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Please Sir, I want more
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Comment

e Following has /ots of charts and pictures
o Key take-aways are trends

e Original charts in 2008 Exascale report
e Updates in SC11 paper

e More updates shortly

Acknowledgement: The data in this presentation was funded in part by the
US Dept. of Energy, Sandia National Labs, as part of their XGC project.
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We All Know The Story:
Unbroken Growth in Rmax
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2004: The Power Wall Changed
Architecture

2.95 2004

Rmax continues
2.00 Flops/cycle increased

| even faster
1.75
J Total Cores increased

Compound Annual Growth Rate: CAGR

1.50 even faster
Cores/socket increased
1.25 - P
Memory/core went flat
1007 Clock rates went flat
0.75 )[)\x
0.50

01/01/96
01/01/00
01/01/04 -
01/01/08
01/01/12

g Rmax (Gflop/s) e=fl== Total Cores
e Ave Cycles/sec per core (Mhz) e=p¢== \em/Core (GB)

e=pig== Ave. Cores/Socket e=@==TC: Total Concurrency (Rmax) /’/
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Key Memory Characteristics

e Capacity: esp. per node/socket/core...
e Bandwidth: esp. per flop
e Latency: as a function of size

e Energy: esp. compared to computation

Looking Forward: Problems in All Areas!

My view: Architecture must focus
on memory,
not computation

o . UNIVERSITY OE

5/ NOTRE DAME ATPESCHIIEE WN@%ZWN




And What Do We See Iin Apps?

Benchmark Suite Mean Temporal vs. Spatial Locality
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Murphy, Kogge. On The Memory Access Patterns of Supercomputer
Applications: Benchmark Selection and Its Implications, IEEE TC, 7/07
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The 2008 Exascale Report

e Goal: “"Exascale” — 1000X
Petascale

— Exa supercomputer
— Peta rack
— Tera embedded

e 2015 Exa supercomputer
in 20MW = 20pJ/flop

Steven Scott
Allan Snavely

R St Wit e 4 problems

Katherine Yelick

September 26, 2008 - Power/Energy
This work was sponsored by DARPA IPTO in the ExaScale Computing Study with Dr. William Harrod
as Program Manager; AFRL contract number FA8650-07-C-7724. This report is published in the — M e m 0 r
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Energy per Flop is Dropping:
But Not Fast Enhough
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Topics

e Today’s architectures
e Memory as a Technology
e Why is memory a growing problem

e The first attempt at alternative
architectures: Processing In Memory

e The emerging future: Processing Near
Memory
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Memory in
Today’s Architectures
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Today’s Architecture Classes

e Heavyweight: traditional 100+W multi-core
— Often requires supporting chip set

e Lightweight: lower power single chip system
— Lower performance but denser packaging

e Hybrid/Heterogeneous: Heavyweight/GPU
combination, with radically different ISAs

e Big/Little: Multi-core, same ISA, but different
core sizes

e But wait! There's more when we try for very
large shared memory

— And more on the way
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Today’s Heavyweight Blade

2 3 I Processor Processor 338

2 EE > —p| {494 <

abhp Socket Socket 333

=1 33: Processor Processor $43989

S bk B |[e—> 133

568EF Socket Socket iz
I A 4 A 4 I

Router I/O Socket

P e e

A Power 7 Drawer
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Lightweight: Eg. BIueGeneQ

ZEEE Processor 333 %
TEEE fe>| MO0 len 1913
oppp Socket 333

Integrated
 NIC
* Memory controllers

http://www.heise.de/newsticker/meldung/SC-2010-IBM-zeigt-BlueGene-Q-mit-17-Kernen-1138226.html
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Other Lightweight Systems
Emerging

Dual LAN switch modules Up to 45 Moonshot server/blade/cards
(6 x 10GbE uplinks) /7 /

Redundant power and cooling 4 4
SMBIOS 2.6.1 & PXE support ’

B¢ Intel Atom S1260 2Ghz
»F  8GB DRAM (unbuffered)
% ® | Dualport 1 GbE LAN
"W Single SATAHDD or SSD

HP Moonshot 1500 System

HP Moonshot

Calxeda quad-socket, quad-core ARMs
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Heterogeneous Architectures

e Mix of heavyweight
masters and GPU
compute engines

- == A Host 4—} Host Conventional Computer
| Processor “oef | Memory
http://www.nvidia.com/object/fermi_architecture.html * .
GPU: Graphics
Kernel Scheduler . .
Processing Unit
V* | - -
- Multithreaded
- Instruction
' 1 - - Unit
_I_I -
-
Yy 1.-- ARNE
Streaming 214 g
9 <9 9
Multi Processor gl E £
(SM) £l e £
~<
\AAAAAAL ~ o Z| 2 S
I L2 & Memory Channel Interfaces I [N ~
~
|| e I ETrTY ~ ~ Local
ol ® ‘ - ) A A ~ o | Memory
m f - ] - feebeerererrer I Raads ; Memory cooe Memory .
' gl = Chips Chips Graphics Memory

A Titan Blade
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Big Little Architectures

e Heterogeneous multi-core with same ISA

e "Bigger” cores have higher performance (more
instructions per second)
— But are less energy efficient

e “Littler” cores have less performance
— But are much more energy efficient

e Ability to move program states from core to core

e Examples:
— ARM Cortex-Al15 and A7, A53 and A57
— Intel Xeon and Xeon PHI _ #1 in June 2013
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Memory In Any of These

e On the end of a memory channel and NOT on
the processor chip

e At most 2-4 such channels per socket
- Limited by off-chip pins

e At most 4 sockets sharing memory over
specialized interfaces before complexity too great

e Energy of access/transport becoming dominate

e Increasingly deep cache structures on processor
socket
— With complex rules for coherency/consistency
— And very complex protocols for “atomic” operations
- And punt to software when non-local access
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Accessing Remote Memory Today

At Library: Runtime:
Application: * Copy Data to NIC =P . Initialize NIC EEEEEEEEER
Queue * Free NIC Buffer v
 Translate Address
to Node # . . Interrupt Handler:
Get/Put( ) )y © Create Handler * Multiple transitions * Interpret Message
e Return Handler to thru deep s/w stacks « Start Local Thread
caller * Multiple run-time *
* Call Runtime process/thread
switching Library: _
:  Multiple disruptions to || Perform Operation
Library: ) . * Build Response
Wait <@Pp| * Test Handler(s) for ca.che hierarchies . Packet
completion * High network loading || . Call Runtime
' ¥
I
Library: Interrupt Handler: Runtime:
e Retrieve Handler « * Interpret Message 4 = 8 « Initialize NIC
e Move data to  Start Local Thread * Free NIC Buffer
correct locations
» Update Handler

* I UNIVERSITY OE
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Cray MTA (and Follow-ons)

(Cray uRIKA High Density Node
e Heavily multi-threaded cores F%
- With fast thread create/switch  processor -\ >
e True PGAS memory + 4 sensar "”%
NICs
— With non-local load/store - Upto64 GB
detected/managed/routed by P

hardware

() 2 ta g b | tS p er memo ry WO rd http://www.adms-conf.org/uRiKA ADMS_Kkeynote.pdf

- Full/empty . All non-local memory
- extended “equally remote”
- Relatively less dense
° EXtende.d IOaC_I/Store . memory (6TB/rack)
semantics to interact with . Atomics still require
full/empty words interaction with remote

host p.
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SGI UV 2000 cc NUMA

The following riser cards plug into the mezzanine connector:

1. Base 1/O card

2. Boot drive

3. Integrated PCIE GEN2 (supports two PCle cards)

4. /O expansion (supports two PCle card expansion channels),

DDR3 1066 MT/slane
8.5 GB/s agregate for both DDR3 channels

- GPIO
- 2c
- JTTAG
-« Enet %0 DackpiEne,
s8I0

DDR3 1066 MT/shane
8.5 GB/s agregate for both DDR3 channels

v 6.4GTlis 6.4GT/s 5
© MemoryDIMM 0 Brook SMI 6.4 GT/s SMI 6.4 GTis Brook | 0 ~ Memory DIMM
owemoyDMM= | 0 8.53 G8s read 853 Gaimrad > " 4 1| cmemoyomMm
7.20 G8/s write 7.20 GBs write
_ MemoryDMM O Mill Brook Mill Brook | © Memory DIMM
CMemoyDMMT ' 4 “]_—:7"""“ """'F:—_[_’ 5 1 . o MemoyDMM—
Nehalem D
PD 6 4GTis Pro(;ua‘
T MemoryDIMMT O il Brook | 3 & & E Brook U 7 MemoryDIMM
—wemoyDMM= | 1 ' 2 ‘_,_“:ﬂm1 moA:—_L’ M 1  Memory DIMM
' ' !

MemoryDIMM O SMI 6.4 GTis SMI 6.4 GT/s 0 [y Mermony DIMM
MemoryDIMM - M"'g"”" 853 GBIs read 853GB/sread L—a M"g’“ 1 ~ Memory DIMM
7.20 GB/s write 7.20 GB/s write

Note: Both DIMMs connected 5.86GT/s
to a MillBrook must be the
F .
e e 733 MTis FBD 0 channel
S bit transf
The following DIMM sizes are ( tlers) 4.4 GTls, 7.7 GB/s Read
supported: 1, 2, 4, 8, and 16GB RLD Memory DIMM
» 5.87 GB/s Read BW
e
Note: The air:d&ry mmotyd
size is 1/16 the size
Ol fiomca Directory Memory riser board the main memory aize,
QPI = 25,6 GB/s (32 lanes x 6.4 GT/s / 8)
SMI = 8,53 GB/s (((12 lanes x 6.4 GT/s x 128)144)8) Intel” Memory (SmI1)
Intel” Quick Path Interconnect (QPI)
Backplane Note; QP and CSI are the same channel.
(4) NL5 Ports
156.0 GBis aggregate
6.25 GT/s per port

http://techpubs.sgi.com/library/tpl/cgi-bin/getdoc.cgi/linux/bks/SGI_Developer/books/LX_86_ AppTune/sgi_html/ch05.html

ATPESC July 29, 2

Each blade

— 2 8-core sockets
- Up to 128GB
Separate Hub chip

32 blades/rack
— 512 cores

— only 4TB/rack

+: Cache-coherent
shared memory

- But via complex off-
chip directories

Up to 64TB
Limited atomics
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2008 Exascale Report Strawman

Sizing done by “balancing” power budgets with achievable capabilities

Interconnect for intra and extra Cabinet Links

* 4 FPUs+RegFiles/Core (=6 GF @1.5GHz)
« 1 Chip = 742 Cores (=4.5TF/s)
* 213MB of L11&D; 93MB of L2
* 1 Node =1 Proc Chip + 16 DRAMs (16GB)
* 1 Group =12 Nodes + 12 Routers (=54TF/s)
* 1 Rack = 32 Groups (=1.7 PF/s)
* 384 nodes / rack
* 3.6EB of Disk Storage included
* 1 System = 583 Racks (=1 EF/s)
* 166 MILLION cores
* 680 MILLION FPUs
*3.6PB = 0.0036 bytes/flops

"
* 68 MW w’aggressive assumptions i

12 ROUTER
INTERFACES

-

16 DRAM INTERFACES

Largely due to Bill Dally, Stanford |, G>up\
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Memory:
The Technology

x UNIVERSITY OF
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From Computer Desktop Encyclopedia
@ 2005 The Computer Language Co. Inc.

One Dynamic RAM Bit (DRAM bit)

Row Select

| TTC

HMOS
Column —
Select Rl
Capacitor
Ground

http://encyclopedia2.thefreedictionary.com/dynamic+tRAM

*'-l-' UNIVERSITY OF
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Basic DRAM

ROW ADDR. DEMUX: SELECTS ROW I

T T T 1
L L[ L[ L
I| T| T| T
20— T T T 1
T| T| T| T
T T T 1
o—‘_\j_ [ \j 0—'—‘1 "_ﬁl
T 7| T| T
T T T 1
o_:—\j_ o—l_\j 0—'_\1 0—'_\1
1 L) L] 1
RAS O, :;1 0 .p1 0, 'i1 0 ' mg;T)
Vv v V]S,
: LATCH |
ion | DATA SELECTOR (4 TO 1 MUX)]

D.O. (DATA OUT)

BUS



Intel 1103: Splitting the Address

:oo—« MEMORY MATRIX: a, 1l | 1 |) 18 reapmriTE
101 10Fa32 2 ne 64
Ao  mOw # e # - 12 ROWS A, 2 17 Vs
Ao SELECTOR Mm FIERS 32 COLUMNS
Ay o] meamrsr | a3l 1] cenasee
- 64
B O == PRECHARGE 5 DATA
SH AMPLIFIERS, [gaTA
Vso— - READ/WRITE COLUMN | 1y .
Voo GATING 3 A,
o . e
PRECHARG E O ﬂ,n our DATA
CENABLE O——
10F 32
READWRITEO——————— COLUMN SELECTOR
Ry Ag A; Ay Ag
a. Block Diagram b. Pin Connections

e 1k x 1bit part from outside

e But 10b address split in 2

— 5b Row Address: which of 32
32b words

— 5b Column Address: which bit

of that word
/I/i
i r >
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“"Please Sir, I want more”
Multiple Sockets with Coherent
Shared Memory

2EEE Processor Processor 3332

SEE6 Socket Socket 4332

>EEER 990050

SEEE Processor > Processor 113z

SEE6 Socket Socket 3343<=
I v \ 4 I

Router |/O Socket

T A A
e Now addresses must be sorted by socket

- before they are routed to correct socket
- before the are routed to correct channel

* I UNIVERSITY OE
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A Bigger Die

e Cannot organize Gb chips
as 1G rows by 1b

e Must break into "Blocks’
— Typically ~1Kb x 1Kb

e Arrange blocks into/

“"Banks”

e Address now:
— Which bank
— Which block in bank
— Which row in block
— Which bits in row

* I UNIVERSITY OE
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But Now We Can Run Banks
“Concurrently”

- L=
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A "Simple” DIMM

CS/Address/CTRL
e All chips get same address/command
e Each chip contributes its 4 or 8 bits to data bus
e Interface speed rated in “Transfers/sec”
e DIMM "“looks like” 8 concurrent banks of 64b
[~ =
T NOTR e DAME  ATPESCUJuly2052 ~ LNADLTY rrﬁ—_

N
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What Does the Memory Controller Do?

e Stream of addresses from core(s)

Core(s)
e Sort by bank number
e Within same bank, sort by row # 1
e For same row of same bank: Memory Controller
— Issue initial row read request
— Issue word reads and writes to that row Memory

— Close row when done to refresh memory Channel

e Remember, sets for other banks

can be executed concurrently

— Sequentially interleaved over single
common memory channel

] =

* I UNIVERSITY OE
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“"Please Sir, I want more”

e All share same wires to microprocessor

e But can only talk to 1 DIMM at a time

e Add “"DIMM #" to address — called "Rank”

e Now Memory Controller must sort by rank also

e Capacitive loading from all DIMMs slows transfe%_
7 =

o=

* I UNIVERSITY OE
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“"Please Sir, I want more”

HT38HTF5127PY—88?E1 200814 DDAADSMEO3 : - ﬁ 08
M COUNTRY OF ORIGIN PUERTO RICO LEAD FREE ;
4GB, DOR2, 667, (LS, ECC, REG 4 s LT iy
| !y ' 4 R A N3

: 5 !

e Put multiple ranks on same DIMM
e Still can only talk to 1 rank at a time

e Electrical loading problem continues
— Each rank still loading same bus
- Even worse with multiple multi-rank DIMMs

* I UNIVERSITY OE
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“"Please Sir, I want more”
Load Reduced DIMMs

DIMM

LRDIMM

DDR4 Command/Address Bus DDR4 Data Bus

From Micron MT41J2G4

e Helps Improve electrical transter speeds

e But still deal with multiple ranks, banks,
blocks, rows

e And typically increase Iatency g ﬁ_
f ==~ [E ==

* I UNIVERSITY OE
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“"Please Sir, I want more”
Multiple Ranks Move "On Die”

Rank 3
(64 Meg x 4 x B banks)

T

Rank 2
(64 Meg x 4 x B banks)

)

Rank 1
(64 Meg x 4 x B banks)

s

Rank 0
(64 Meg x 4 x B banks)
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Towards a Single DIMM Per Channel

36 QuadDie DRAM, in 8 Module Rank Configuation

iqq ::::'.::::::'_::::::" rﬂ’ ﬂ -'

-:~
“:1:

lﬂ-l -!Hrq

-
-
-
-
Rank

: m
: v
g : - [
H i H H o
Pl : : N 4
N I -
il e R
Pl x P i
P o Data and Strodes : o
o e ~ b
i ! : ~ : |
F : : Group A Group B 5 : HE
P : (Address/Command/ControliClock) (Address/Command/Controi/Clock) £ o
! | (omace Memory Buffer TV N S S S
.C..F.".l‘ﬁ  ODTOA/B, C54 | | CKEIAB, ODTIARB,CSS 0
e SKEABCGZ L g guration Temp CKEBAR, CS32 e
........ CXEGVE COT0AR. GO Status Reglsters ensor CKEIAB, ODTIAB,CS1 .
re- U EEPRTNY SERREEN AR e SPD/EEPROM
! ! Temp Sensor
DQS[17:0]  Vgsrca : S‘[B:li)lz RAS# CKEQ Ko RESET# Err_Out# :
QS#17:0] Vggrng 1 BAIZO] CAsg K (0 EVE
DQ63:0] : AL15:0] WE# 0oDT0
CB[7:0] 3 Parin oom
1
1
U ISP UV E— L -
EVENT#
Data and Strodes

Adaress/Command/Contro¥Clock

From Micron MT144KSZQ4G72LZ 32GBrL
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“"Please Sir, I want more”
Multiple Memory Channels/Socket

S-to S I/F

S-to S I/F
Microprocessor

Chip

i

e Multiple cores on socket all contribute to address
streams

e Now addresses must be sorted by channel
before they are processed by memory controllers

S-to SI/F

L]
L

S-to S I/F

oy
1/0 I/F
1/0 I/F
o

* I UNIVERSITY OE
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Memory:
The Growing Problem
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The Traditional Rule of Thumb
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Capacity per Socket
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Capacityv Per Core
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Memory Density Increasing

1.E+04
E 1.E+03
(8]
S~
o)
8
3 1.E+02
‘n
c
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o
€
[
= 1.E+00
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1985 1990 1995 2000 2005 2010 2015 2020 2025
—o— DRAM e S|_C Flash
MLC Flash (2b Cells) e \ILC Flash (3b Cells)
«=@=\ILC Flash (4b Cells) === ILC Flash (3D)
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But DRAM Die Sizes Are
Flattening or Decreasing
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So Memory Density Growth/
Die is Slowing
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Off-Chip Signaling Rates Have
Hit A Ceiling
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But Growth In Chip I/0 is at
Best Slow
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With Max “"Per Unit Logic” Off-
Chip B/W Decaying
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Max Off-Chip B/W / Million
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With Even Less B/W When We
Consider Real Clocks
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l Hit Access Directory<—Move to Port«<—Chip-Chip (TSV)«—Move to Port«-Read 1W DRAM
—>Read L1 1W) O Write 4W to L14—‘

l Miss Hit Move to Port— " hru — —Thru
— Move to L2/L3—> —Read 4W—> Move 4W to L1
Miss <+—Thru — Rack-Racke——Thru <+—— Rack-Rack
Move to Port—> Access l)irector%ﬂs?jlhip—Chip (TSV)— Move to DRAM Block l

—>Move to RF —

AND THIS DOESN’T ACCOUNT FOR TLB MISSES!!!

Non-local Read 4W DRAM—"Move to Port—>Chip-Chip (TSV)

Move to Port— 9 hru — —hru

In 2015, core energy per flop

<——Thru #—— Rack-Racke——Thru <+<—— Rack-Rack

¢ —\Vove to Port +—— Chip-Chip (TSV)— Move to DRAM Block for Linp aCk is < lng
Operation Enerqy (pJ/bit) Step Target | pJ [#Occurrances| Tothl pJ| % of Total

Register File Access 0.16 Read Alphas [Remote|13,819 4 55R76 | 16.5%
SRAM Access 0.23 Read pivot row [Remote|13,819 4 55p76 1 16. 5%

DRAM Access 1 Read 1st Y[i] | Local | 1,380 88 121},
On-chip movement 0.0187 Read Other Y[i]s| L1 39 264 10§ SOX %
Thru Silicon Vias (TSV) 0.011 Write Y's L1 339 352 13[300 42% |
Chip-to-Board 2 Flush Y's Local | 891 88 78880 | 23.4%

Chip-to-optical 10 Total 334,

Router on-chip 2 Ave per Flop 475

If this is true

*_'_ UNIVERSITY OE
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Processing In Memory
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The 3 1994 Approaches to
Petaflops

Category lll
Category | Category I
Global Shared WEM MEM o™
Enabling Memory N | ‘ | —{ PIM | :u ! " PIM — PIM |
Technologies for \ i ‘1 s ‘ { ' | T PIM r
Petaflops | | LA R1IVE [
Computing | Stage | B [ i B R B
- ] Network —
‘ C Bar Switch ! I L1 L1 PIM —{ PIM PIM I P
| | | | B
- [cpul | ’cpu aw] . e
CPU 1 ..... CcPU | 1 ‘
Seymour Cray Thomas Sterling
One C

* I UNIVERSITY OE
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PIM

e Only way to get a lot of memory is a /ot of
memory!

e Current memory wastes 98% of actual
data fetched within DRAM chip

e Bulk of energy costs on

— shipping small piece of requested data off chip
— transporting it up and down cache hierarchy
— over long on-chip distances

e Obvious solution: place cores on memory
o But still permit large multi-chip systems

* I UNIVERSITY OE
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TERASYS SIMD PIM
(circa 1993)

- \ * Memory part for CRAY-3
[ * “Looked like” SRAM memory
3 i * With extra command port
e 128K SRAM bits (2k x 64)
e . 64 1 bit ALUs
“““““ e + SIMD ISA
* Fabbed by National

* Also built into workstation with

; 64K processors
33 ® 5-48X Y-MP on 9 NSA benchmarks

/IIIII m II\\\\\ N

ST 777777

»
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RTAIS: Search In Memory
(circa 199

0-INVY

|2

0¢-INVH
[E-INVH

8Bit | 8Bit | 8Bit | 8Bit | 8Bit
ALU | ALU| ALU | ALU | ALU

Controller

Shared Memory
MEMORY BUS

vvvvvvvvvvvvv
- — e

Inter-ALU Exchange s T CtAT0-t Wi

* Application: “Linda in Memory”

* Designed from onset to perform wide ops “at the sense amps”
* More than SIMD: flexible mix of VLIW

* “Object oriented” multi-threaded memory interface

« Result: 1 card 60X faster than state-of-art R3000 card

/(,ﬁ_
UNIVERSITY OF , FA‘Q’BZ‘IA‘/Z | —_—
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EXECUBE: SPMD on Chip (1993)

e First DRAM-based Multi-core on a Chip
e Designed from onset for “"glueless” one-part-type scalability

llllllllllllllllllllllllllllllllllll

MEMORY MEMORY//MEMORY//MEMORY
~ ”
~ ~ P

oo/

8 EXECUBE:

Compute Nodes 3D Binary Hypercube
on ONE Chip SIMD/MIMD on a chip

53
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An Array of EXECUBES
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Mitsubishi M32R/D
(circa 1997)

DRAM : Mpy (a: DRAM
. CPU c Also two 1-bit I/Os
h Mem h

DRAM e I/F e DRAM

16 bit data bus ‘ ‘24 bit address bus

* 32-bit fixed point CPU + 2 MB DRAM
* “Memory-like” Interface
o Utilize wide word I/F from DRAM macro for cache line

* UNIVERSITY OF
NOTRE DAME ATPESC July |



Linden DAAM Chip (1998)

e Designed for in-memory text search
e 16 Mbit DRAM divided into 64 blocks
e 64 1-bit Processing Elements per block

— 4K PEs/chip
sense amp iI‘.plllt Shift \' data bus sense amp
L_"'\ logic | s
~ N | adder / ) o e gg
83| L. L~ [>\l I\ —— bit
storage _-: c : storage -
2g| T ~— /-J —_ | T EE
L\ ‘).. q\ .
H~J1lo [
o . input comparator | O
22 logic shift | 33

Fig. 1 from Lipovski and Yu, “The Dynamic Associative Access Memory Chip and its Application to
SIMD Processing and Full-text Database Retrieval”, 1999

* I UNIVERSITY OE
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Smart DIMMs for
Irregular Data Structures

TR X
Host issues

e Generalized
“Loads & Stores”

* Treat memory as Active

Object-oriented store

DIVA Functions:

 Prefix operators

* Dereferencing & pointer chasing
e Compiled methods

e Multi-threaded

 May generate parcels

DIVA PIM Chip

* I UNIVERSITY OE
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Berkeley VIRAM

e System Architecture:
single chip media
processing

e [SA: MIPS Core + Vectors
+ DSP ops

e 13 MB DRAM in 8 banks
e Includes flt pt

e 2 Watts @ 200 MHz,
1.6GFlops

UNIVERSITY OF
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HTMT: The Original Petaflops
Initiative (C|rca 2000)

-DRAM PIM Cluster

7« 8 PIM chips/cluster
"« 16 nodes/chip \
*32 MB, 2 GF/node .-

R
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
o
.

DATA VORTEX 10 GW/s Fiber
< — _ _ 20 GW/s RSFQ

8 In + 1 Out Fiber per Cluster : & i
P P - : " 4 -.-—.-— 64GW/s Wire

256 GW/s RSFQ

" Fiber Modulator Chip

Replicated
4096 times

* I UNIVERSITY OE
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The HTMT Architecture &
PIM Functlons

=L <RRS

o * Compress/Decompress

* ECC/Redundancy
- Compress/Decomprésd  OPTICAL SWITCH
» Speg¢tral Transform’s

|w
23

1
IH==

» Compress/Decompress
* Routing

e Daga Structure
Initiglizatioris
*“In ghe M¢mory”
Opetations

* RSFQ Thread Management
» Context Percolation
 Scatter/Gather Indexing

* Pointer chasing

* Push/Pull Closures

* Synchronization Activities

New Technplopics: PIMs in Ch
* Rapid Singlefrlux Quantum (RSFQ) devices for 100 GHz CPU nodes S 1n Lharge
« WDM All optllcal network for petabit/sec bi-section bandwidth

» Holographic 3D crystals for Petabytes of on-line RAM
* PIM for active memories to manage latency

_ —
* I UNIVERSITY OF i i
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Micron Yukon

___________

SDRAM-like interface

e 0.15um eDRAM/ 0.18um logic o}
process

e 128Mbits DRAM Control

— 2048 data bits per access

16MBytes

e 256 8-bit integer processors 256 Processing Embedded

— Configurable in multiple
topologies

e On-chip programmable controller

Operates like an SDRAM

UNIVERSITY OE
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PIM Lite

e "“Looks like memory” at Interfaces
o ISA: 16-bit multithreaded/SIMD
- “Thread” = IP/FP pair
— “Registers” = wide words in frames

e Multiple nodes per chip

e 1 node logic area ~ 10.3 KB SRAM
(comparable to MIPS R3000)

e TSMC 0.18u 1-node in fab now
e 3.2 million transistors (4-node)

< ﬂ memory interconnect network ﬁ > 1 T
PIM
Memo 1ta-
i C C Thread ] Instr Frame ALU Data Vg;'éi
cru Queue | Memory| || [Memory Memory| Logic

Memory interconnect network

*I.]UNIVERSITY OF 2 - BZ_I/V-&
S — — IS




Traveling Threadlets qySolutions

System

._):
Local
=
+ Single Address Space £ Memory o

* Target Memory Address

Interconnection :
 Threadlet PC isi AR o
Routing done - Afew working registers  © Visible to all Hosts & "~ ¥
on basis of * (Very) short program Gossamer Cores Network
Interface

target address

e Hosts can issue

a

0,. €0,
'.
g .
4 — Reads and Writes |
/ — Threadlets o . Memory Intercoinect -

. » Gossamer Cores can G tssHmer Cores

Conventional S
Host Memory references - th?::/c?lquw Cache
converted to threadlets,
with ability to send — Migrate threadlets to|
other cores NS

Function Calls*“to the memory”

Gossamer Core:

* Very simple multi-threaded dataflow B Core
Kogge, “Of Piglets and Threadlets: Architectures for ¢ Interacts directly with memory interface
Self-Contained, Mobile, Memory Programming,
IWIA, Maui, HI, Jan. 2004

e Single Address Space Visible to all Hosts & Gossamer Cores

e Hosts can launch:
— Reads and Writes of Memory
— Threadlets for execution on Gossamer core

e (Gossamer Cores can
— Spawn new threadlets
— Migrate threadlets to other cores

UNIVERSITY OE a2 F/‘/
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Processing Near Memory

x UNIVERSITY OF
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The Exascale Strawman

12 ROUTER
INTERFACES

Interconnect

Interconnect

----------------------------------------

e_
[ ]
————————————.——

L1

Regsf
[[ ]

L1
Reg Reg Reg Regsi
(1 1L i I
1
PUR FPUN FPUR FPUf
1

16 DRAM INTERFACES

DRAM 0

44444444444444

- 1z
1TVl VY

(a) Quilt Packaging

RAM 15

* I UNIVERSITY OE
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1 Cabinet Contains 32 Groups on IZJN'ep'm/r%
= e

(b) Thru via chip stack
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“"Please Sir, I want more”
The Emergence of Hybrid 3D Memory

DRAM Layers g e Stackable memory chips (no cores)

“Through Silicon Vias” (TSVs)

Logic chip on bottom

— Multiple memory controllers
- o - More sophisticated off-stack interfaces
" substrate than DDR

http://www.micron.com/products/hybrid-memory-cube .
e Prototype demonstrated in 2011

< ) Logklc Layer

e 1st Product expected in 2015 timeframe
- Spec:http://www.hybridmemorycube.org
— Capacity: up to 8GB: 8X single chip
— Bandwidth: up to 480GB/s: 40X
— Lots of room on logic chip

i ¢ Bottom Line: Huge increase in
T - Memory density
S - Bandwidth

* I UNIVERSITY OE
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The HMC Architecture

ulti-bankMul ti-bankMulti-bank/Multi-bank/ Memory Die Vault 1 VaultN
Partition/ Partition/ Partition/ Partition —_— ittty

ulti-bankMulti-bankMulti-bank/Multi-bank i Partition E i Partition i | MemoryDieM
Partition/ Partition/ Partition/ Partition E | E E
ulti-bankMulti-bankMulti-bankMulti-bank i ] i ! Blue: TSVs
Partition/ Partition/ Partition/ Partition i i i i
Multi-bank/Multi-bankMulti-bank/Multi-ban i i i E
Partition/ Partition/ Partition/ Partition i| Partition . i| Partition i | MemoryDie 1
/ / / }/ AU ' oo '
/ / / l Vault:
i TSV-connected Vault Vault Logic
/ / / I - ok of Controller Controller Base
/ / / ! Memory Die Built-In Die
Test Engi
/ / / [ Intra-Logic chip Routing e>t thefne
/ / / 7 Maintenance
I Interface i
/ Partl'tl'on/ Partl'tl'on/ Partl'tl'on/ '1arll|li>1
7 T T T | . .
Vault Vault Vault L';‘k L|[1k
A
v v
Y High Speed Full Duplex Multi-lane Interfaces

Off-Stack /O
(Shared by All Vault Controllers via Distributed Routing)

e All vaults run independently
e Each vault looks like a set of M dual independent banks ﬁ—
%=

UNIVERSITY OF BZ7N-6
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=
S

HMC Near Memory — MCM Configuration

All links are between host .
CPU and HMC logic layer ' o

Maximum bandwidth per
GB capacity

& Wide Data Path

‘47DRAM

Logic Chip

1 —

Notes: MCM = multi-chip module
Illustrative purposes only; height is exaggerated

Acron’

©2011 Micron Technology, Inc. | 7
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Enhancing a Conventional Architecture

e CPU(s) sees sea of memory stacks - all “far”
e True address-based routing

Far Vliemory

Chart from T. Pawlowski - /f@
o . UNIVERSITY OF . Niv ~—
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Capacity Estimate
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= 4= 4-High Stack =<A= 8-High Stack

UNIVERSITY OE
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- B 16-High Stack

e Production DRAM DIE

Remember: Stack takes ~ area of a single DRAM die.
Leading edge DDR DIMMs have up to 128 dle.
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How Many Vaults, Ports per Stack

80
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Port Count
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2011 2013 2015 2017 2019 2021 2023 2025

e=@== Total Memory Vaults ==fg==Total I/O Ports (Full Duplex) ==-== Total Logic Die Router Ports

Projections made on basis of ITRS and other publlc d%
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What Might be the Bandwidth/Stack

1000

800 1
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200 - —

100

GBIs

0
2011 2013 2015 2017 2019 2021 2023 2025

==$== Peak Memory-Logic == l= Peak |I/O (Full Duplex)
Projections made on basis of ITRS and other publlcrd
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Memory Stack Power Estimates
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Projections made on basis of ITRS and other publlc d
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SNL l(caliber Architecture

- DRAM

Layer 1
< . DRAM

— e Vault Vault oo Sps Layer 2
— .o B0 R I R ["TC™|" pram

NIC/Router
NIC/Router

- S
-—» -
D -
-— .« .
.« . L o—
- [-—

On-Chip Network
(Topology, Type, etc. TBD)

EMP

Mem Network
Interface
(SerDes)

(b) X-caliber Node Mockup (¢) X-caliber stack notional architectur&

* UNIVERSITY OF
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What's In an Exascale Address?

1. Which Node

2. Which Socket

3. Which Channel Optimal Data Placement
4. Which "DIMM” Now a

Z: w::z; \S;Zaucf 11-Dimensional Problem
7. Which Bank set And this doesn’t include
8. Which Bank Cache Hierarchy

9. Which Block

10.Which Row

11.Which Word

* I UNIVERSITY OE
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But ...

e What if we add cores to the logic die on each stack?
e Now - opportunity for real PGAS architecture in the small!

* I UNIVERSITY OE
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Thought Experiment:
Memory Stack Only Version

e Same stack as from X-caliber
— Multiple DRAM, NVRAM vaults
— Internal crossbar for full interconnect
- 8 external ports (still wire)

e Multiple stacks on something like a DIMM
e Remove Processor sockets and NIC chips
e Use stack external ports for all routing

e Keep routing on global address

e And grow up logic chip processing
— “Conventional Core” per vault

=

* I UNIVERSITY OE = 4 7~-6

+5) NOTRE DAME el HN/\Y@%W@N



Memoryv + Processing
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Energy/Flop Extrapolation
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eeofee 16-High Stack = = 8-High Stack == 4 =4-High Stack

We can see the Goal!

Projections made on basis of ITRS and other pubhgfd?/l%
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Conclusions

e Memory is essential for computing
e But rapidly becoming severe limitation

e Limitations stem from architecture that
separates memory from computation

e PIM: attempt to overcome

e 3D stacks will enable massive “"Processing
Near Memory”

That have a shot at
useable extreme scale
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