e

Other (including application compute) s

132

Performance Debugging: An Analysis I/0 Example

\ | \

Headeri Analysis Headerﬁi Analysis
Data | Data Data : Data

= Variable-size analysis data requires headers to contain size
information

= QOriginal idea: all processes collectively write headers, followed
by all processes collectively write analysis data

= Use MPI-IO, collective I/0, all optimizations

= 4 GB output file (not very large)

= Why does the I/O take so long processes |/o Time (s) TotaITime (s)
in this case?

8,192 8 60
16,384 16 47
32,768 32 57

133

An Analysis I/0 Example (continued)

fpprage 10 cost per process

= Problem: More than 50% of time spent writing |
output at 32K processes. Cause: Unexpected g 80|
RMW pattern, difficult to see at the application z |
code level, was identified from Darshan '%
summaries. } ""

= What we expected to see, read data followed 20 |
by write analysis: ;

Trmassan o Bl B bt acoess oo es shanad by ol pecoessas

Wit Sa—
) _ Mulacala m—
ek [ingGluding Booicaion compuln)

Al proen e

20000 [k e B [L 2000 250 [k e 000030 D008 DI04l

= What we saw instead: RMW during the writing shown by overlapping red
(read) and blue (write), and a very long write as well.

I'meip hom Sl o les! i on ik shenes By Gl proiiccers

el —
AT —

A o ra

(LR ER S 0n3n 10 wroE (LR CEE DG 40 [Ea e g 1] w0 D i 0GR 2Ener -

o 134

An Analysis I/0 Example (continued)

= Solution: Reorder operations to . Aumerage V0 ot pos puomss
combine writing block headers
with block payloads, so that
"holes" are not written into the
file during the writing of block
headers, to be filled when writing
block payloads ’

= Result: Less than 25% of time
spent writing output, output time O (Inciucing sppACatcn compuin) e

4X shorter, overall run time 1.7X

H
o] f=-1
=] [=] E=]
v ¥

Farcanlags ol ne Sm

i)
=]
"

shorter
= Impact: Enabled parallel Morse-

8,192 7 60
Smale computation to scale to 32K 554, 40
processes on Rayleigh-Taylor E— 33

instability data

s) 135

Example: redundant read traffic

= Scenario: Applications that read more bytes of data from the file system
than were present in the file
— Even with caching effects, this type of job can cause disruptive 1/0
network traffic
— Candidates for aggregation or collective I/0

= Example: File Count Summary
ample (estimated by I/0 access offsets)
— Scale: 6,138 processes type | number of files | avg. size | max size
— Run time: 6.5 hours total opened 1299 1.1G 8.0G
_ Ay |/O time per brocess: read-only files 1187 1.1G 8.0G |
8- perp ' write-only files 112 418M | 2.6G
27 minutes read/write files 0 0 0
created files 112 418M 2.6G
= 1.3 TiB of file data
= 500+ TiB read! —— Data Transfer Per Filesystem
o Write Read
File System ™——zp | Rartio MiB | Ratio
/ 47161.47354 | 1.00 575224145.24837 | 1.00000

Example: small writes to shared files

= Scenario: Small writes can contribute to poor performance
— Particularly when writing to shared files
— Candidates for collective 1/0 or batching/buffering of write operations

= Example:
— lIssued 5.7 billion writes to shared files, each less than 100 bytes in size
— Averaged just over 1 MiB/s per process during shared write phase

/O Sizes
6e+09 B
Most Common Access Sizes

access size count

1 3418409696
15 2275400442
24 42289948
12 14725053

g
3

&
3

&
+
]

Count (Total, All Procs)
$
+
3

?
+

o @
T

/0, "f- /04_ /0 /4, gz, /0 /0 G'
% ’ 04. ,OQf_Qf:’d,%, O,z, IOQ?O
Read o Write oo

Example: excessive metdata overhead

= Scenario: Very high percentage of I/O time spent performing

metadata operations such as open(), close(), stat(), and seek()
— Close() cost can be misleading due to write-behind cache flushing
— Candidates for coalescing files and eliminating extra metadata calls

= Example:
— Scale: 40,960 processes for 229 seconds, 103 seconds of I/0

— 99% of I/0 time in metadata operations
— Generated 200,000+ files with 600,000+ write() and 600,000+ stat() calls

Average 'O cost per process 0 Operation Couwnts

100 - 700000
= BO i
5 g
c & 500000 [
2 B0 | &
— [+]
2 £ 400000 |
§ =
fa0| =
8 F 300000 |
(=]
& o9l e
= 200000 |
&
0 100000 |
D L L L L L
Aead — Read Wrte Open Sttt Sesk Mmap Fsync
Write onmam
Metadata e POSC o MP-10 Caoll. s
I

_—

Other (including applicafion compute MPHIO Indep. s

Metadata side topic: what’s so bad about stat()?

= stat() is actually quite cheap on most file systems
= But not a large-scale HPC I/O system!

= The usual problem is that stat() requires a consistent size
calculation for the file

= To do this, a PFS has two options:
— Store a precalculated size on the metadata server, which becomes a
source of contention
— Calculate size on demand, which might cause a storm of requests to
all servers
= No present-day PFS deployments respond very well when

thousands of processes stat() the same file at once

bytes read and written (GiB)

Example: system-wide analysis

= Job size vs. data volume for Mira BG/Q system in 2014
(~128,000 logs as of October, ~8 PiB of traffic)

262144
65536
16384

4096
1024
256
64
16

4

1

MPI ranks

Biggest by volume:
~300 TiB

Biggest by scale:
768K processes

Probably some scaling
experiments?

Most jobs use power of
2 numbers of processes
on Mira

I/0 Understanding Takeaway

= Scalable tools like Darshan can yield useful insight
— ldentify characteristics that make applications successful
...and those that cause problems.
— ldentify problems to address through 1/O research
= Petascale performance tools require special considerations
— Target the problem domain carefully to minimize amount of data
— Avoid shared resources
— Use collectives where possible

= For more information, see:
http://www.mcs.anl.gov/research/projects/darshan

143

I/0 Performance Tuning “Rules of thumb”

= Use collectives when possible

= Use high-level libraries (e.g. HDF5 or PnetCDF) when possible

= Afew large I/O operations are better than many small I/O
operations

= Avoid unnecessary metadata operations, especially stat()

= Avoid writing to shared files with POSIX

= Avoid leaving gaps/holes in files to be written later

= Use tools like Darshan to check assumptions about behavior

144

Changes in Data Analysis Workflows

{2} ENERGY

Our Example Leadership System Architecture

Mira IBM Blue Gene/ Q System

QDR IB
| port per
analysis
node

Tukey Analysis
System

96 Analysis Nodes

) (1,536 CPU Cores,
192 Fermi GPUs,
49,152 Compute QDR 96 TB local disk)
Nodes Infiniband
(786,432 Cores) 384 1/0 Federated
N Switch
|6 Storage
Couplets
(DataDirect
—— —— \) SFA12KE)
""""""""""""""""""""" 560 x 3TB HDD
32 x 200GB SSD
BG/Q Optical QDR IB QDR IB
2 x 16Gbit/sec 32 Gbit/sec 16 x ports per
per 1/O node per I/O node storage couplet

High-level diagram of 10 Pflop IBM Blue Gene/Q system at Argonne Leadership Computing Facility

146

Analyzing Data: Traditional Post-Processing

Mira IBM Blue Gene/ Q System

49,152 Compute

Nodes

(786,432 Cores)

384 1/0

Nodes

BG/Q Optical QDR IB
2 x |16Gbit/sec 32 Gbit/sec
per I/O node per 1/O node

QDR IB

| port per

analysis
node

Tukey Analysis
System

96 Analysis Nodes
(1,536 CPU Cores,
192 Fermi GPUs,
96 TB local disk)

| 6 Storage]
Coupletgs Typically
(DataDirect analysis is
SFA12KE) performed on a
separate cluster,

QDR IB
|6 x ports per
storage couplet

after simulation

has written to

560 x 3TB HDD | 445 to disk.

32 x 200GB SSD

High-level diagram of 10 Pflop IBM Blue Gene/Q system at Argonne Leadership Computing Facility

147

Analyzing Data: Co-Analysis

QDR IB
| port per
a:zci)lzs:s Tukey Analysis
Mira IBM Blue Gene/ Q System System
| 96 Analysis Nodes
(1,536 CPU Cores,
192 Fermi GPUs,
49,152 Compu 96 TB local disk)
Nodes Infiniband
(786,432 Cores) 384 1/0 Federated
NEEE Switch |
16 Storage Co-analysis
Couplets bypasses
(DataDirect storage and
T I SFAI2KE) processes
data while
simulation
""""""""""""""""""""" 560 x 3TBHDD | runs.
32 x 200GB SSD
BG/Q Optical QDR IB QDR IB
2 x 16Gbit/sec 32 Gbit/sec 16 x ports per
per 1/O node per I/O node storage couplet

High-level diagram of 10 Pflop IBM Blue Gene/Q system at Argonne Leadership Computing Facility
148

Analyzing Data: In Situ Analysis

QDR 1B
| port per
lysi
a:z;z:s Tukey Analysis
Mira IBM Blue Gene/ Q System System
| 96 Analysis Nodes
’ ‘ (1,536 CPU Cores,
: 192 Fermi GPUs,
49’ 152 Compute : QDR 96 TB local dlSk)
Nodes : Infiniband
(786,432 Cores) 3841/0 L, Federated
Nodes L Switch
|6 Storage
Couplets
| (DataDirect
i , SFA12KE)
N . | 560 x 3TB HDD
32 x 200GB SSD
BG/Q Optical QDR IB QDR IB
“In situ” analysis 2 x 16Gbit/sec 32 Gbit/sec 16 x ports per
operates on data per I/O node per I/O node storage couplet

before it leaves the
compute nodes.

High-level diagram of 10 Pflop IBM Blue Gene/Q system at Argonne Leadership Computing Facility

149

N
In Situ Analysis and Data Reduction: HACC

= Onthe HPC side, analysis is increasingly
performed during runtime to avoid
subsequent I/0

= HACC cosmology code employing

Voronoi tessellation
— Converts from particles into unstructured grid

based on partlde denSIty Voronoi tessellation rveal‘regul)ns
— Adaptive, retains full dynamic range of input Ef i;rzgula_; 'Ohwidensitv voids amid
. . 1IgN-aensity nalos.
— DIY toolkit (open source) used to implement U ——

1]

B busitn

analysis routines e
= ParaView environment used for visual
exploration, custom tools for analysis =

Memory 0 ME

AAAAA fioar 10.0037701, 33.4
10.0303608, 1.24

e [0.455024, 19.39

ble [-84, -]

e 10,00

uble 00137701, 2.4

double [-0.0777TE2, -0.0

double [0.000108144, 7

L 0000108144, 7

thtttetEne

Collaboration with Kitware and U. of Tennessee ParaView plugin provides interactive
feature exploration.

150

Argonne°

NATIONAL LABORATORY

In-System Storage

Many thanks to:

Ning Liu Jason Cope
lllinois Institute of Technology =~ DataDirect Networks

Chris Carothers
Rensselear Polytechnic Institute

{2} ENERGY

Adding In System Storage to the Storage Model

The inclusion of NVRAM storage in future systems is a compelling way to deal with
the burstiness of 1/0 in HPC systems, reducing the peak I/O requirements for
external storage. In this case the NVRAM is called a “burst buffer”.

_ BG/P Tree Ethernet InfiniBand Serial ATA

/O Forwarding “ ﬁ Lf
-
-

— \ \

Compute nodes IO nodes File servers Enterprise storage

152

What’s a Burst?

= We quantified the |/O behavior by analyzing one month of

production I/O activity on Blue Gene/P from December 2011
— Application-level access pattern information with per process and per
file granularity

— Adequate to provide estimate of I/O bursts

Project Procs Nodes Total Run Time Avg. Size and Subsequent Idle Time for Write Bursts>1 GiB
Written (hours) | Count Size Size/Node Size/ION Idle Time (sec)
PlasmaPhysics 131,072 32,768 67.0TiB 10.4 1 33.5TiB 1.0 GiB 67.0 GiB 7554
1 33.5TiB 1.0 GiB 67.0 GiB end of job
Turbulencel 131,072 32,768 8.9TiB 11.5 5 128.2 GiB 4.0 MiB 256.4 MiB 70
1 128.2 GiB 4.0 MiB 256.4 MiB end of job
421 19.6 GiB 627.2 KiB 39.2 MiB 70
AstroPhysics 32,768 8,096 8.8TiB 17.7 1 |550.9GiB 68.9 MiB 4.3 GiB end of job
8 423.4 GiB 52.9 MiB 3.3 GiB 240
37 131.5GiB 16.4 MiB 1.0 GiB 322
140 1.6 GiB 204.8 KiB 12.8 MiB 318
Turbulence2 4,096 4,096 5.1TiB 11.6 21 235.8 GiB 59.0 MiB 3.7 GiB 1.2
1 235.8 GiB 59.0 MiB 3.7 GiB end of job

153

Studying Burst Buffers with Parallel Discrete Event
Simulation

CN ION

" application kernel |,/ handshake) | ("handshake handshake
| send "l arrive _ process
|

joblD = I; , ¥
fileHandle = 13; handshake | [handshake
r = getrank joblD;
s = getsize joblD;
o=0;

open fileHandle;
o={1&6M *r)

writeat fileHandle, 4M, o;
o=(16M%*r)+ (4M * |);
writeat fileHandle, 4M, o;
o=(16M %*r)+ (4M * 2);
writeat fileHandle, 4M, o;
o=({1&6M*%=r)+ (4M * 3);
writeat fileHandle, 4M, o;

-
-===================—=-

4

external 1/O traffic

¥

sync joblD;
H::I-c:rse fileHandle;

154

Burst Buffers Work for Multi-application Workloads

Early simulation results, 2011
Burst buffers improve
application perceived
throughput under mixed 1/0
workloads.

Applications’ time to solution
decrease with burst buffers
enabled (from 5.5t0 4.4
hours)

Peak bandwidth of the
external I/O system may be
reduced by 50% without a
perceived change on the
application side

Tool for co-design

1000

100

10

1

aggregate bandwidth (GiB/s)

o LIS
0 1 2

1000

100

aggregate bandwidth (GiB/s)

0.1

Application perceived I/O rates, with no
burst buffer (top), burst buffer (bottom).

M PlasmaPhysics M Turbulence 1 AstroPhysics

10 =

1EE

DG RN
3 4 5
time (hour)

H PlasmaPhysics B Turbulence 1 H AstroPhysics

1

0

4 5

time (hour)

2 3

155

Burst buffers: from research to production in 2015

= NERSC’s Corisystem will be the first DOE platform with burst

buffers in production

— Phase 1: Fall 2015, Phase 2 late 2016

— Architecture: dedicated “burst buffer nodes” with PCl-attached SSD
storage

— Afaster, intermediate tier of storage between compute nodes and
parallel file system

— Software: Cray Datawarp

— Upto 1.6 TiB/s data rate

156

Burst buffers on other next-gen platforms

Multiple approaches to in-system storage and how to use it in
upcoming Trinity and CORAL procurements

= |ANL/Sandia: Trinity (2015/2016)
— Similar architecture to NERSC/Cori, dedicated burst buffer nodes

ORNL: Summit (2018)
— 800 GiB NVRAM per compute node

= LLNL: Sierra (2017)
— 800 GiB NVRAM per compute node

ANL: Theta (2016)
— 128 GiB SSD per compute node

ANL: Aurora (2018)
— NVRAM per compute node and SSD burst buffers

157

How will applications use burst buffers?

= Usage model possibilities:
— Provisioned per job or user
— Migration (staging) of data to and from parallel file system
— Transparent caching layer
— In-transit analysis of data

= |nitial adoption will require minimal (if any) change to
applications
= Specify parameters/mode at job submission time

158

Beyond Burst Buffers

= QObviously lots of other potential uses
— Checkpointing location
— QOut-of-core computation
— Holding area for analysis data (e.g., temporal analysis, in situ)
— Code coupling
— Input data staging

= |mproves memory capacity of systems
— More data intensive applications?

= Placement of NVRAM will matter

— On /0 forwarding nodes (as in simulation example)
— On some/all compute nodes?
— Both?

159

Future data models: beyond files

{2} ENERGY

Are there alternatives to the file/directory model?

(Yes!)

" |nternet services and big data deployments have successfully

utilized a variety of alternatives
— Key/value: Cassandra, Dynamo, Memcached
— Obijects: S3, Openstack/Swift
— Files with non-POSIX semantics: Hadoop and GoogleFS
— Graph: Neodj, OrientDB
— Documents: MongoDB

= Research underway to make these foundational data models
and other available to HPC applications on future systems

= No clear consensus on which models will reach production yet

= Storage services likely to be customizable in the future instead
of a “one size fits all” approach

161

Wrapping Up

{0} ENERGY

Wrapping Up

= HPC storage is a complex hardware/software system

= Some effort is necessary to make best use of these resources

= Many tools are available to:
— Increase productivity

— Improve portability of data and capture additional provenance
— Assist in understanding performance problems

= We hope we have shed some light on these systems

163

Wrapping Up (but wait, there’s more!)

= Hands on exercises tonight:
— Feel free to work on your own code and ask us questions
— There are some planned exercises if you would like to experiment with
the tools and libraries presented in this talk
— Example code from presentation is available as well

= Check for email about hands-on material and ATPESC mailing
list

= Next up are presentations from Scot Breitenfeld and Rachana
Ananthakrishnan

= See you after dinner for more discussion, maybe some
hacking?

164

Feedback

= What technologies are most interesting for your work?
= What would you like to have heard more about?
= Let us know any time, or catch us one-on-one tonight

robl@mcs.anl.gov (Rob)
carns@mcs.anl.gov (Phil)

Thanks for spending the day with us!

165

