
Hands	On	#1	(C)

• Download	and	install	MPICH	on	laptop	and	
run	cpi example	in	examples	directory

• Copy	cpi.c over	to	Mira,	compile,	and	run
• Compile	and	run	MLife examples	from	
wgropp.cs.illinois.edu/advmpi-16.tgz on	Mira
– Untar,	run	configure,	cd	to	code-examples-c	and	
make	to	build	executable



Hands	On	#1	(Fortran)

• Download	and	install	MPICH	on	laptop	and	
run	pi3f90	example	in	examples/f90	directory

• Copy	pi3f90.f90	over	to	Mira,	compile,	and	
run

• Compile	and	run	MLife examples	from	
wgropp.cs.illinois.edu/advmpi-16.tgz on	Mira
– Untar,	run	configure,	cd	to	code-examples-f9x	and	
make	to	build	executable



Hands	On	#2	(C)
1. Build	and	run	mesh2d	on	Vesta or	your	favorite	

system
– Run with	large	enough	meshes;	e.g.,	mlife2d	–x	1000	–y	

1000
2. Take the	file	mlife2d-pt2pt.c	and	modify	it	to	try	one	

of	the	following	(we	recommend	testing	on	your	
laptop	first):

• Persistent	sends
• Ready	sends
• Sendrecv

– Advanced:	Restructure	to	allow	computation	during	communication

3. Measure	the	performance (modify	mlife2d.c	to	
include	your	new	routines)



Hands	On	#2	(Fortran)
1. Build	and	run	mesh2d	on	Vesta or	your	favorite	

system
– Run with	large	enough	meshes;	e.g.,	mlife2d	–x	1000	–y	

1000
2. Take the	file	mlife2d-pt2pt.f90	and	modify	it	to	try	

one	of	the	following	(we	recommend	testing	on	your	
laptop	first):

• Persistent	sends
• Ready	sends
• Sendrecv

– Advanced:	Restructure	to	allow	computation	during	communication

3. Measure	the	performance (modify	mlife2d.f90	to	
include	your	new	routines)



Hands	On	#3	(C)
• Take	the	file	mlife2d-pt2ptuv.c	and	

1. Create	a	new	version	that	that	uses	MPI_Type_vector.	
2. Compare	with	mlife2d-pt2pt.c	.		How	does	your	version	

compare?
• I.e.,	use	the	version	in	mlife2d-pt2pt.c	as	the	solution	to	this	

exercise
3. Advanced:	Replace	Type_vector with	

Type_create_resized with	stride	to	produce	a	type	that	
can	be	used	for	any	length	vector	with	the	same	stride

4. Advanced:	Compare	performance	with	manual	packing	
and	with	an	estimate	of	performance	(how	fast	should	it	
be)?



Hands	On	#3	(Fortran)
• Take	the	file	mlife2d-pt2ptuv.f90	and	

1. Create	a	new	version	that	that	uses	MPI_Type_vector.	
2. Compare	with	mlife2d-pt2pt.f90	.		How	does	your	

version	compare?
• I.e.,	use	the	version	in	mlife2d-pt2pt.c	as	the	solution	to	this	

exercise
3. Advanced:	Replace	Type_vector with	

Type_create_resized with	stride	to	produce	a	type	that	
can	be	used	for	any	length	vector	with	the	same	stride

4. Advanced:	Compare	performance	with	manual	packing	
and	with	an	estimate	of	performance	(how	fast	should	it	
be)?



Hands	On	#4	(C)
• Run	mlife2d	with	different	sizes	of	meshes:
– Mlife2d	–x	2000	–y	2000	–i 100
– Mlife2d	–x	4000	–y	4000	–i 100

• Observe	the	RMA	performance	using Fence	
synchronization

• Create	a	new	version,	starting	from	mlife2d-fence.c,	
that	uses	MPI_Win_lock/unlock	 synchronization.		How	
does	your	version	perform?
– Hint:	How	do	you	know	when	you	can	safely	proceed	to	
the	next	iteration?		Or	what	do	you	need	to	do	in	the	code	
to	ensure	you	can	move	to	the	next	iteration?



Hands	On	#4	(Fortran)
• Run	mlife2d	with	different	sizes	of	meshes:
– Mlife2d	–x	2000	–y	2000	–i 100
– Mlife2d	–x	4000	–y	4000	–i 100

• Observe	the	RMA	performance	using Fence	
synchronization

• Create	a	new	version,	starting	from	mlife2d-fence.f90,	
that	uses	MPI_Win_lock/unlock	 synchronization.		How	
does	your	version	perform?
– Hint:	How	do	you	know	when	you	can	safely	proceed	to	
the	next	iteration?		Or	what	do	you	need	to	do	in	the	code	
to	ensure	you	can	move	to	the	next	iteration?



Hands	On	#5	(C)

• Measure	performance	of	halo	exchange	with	
different	process	mappings,	using	mlife2d

• Advanced	(extra	credit):	compare	with	
expected	performance,	using	a	simple	
communication	performance	model



Hands	On	#5	(Fortran)

• Measure	performance	of	halo	exchange	with	
different	process	mappings,	using	mlife2d

• Advanced	(extra	credit):	compare	with	
expected	performance,	using	a	simple	
communication	performance	model


