
Debugging and Profiling your HPC Applications
David Lecomber, CEO and Co-founder

david@allinea.com

About this talk

• Learn how to debug and profile your code
– Techniques to take home

• Tools we will use: Allinea Forge
– Debugging with Allinea DDT

– Profiling with Allinea MAP

– NB. Allinea MAP is not supported on BG/Q

• Where to find Allinea’s tools
– > 70% of Top 500 have at least one Allinea tool

Motivation

• HPC systems are finite
– Limited lifetime to achieve most science possible

– Sharing a precious resource means your limited allocation needs to be used well

• Your time is finite
– PhD to submit

– Project to complete

– Paper to write

– Career to develop

• Doing good things with HPC means creating better software, faster
– Unrivaled productive and easy-to-use development environment…

– … To help reach the highest level of performance and scalability

• High performance parallel code needs tools designed for the

challenge

Use the right software tool to be faster

• What parts of the code would benefit most from being rewritten?

• How should I modify a code to make it better (or work at all)?

TIME

Isolate
bottlenecks

Tune
application

Resolve
problems

Validate
outcome

Debugging in practice…

Run

Crash

Hypothesis
Insert print
statements

Compile

Optimization in Practice

Insert
timers

Run
code

Analyse
result

Change
code

Motivation

0

50

100

150

200

250

300

350

400

450

500

2011 2012 2013 2014

Number of 10,000 core systems

> 10,000 cores > 100,000 cores

• “Without capable
highly parallel
software, large
supercomputers
are less useful”
– Council on

Competitiveness

• “1% of HPC
application
codes can
exploit 10,000
cores”
– IDC, 2011

Application Development Workflow

Profiling

Optimization

ExecutionDebugging

Coding

Hello Allinea Forge!

Observe and debug your code step by step

Flick to Allinea DDT
Common interface and settings files

Increasing memory usage? Memory leak!
Workload imbalance? Possible partitioner bug!

Allinea MAP to find performance bottleneck

Linux

OS/X

Windows

Multiple hop SSH

RSA + Cryptocard

Uses server license

HPC means being productive on remote machines

Profiling for performance

• Code optimisation can be time-consuming…

– (image courtesy of xkcd.com)

6 steps to improve performance

Get a realistic test
case

• Performance on real data
matters

• Keep the test case for
reference and re-use

Profile your code

• Add “-g” flag to your
compilation

• Run “map –profile mpirun –
np 4 application.exe”

Look for the significant

• Which part/phase of the
code dominates time?

• Is there any unexpected
significant time use?

What is the nature of
the problem?

• Compute? I/O? MPI?
Thread synchronization?

• Display the metrics that
show the problem best

Apply brain to solve

• MPI – can you balance the
work better?

• Compute – is memory time
dominant – can you improve
layout?

Think of the future

• Try larger process or thread
counts to watch for
scalability problems

• Keep the profile (.map file)
for future comparison

Small data files

<5% slowdown

No instrumentation

No recompilation

MAP in a nutshell

How Allinea MAP is different

Adaptive
sampling

Sample
frequency

decreases over
time

Data never
grows too

much

Run for as
long as you

want

Scalable
Same scalable
infrastructure

as Allinea DDT

Merges sample
data at end of

job

Handles very
high core

counts, fast

Instruction
analysis

Categorizes
instructions

sampled

Knows where
processor

spends time

Shows
vectorization
and memory
bandwidth

Thread
profiling

Core-time not
thread-time

profiling

Identifies lost
compute time

Detects
OpenMP
issues

Integrated Part of Forge
tool suite

Zoom and drill
into profile

Profiling
within your

code

Above all…

• Aimed at any performance problem that matters
– MAP focuses on time

• Does not prejudge the problem
– Doesn’t assume it’s MPI messages, threads or I/O

• If there’s a problem..
– MAP shows you it, next to your code

Scaling issue – 512 processes

Simple fix… reduce periodicity of output

Deeper insight into CPU usage

• Runtime of application still unusually slow

• Allinea MAP identifies vectorization close to zero

• Why? Time to switch to a debugger!

Some types of bug

Bohrbug Steady, dependable bug

Heisenbug Vanishes when you try to debug (observe)

Mandelbug Complexity and obscurity of the cause is so great
that it appears chaotic

Schroedinbug First occurs after someone reads the source file and
deduces that it never worked, after which the
program ceases to work

Debugging

• Transforming a broken program to a working one

• How?
– Track the problem

– Reproduce

– Automate - (and simplify) the test case

– Find origins – where could the “infection” be from?

– Focus – examine the origins

– Isolate – narrow down the origins

– Correct – fix and verify the testcase is successful

• Suggested Reading:
– Zeller A., “Why Programs Fail”, 2nd Edition, 2009

– Zen and the Art of Motorcycle Maintenance, Robert M. Pirsig

Print statement debugging

x

f(x)

• The first debugger: print

statements
– Each process prints a

message or value at defined

locations

– Diagnose the problem from

evidence and intuition

• A long slow process
– Analogous to bisection root

finding

• Broken at modest scale
– Too much output – too many

log files

While still connected to the server we switch to the

debugger

It’s already configured to reproduce the profiling run

Solving Software Defects

• Who had a rogue behavior ?
– Merges stacks from processes and threads

• Where did it happen?
– leaps to source

• How did it happen?
– Diagnostic messages

– Some faults evident instantly from source

• Why did it happen?
– Unique “Smart Highlighting”

– Sparklines comparing data across processes

Run

with Allinea tools

Identify
a problem

Gather info
Who, Where,

How, Why

Fix

HPC could be brain surgery

• Brain aneurysms
– 2-5% of population – most are undiagnosed

– 30,000 rupture in US each year – 40% fatal

– Early discovery and treatment increases
survival rates

• Neurosurgery as HPC
– MRI provides the blood vessel structure

– Intra-cranial blood flow and pressures is just
complex CFD

– Full brain 3D model is 2-10GB geometry

• Individualized HPC
– Patient’s MRI scan enables surgical decision:

whether to operate, how to operate, …

– Circle of Willis requires super-Petascale
machine software

– Need answer in minutes or hours

• … but it crashes at 49152 cores

• Run at problem size (49,152 processes)

… a debugger!

Ah… Integer

overflow!

Debugging by Inspiration

• Some errors are harder than others to diagnose
– A bug that occurs 1% of the time is many times harder to fix than one that occurs 100% of the

time

– Often caused by incorrect memory usage

• Get help from Allinea DDT’s memory debugging
– Checks double frees

– Checks use of dangling (freed) pointers

– Can force O/S to check for read/write beyond bounds

• Make some random bugs deterministic and occur 100% of the time (“Guard Pages”)

– showing memory leaks (group by allocation point)

• Other tips – get inspiration from a colleague
– try explaining your code

• The very act of explaining your thinking in the code can help to diagnose problems

– don’t have a colleague to hand?

• Follow http://www.rubberduckdebugging.com

http://www.rubberduckdebugging.com/

Favorite Allinea DDT Features for Scale

Parallel stack view
Automated data

comparison: sparklines
Parallel array searching

Step, play, and
breakpoints

Offline debugging

Today’s Status on Scalability

• Debugging and profiling
– Active users at 100,000+ cores debugging

– 50,000 cores is largest profiling tried to date (and was Very successful)

– … and active users with just 1 process too

• Deployed on
– ORNL’s Titan, NCSA Blue Waters, ANL Mira etc.

– Hundreds of much smaller systems – academic, research, oil and gas, genomics, etc.

• Tools help the full range of programmer ambition
– Very small slow down with either tool (< 5%)

Five great things to try with Allinea DDT

The scalable print
alternative

Stop on variable change
Static analysis warnings

on code errors

Detect read/write beyond
array bounds

Detect stale memory
allocations

Six Great Things to Try with Allinea MAP

Find the peak memory
use

Fix an MPI imbalance
Remove I/O
bottleneck

Make sure OpenMP
regions make sense

Improve memory
access

Restructure for
vectorization

caption

A Productive HPC Development Workflow

Tour/Demo of Forge

• Debugging with DDT
– Walkthrough example – cstartmpi.exe

• Profiling with MAP
– Matrix-multiplication

Hands on Session

• Use Allinea DDT on your favorite system to debug your code – or

example codes

• Use Allinea MAP on NERSC Edison or ANL Cooley to see your

code performance

• Use Allinea DDT and Allinea MAP together to improve our test

code

• Can you beat a 50% speed up?

Getting started on Mira/Cooley

• Install local client on your laptop
– www.allinea.com/products/forge/downloads

• Linux – installs full set of tools

• Windows, Mac – just a remote client to the remote system

– Run the installation and software

– “Connect to remote host”

– Hostname:

• username@cetus.alcf.anl.gov

• username@cooley.alcf.anl.gov

– Remote installation directory: /soft/debuggers/ddt

– Click Test

• Congratulations you are now ready to debug on Mira/Vesta/Cetus –

or debug and profile on Cooley.

mailto:username@cetus.alcf.anl.gov
mailto:username@cooley.alcf.anl.gov

Performance and debugging challenge

• Obtain the code:
– git clone https://github.com/estrabd/2d-heat.git

• The challenge
– Improve run time by 50%

– Parameters: –h 1000 –w 1000 set the dimensions

• Submit/run
• mpirun –np 16 2d-heat.x –h 1000 –w 1000

• Use MAP to find the lowest hanging fruits

• Use DDT to look at behaviour - confirm what is safe to change

• Edit and build in the GUI: File/Configure Build/ and re-run

Initial Performance Report

• Using Forge – profile, debug,

edit, build, repeat!

– profiler to find targets

– debugger to reveal usage

– Make changes

– Configure the Build command

• make CFLAGS=‘-O3 –g’

• NB: single quotes..

– Build, repeat!

