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Just a few of the tie-ins to ATPESC … 
n  Jim 

  Premium on communication reduction 
  Models to know what is achievable; quantifying trade-offs between 

communication saved versus extra memory and flops 
n  Sherry 

  Hierarchical exploitation of effective low rank 
n  Rob 

  Multilevel methods 
n  Barry and Carol 

  Newton methods 
n  FastMath panel 

  Planning for extreme scale in solvers 
n  Jack 

  DAG-based synchronization reduction and concurrency improvement 
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BSP 
generation 

Energy-aware 
generation 
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Bulk Synchronous 
Parallelism 

Leslie Valiant, Harvard  
2010 Turing Award Winner Comm. of the ACM, 1990 
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BSP has an impressive legacy 

	
  
	
  

Year	
  

Cost	
  per	
  
delivered	
  
Gigaflop/s	
  

1989	
   $2,500,000	
  	
  	
  	
  	
  	
  	
  	
  
1999	
   $6,900	
  
2009	
   $8	
  

	
  
	
  

Year	
  

Gigaflop/s	
  
delivered	
  to	
  
applica4ons	
  

1988	
   1	
  
1998	
   1,020	
  
2008	
   1,350,000	
  

By the Gordon Bell Prize, performance on real applications (e.g., 
mechanics, materials, petroleum reservoirs, etc.) has improved more than 
a million times in two decades.  Simulation cost per performance has 
improved by nearly a million times.  

Gordon Bell 
Prize: Peak 
Performance 

Gordon Bell 
Prize: Price 
Performance 
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Synchronous hierarchical algorithms  
underlie BSP scaling of PDE applications 

36K dofs 
8B dofs 
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Extrapolating exponentials eventually fails 
n  Scientific computing at a crossroads w.r.t. extreme scale 
n  Proceeded steadily for decades from giga- (1988) to tera- (1998) to 

peta- (2008) with  
  same BSP programming model 
  same assumptions about who (hardware, systems software, applications 

software etc.) is responsible for what (resilience, performance, processor 
mapping, etc.) 

  same classes of algorithms (cf. 25 yrs. of Gordon Bell Prizes) 
n  Exa- is qualitatively different and looks more difficult 

  but we once said that about message passing 
n  Core numerical analysis and scientific computing will confront 

exascale to maintain sponsor relevance 
  not a “distraction,” but an intellectual stimulus 
  potentially big gains in adapting to new hardware environment 
  the journey will be as fun as the destination 
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Part of campaign to provide less synchronous 
alternatives, in Supercomput. Front. Innov. 1(1) 
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Main challenge going forward for BSP 

n  Almost all “good” algorithms in linear algebra, differential 
equations, integral equations, signal analysis, etc., require 
frequent synchronizing global communication 
  inner products, norms, and fresh global residuals are 

“addictive” idioms 
  tends to hurt efficiency beyond 100,000 processors 
  can be fragile for smaller concurrency, as well, due to 

algorithmic load imbalance, hardware performance variation, 
etc. 

n  Concurrency is heading into the billions of cores 
  already 3 million on the most powerful system today 
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Conclusions, up front 
n Plenty of ideas exist to adapt or substitute for 

favorite solvers with methods that have 
  reduced synchrony (in frequency and/or span) 
  greater arithmetic intensity  
  greater SIMD-style shared-memory concurrency 
  built-in resilience (“algorithm-based fault tolerance” or 

ABFT) to arithmetic faults or lost/delayed messages 

n Programming models and runtimes may have to 
be stretched to accommodate 

n Everything should be on the table for trades, 
beyond disciplinary thresholds è “co-design” 
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Bad news/good news (1) 
  One will have to explicitly control more of 

the data motion 
  carries the highest energy cost in the exascale 

computational environment 

  One finally will get the privilege of 
controlling the vertical data motion 
  horizontal data motion under control of users already  
  but vertical replication into caches and registers was 

(until recently with GPUs) mainly scheduled and laid 
out by hardware and runtime systems, mostly invisibly 
to users 
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  “Optimal” formulations and algorithms may lead 
to poorly proportioned computations for exascale 
hardware resource balances 
  today’s “optimal” methods presume flops are expensive and 

memory and memory bandwidth are cheap 

  Architecture may lure scientific and engineering 
users into more arithmetically intensive 
formulations than (mainly) PDEs 
  tomorrow’s optimal methods will (by definition) evolve to 

conserve whatever is expensive 

Bad news/good news (2) 
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  Fully hardware-reliable executions may be regarded as 
too costly/synchronization-vulnerable 

  Algorithmic-based fault tolerance (ABFT) will be 
cheaper than hardware and OS-mediated reliability 
  developers will partition their data and their program units into 

two sets 
  a small set that must be done reliably (with today’s standards for 

memory checking and IEEE ECC) 
  a large set that can be done fast and unreliably, knowing the errors 

can be either detected, or their effects rigorously bounded 

  Examples already in direct and iterative linear algebra  
  Anticipated by Von Neumann, 1956 (“Synthesis of reliable 

organisms from unreliable components”) 

Bad news/good news (3) 
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  Default use of (uniform) high precision in nodal bases on 
dense grids may end, as wasteful of storage and bandwidth 
  representation of a smooth function in a hierarchical basis or on 

sparse grids requires fewer bits than storing its nodal values, for 
equivalent accuracy 

  we will have to compute and communicate “deltas” between states 
rather than the full state quantities, as when double precision was 
once expensive (e.g., iterative correction in linear algebra) 

  a generalized “combining network” node or a smart memory 
controller may remember the last address, but also the last values, 
and forward just the deltas 

  Equidistributing errors properly to minimize resource use 
will lead to innovative error analyses in numerical analysis 

Bad news/good news (4) 
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  Fully deterministic algorithms may be regarded as 
too synchronization-vulnerable 
  rather than wait for missing data, we may predict it using various 

means and continue 
  we do this with increasing success in problems without models

(“big data”) 
  should be fruitful in problems coming from continuous models 
  “apply machine learning to the simulation machine”  

  A rich numerical analysis of algorithms that make 
use of statistically inferred “missing” quantities may 
emerge 
  future sensitivity to poor predictions can often be estimated 
  numerical analysts will use statistics, signal processing, ML, etc. 

 

Bad news/good news (5) 
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Caveats 
n This talk is not a full algorithmic picture, but 

some “pixels” out of that big picture 
  … a point of light here, a point of light there… 
  a full picture will emerge progressively 

n Algorithms people may be able to ignore the 
hardware-based disruption of numerical 
computing for another  ~ 5 years and let the 
programming environment shake out 
  but why postpone the inevitable?   
  should offer fun for everyone 
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What we have heard from IESP meetings: 
n  Draconian reduction required in power per flop and per 

byte will make computing and copying data less reliable 
  voltage difference between “0” and “1” will be reduced 
  circuit elements will be smaller and subject to greater 

physical noise per signal 
  there will be more errors that must be caught and corrected 

n  Power may be cycled off and on or clocks slowed and 
speeded  
  based on compute schedules (user-specified or software 

adaptive)  
  based on cooling capacity (hardware adaptive) 
  makes per node performance rate unreliable 
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What we believe 
n  Expanding the number of nodes (processor-memory units)  

beyond 106 would not a serious threat to algorithms that lend 
themselves to well-amortized precise load balancing  
  provided that the nodes are performance reliable 

n  The real challenge is usefully expanding the number of cores 
on a node to 103 

  must be done while memory and memory bandwidth per node 
expand by (at best) ten-fold less (basically “strong” scaling) 

  don’t need to wait for full exascale systems to experiment in this 
regime – the battle is fought on individual shared-memory 
nodes 
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Philosophy 

  full employment for computer scientists and 
computational scientists and engineers 

  see, e.g., recent postdoc announcements from  
  Berkeley (8),  
  Oak Ridge (3), and  
  IBM (10)  

for porting computational science applications to 
extreme scale 

n Algorithms must adapt to span the gulf between 
demanding applications and austere architectures 
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Motivation for algorithmic attention 
n High performance with high(-est possible) 

productivity on “the multis”: 
  Multi-scale, multi-physics problems in multi-dimensions 
  Using multi-models and/or multi-levels of refinement 
  Exploiting polyalgorithms in adaptively multiple precisions 

in multi-protocol hybrid programming styles 
  On multi-core, massively multi-processor systems 
  Requiring a multi-disciplinary approach 

Can’t cover all this in an hour, but we ask: 
Given the architectural stresses, how can new algorithms help? 
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Why exa- is different 

(Intel Sandy Bridge, 2.27B transistors) 

  after DARPA report of P. Kogge (ND) et al. and T. Schulthess (ETH) 

Going across the die will require an order of magnitude more! 
DARPA study predicts that by 2019: 
u  Double precision FMADD flop: 11pJ 
u  cross-die per word access (1.2pJ/mm): 24pJ (= 96pJ overall) 

Which steps of FMADD take more energy?  

input 
input 

input 

output 

four 
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Today’s power costs per operation 

   projections c/o J. Shalf (LBNL) 

Remember that a pico (10-12) of something done exa (1018) 
times per second is a mega (106)-somethings per second 
u  100 pJ at 1 Eflop/s is 100 MW (for the flop/s only!) 
u  1 MW-year costs about $1M ($0.12/KW-hr × 8760 hr/yr) 

•  We “use” 1.4 KW continuously, so 100MW is 71,000 people 

Operation approximate energy cost 
DP FMADD flop 100 pJ 
DP DRAM read-to-register 4800 pJ 
DP word transmit-to-neighbor 7500 pJ 
DP word transmit-across-system 9000 pJ 
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Why exa- is different 

Moore’s Law (1965) does not end but 
Dennard’s MOSFET scaling (1972) does 

Eventually processing is 
limited by transmission, 
as known for > 4 decades 

Robert Dennard, IBM 
(inventor of DRAM, 1966) 
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What will first “general purpose” exaflop/s 
machines look like? 

n Hardware: many potentially exciting paths beyond 
today’s CMOS silicon-etched logic, but not 
commercially at scale within the decade 

n Software: many ideas for general-purpose and 
domain-specific programming models beyond 
“MPI + X”, but not penetrating the mainstream 
CS&E workforce for the next few years 
  “X” is OpenMP, CUDA, OpenACC, etc., or MPI, 

itself 
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Some exascale architecture themes 

  Clock rates cease to increase while arithmetic capacity 
continues to increase dramatically w/concurrency 
consistent with Moore’s Law 

  Memory storage capacity diverges exponentially below 
arithmetic capacity 

  Transmission capacity (memory BW and network BW) 
diverges exponentially below arithmetic capacity 

  Mean time between hardware interrupts shortens 
  è Billions of $ € £ ¥ of scientific software worldwide 

hangs in the balance until better algorithms arrive to 
span the architectural gap 
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Required software 
      Model-related 

  Geometric modelers 
  Meshers 
  Discretizers 
  Partitioners 
  Solvers / integrators 
  Adaptivity systems 
  Random no. generators 
  Subgridscale physics  
  Uncertainty 

quantification 
  Dynamic load balancing 
  Graphs and 

combinatorial algs. 
  Compression  
 

        Development-related        
u  Configuration systems 
u  Source-to-source 

translators 
u  Compilers 
u  Simulators 
u  Messaging systems 
u  Debuggers 
u  Profilers 
 

      Production-related 
u  Dynamic resource 

management 
u  Dynamic performance 

optimization 
u  Authenticators 
u  I/O systems 
u  Visualization systems 
u  Workflow controllers 
u  Frameworks 
u  Data miners 
u  Fault monitoring, 

reporting, and recovery 

High-end computers come 
with little of this stuff. 

Most has to be contributed 
by the user  community 
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How are most simulations implemented at 
the petascale today? 

n  Iterative methods based on data decomposition and 
message-passing 
  all data structures are distributed 
  each individual processor works on a subdomain of the original 
  exchanges information at its boundaries with other processors 

that own portions with which it interacts causally, to evolve in 
time or to establish equilibrium 

  computation and neighbor communication are both fully 
parallelized and their ratio remains constant in weak scaling 

n The programming model is BSP/SPMD/CSP 
  Bulk Synchronous Programming  
  Single Program, Multiple Data 
  Communicating Sequential Processes 
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BSP parallelism w/ domain decomposition 

Partitioning of the grid 
induces block structure on 
the system matrix 
(Jacobian) 

Ω1 

Ω2 

Ω3 

A23 A21 A22 
rows assigned 

to proc “2” 
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Recap of algorithmic agenda 
n  New formulations with  

  greater arithmetic intensity (flops per byte moved into and out of 
registers and upper cache) 
  including assured accuracy with (adaptively) less floating-point 

precision 
  reduced synchronization and communication 

  less frequent and/or less global 
  greater SIMD-style thread concurrency for accelerators 
  algorithmic resilience to various types of faults 

n  Quantification of trades between limiting resources 
n  Plus all of the exciting analytical agendas that exascale 

is meant to exploit  
  “post-forward” problems: data assimilation, parameter 

inversion, uncertainty quantification, optimization, etc. 
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Some algorithmic “points of light” 
Next section flashes six “points of light” that 
accomplish one or more of these agendas 

²  Fast Multipole for Poisson solves 
²  Algebraic Fast Multipole for variable coefficient 

equilibrium problems 
²  Nonlinear preconditioning for Newton’s method 
²  DAG-based data flow for dense linear algebra 
²  GPU implementations of dense linear algebra 
²  New programming paradigms for PDE codes 
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Fast Multipole for Poisson solves 
²  Reduce synchrony 
²  Increase arithmetic intensity 
²  Increase concurrency 
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Arithmetic intensity of numerical kernels 

c/o R. Yokota, KAUST, et al. 
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Hierarchical interactions of Fast Multipole  

c/o R. Yokota, KAUST, et al. 
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Geometrical structure of Fast Multipole 

c/o R. Yokota, KAUST, et al. 
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 Synchronization reduction – FMM 

n Within an FMM application, data pipelines of 
different types and different levels can be executed 
asynchronously 
  FMM simply adds up (hierarchically transformed) 

contributions  
  e.g., P2P and P2M -> M2M -> M2L -> L2L -> L2P 

n Geographically distinct targets can be updated 
asynchronously 
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Salient features of FMM 
n High arithmetic intensity 
n No all-to-all communication 
n O(log P) messages 

  with high concurrency and asynchrony among themselves 

n Up to O(N) arithmetic concurrency  
n Tunable granularity in the sense of “h-p” 

  based on analytic “admissibility condition” 

n  Inside 8 Gordon Bell Prizes, 1997-2012 
n Many effective implementations on GPUs 
n Fragile (based on analytical forms of operators) 
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Communication complexity of FMM 

1998 
2009 
2014 



ATPESC, 6 Aug 2014 

FMM vs. FFT in processor scaling 
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Weak	
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  of	
  a	
  vortex-­‐
formula;on	
  3D	
  Navier-­‐Stokes	
  
code	
  simula;ng	
  decaying	
  
isotropic	
  turbulence,	
  
referenced	
  to	
  the	
  pseudo-­‐
spectral	
  method,	
  which	
  uses	
  
FFT.	
  

FFT:	
  14%	
  parallel	
  
efficiency	
  at	
  4096	
  
processes,	
  no	
  GPU	
  use.	
  
FMM:	
  74%	
  going	
  from	
  one	
  
to	
  4096	
  processes	
  at	
  one	
  
GPU	
  per	
  MPI	
  process,	
  3	
  
GPUs	
  per	
  node.	
  
Largest	
  problem	
  corresponds	
  
to	
  a	
  4096^3	
  mesh,	
  i.e.,	
  almost	
  
69	
  billion	
  points	
  (about	
  17	
  
million	
  points	
  per	
  process).	
  

Run	
  on	
  the	
  TSUBAME	
  2.0	
  
system	
  of	
  the	
  Tokyo	
  Ins;tute	
  
of	
  Technology.	
  	
  

c/o R. Yokota, KAUST, et al. 
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FMM as preconditioner 
n FMM is a solver for free-space problems for which 

one has a Green’s function 
n For finite boundaries, FMM combines with BEM  
n FMM and BEM have controllable truncation 

accuracies; can precondition other, different 
discretizations of the same PDE 

n Can be regarded as a preconditioner for “nearby” 
problems, e.g.,          for  !2 !" (1+!(!x))!
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FMM’s role in solving PDEs 

The preconditioner is reduced to a matvec, like the forward operator itself – 
the same  philosophy of the sparse approximate inverse (SPAI), but cheaper. 

More concurrency, more intensity, less synchrony than ILU, MG, DD, etc. 

BEM FMM 

c/o H. Ibeid, KAUST, et al. 
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FMM/BEM preconditioning of  
FEM-discretized Poisson accelerated by CG 

c/o R. Yokota, KAUST, et al. 
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FMM/BEM preconditioning of 
FEM-discretized Poisson 
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FMM vs AMG preconditioning:  
strong scaling on Stampede* 

*	
  FEM	
  Poisson	
  problem,	
  Dirichlet	
  BCs	
  handled	
  via	
  BEM	
  	
  (cost	
  included)	
  
c/o R. Yokota, KAUST, et al. 
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FMM as preconditioner 
n Of course, when “trapped” inside a conventional 

preconditioned Krylov, FMM surrenders some 
potential benefits of relaxed synchrony because of 
the synchrony of the Krylov method 

n Krylov methods need rework, generally, for any 
preconditioner 

n Pipelined CG and GMRES are included now in 
PETSc and other Krylov libraries, proved 
practical 
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Algebraic Fast Multipole for  
variable coefficient equilibrium problems 

²  All the benefits of Fast Multipole 
                             plus 
²  Make Fast Multipole less fragile 
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Is there an algebraic FMM? 
n Consider the H2 hierarchical matrix method of 

Hackbusch, et al. 

n Off diagonal blocks Aij ≅ Ui Sij Vj  can have low rank, 
based on an “admissibility condition” 

n Bases can be hierarchically nested 
  Ui for columns, Vj for rows   



Reminder where low rank is found, e.g., 
1D Laplacian 

Full	
  rank!	
  

Full	
  rank!	
  

Off	
  diagonal	
  blocks	
  
have	
  low	
  rank!	
  

Off	
  diagonal	
  blocks	
  
have	
  low	
  rank!	
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Is there an algebraic FMM? 
n  One needs to store the unreducible diagonal blocks, Aii  
n  For the entire rest of the matrix, first the Sij , the Ui and Vj at 

the finest level 
n  Then the Eij (column basis conversion) and Fij (row basis 

conversion) blocks at each level 
n  Two stage compression procedure: SVD each block, then 

convert to common bases 
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“Algebraic Fast Multipole” (AFM) 
•  Can we cast general matrix operations (add, multiply, 

invert, etc.) in terms of the fast multipole recursive 
“tree-based” data structure? 

•  Yes, after compressing the matrix in H2 form 
•  presumes hierarchical low rank structure 
•  may offer breakthrough in application performance 
•  See Supercomput. Front. Innov. 1:62-83 (2014) 
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Fast matrix-vector multiply, y=Ax 
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Fast matrix-vector multiply, y=Ax 
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Optimal hierarchical algorithms 
n Some optimal hierarchical algorithms 

  Fast Fourier Transform (Cooley-Tukey, 1965)* 
  Multigrid (Brandt, 1977)* 
  Fast Multipole Method (Greengard-Rokhlin, 1985) 
  Sparse grids (Zenger, 1991)* 
  H-matrices (Hackbusch, 1999) 
  <your generation’s method> − missing so far J 

n What is the potential for reducing over-ordering 
and exposing concurrency with these flop-optimal 
methods? 

* References to popularizing paper, not earliest conception 



Scalable Hierarchical Algorithms in Extreme 
Computing workshop, 4-6 May 2014 
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Nonlinear preconditioning  
for Newton’s method 

²  Reduce synchrony in frequency and scope 
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Reduction of domain of synchronization in 
nonlinearly preconditioned Newton 

•  Newton method for a global nonlinear system, F(u)=0, 
–  computes a global distributed Jacobian matrix and synchronizes 

globally in both the Newton step and in solving the global linear 
system for the Newton  

•  Nonlinearly preconditioned Newton replaces this with a 
set of local problems on subsets of the global nonlinear 
system 
–  each local  problem has only local synchronization 
–  each of the linear systems for local Newton updates has only local 

synchronization 
–  there is still global synchronization in a number of steps, 

hopefully many fewer than required in the original Newton 
method 
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 SPE10 
reservoir 

model 

ASPIN convergence 

Newton convergence 

Implemented in PETSc, as “ASPIN” 

c/o L. Liu, KAUST  
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DAG-based data flow  
for dense linear algebra 

²  Reduce synchrony 
²  Increase concurrency 
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Reducing over-ordering and synchronization 
through dataflow: e.g., generalized eigensolver 

c/o H. Ltaief, KAUST 
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Loop nests and subroutine calls, with their 
over-orderings, can be replaced with DAGs 

  Diagram shows a dataflow 
ordering of the steps of a 
4×4 symmetric 
generalized eigensolver 

  Nodes are tasks, color-
coded by type, and edges 
are data dependencies 

  Time is vertically 
downward 

  Wide is good; short is 
good 

c/o H. Ltaief, KAUST 
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GPU implementations of  
dense linear algebra 

²  Increase SIMD-style thread concurrency 



ATPESC, 6 Aug 2014 c/o Ahmad Abdelfattah & Ali Charara, KAUST 

Applied in European telescope (ELT) 
(13X speedup - tech paper for SC’14) 
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n Highly optimized GEMV/SYMV kernels 
n NVIDIA has adopted for its CUBLAS 6.0 library 

c/o Ahmad Abdelfattah, KAUST 

New linear algebra software, KAUST’s 
GPU BLAS, now in NVIDIA’s CUBLAS 
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New programming paradigm  
for PDE codes 

²  Reduce synchrony 
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Multiphysics w/ legacy codes: 
an endangered species? 

n  Many multiphysics codes operate like this, where the models may 
occupy the same domain in the bulk (e.g., reactive transport) or 
communicate at interfaces (e.g., ocean-atmosphere)* 

n  The data transfer cost represented by the blue and green arrows 
may be much higher than the computation cost of the models, 
even apart from first-order operator splitting error and possible 
instability  

Model 1 

Model 2
(subcycled) 

*see “Multiphysics simulations: challenges and opportunities” (IJHPCA) 
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Many codes have the algebraic and 
software structure of multiphysics 

  Exascale is motivated by these: 
  uncertainty quantification, inverse problems, 

optimization, immersive visualization and steering 

  These may carry auxiliary data structures to/from 
which blackbox model data is passed and they act 
like just another “physics” to the hardware 
  pdfs, Lagrange multipliers, etc. 

  Today’s separately designed blackbox algorithms 
for these may not live well on exascale hardware: co-
design may be required due to data motion 
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Multiphysics layouts must invade blackboxes 

ocean 
atm 

ice 

c/o W. D. Gropp (UIUC) 

n  Each application must 
first be ported to 
extreme scale 
(distributed, hierarchical 
memory) 

n  Then applications may 
need to be interlaced at 
the data structure level 
to minimize copying and 
allow work stealing at 
synchronization points 
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How will PDE computations adapt? 
n  Programming model will still be dominantly message-

passing (due to large legacy code base), adapted to 
multicore or hybrid processors beneath a relaxed 
synchronization MPI-like interface 

n  Load-balanced blocks, scheduled today with nested loop 
structures will be separated into critical and non-critical 
parts 

n  Critical parts will be scheduled with directed acyclic 
graphs (DAGs) through dynamic languages or runtimes 
  e.g., ADLB,  Charm++, Quark, StarPU, OmpSs, Parallex, Argo 

n  Noncritical parts will be made available for NUMA-aware 
work-stealing in economically sized chunks 
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Adaptation to  
asynchronous programming styles 

n  To take full advantage of such asynchronous 
algorithms, we need to develop greater 
expressiveness in scientific programming 
  create separate threads for logically separate tasks, 

whose priority is a function of algorithmic state, not 
unlike the way a time-sharing OS works 

  join priority threads in a directed acyclic graph (DAG), a 
task graph showing the flow of input dependencies; fill 
idleness with noncritical work or steal work 
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n  Can write code in styles that do not require artifactual 
synchronization 

n  Critical path of a nonlinear implicit PDE solve is essentially 
… lin_solve, bound_step, update; lin_solve, bound_step, update … 

n  However, we often insert into this path things that could be done 
less synchronously, because we have limited language 
expressiveness 
  Jacobian and preconditioner refresh 
  convergence testing 
  algorithmic parameter adaptation 
  I/O, compression 
  visualization, data mining 

 

Evolution of Newton-Krylov-Schwarz: 
breaking the synchrony stronghold 
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Sources of nonuniformity 
n  System 

  Already important: manufacturing, OS jitter, TLB/cache 
performance variations, network contention,  

  Newly important: dynamic power management, more soft errors, 
more hard component failures, software-mediated resiliency, etc. 

n  Algorithmic 
  physics at gridcell/particle scale (e.g., table lookup, equation of 

state, external forcing), discretization adaptivity, solver adaptivity, 
precision adaptivity, etc. 

n  Effects of both types are similar when it comes to waiting 
at synchronization points 

n  Possible solutions for system nonuniformity will improve 
programmability, too 
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Other galaxies 
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Other hopeful algorithmic directions 
n  74 two-page whitepapers contributed by the international 

community to the Exascale Mathematics Working Group 
(EMWG) at  

           https://collab.mcs.anl.gov/display/examath/Submitted+Papers 

n  20-21 August 2013 in Washington, DC 
n  Randomized algorithms 
n  On-the-fly data compression 
n  Algorithmic-based fault tolerance 
n  Adaptive precision algorithms 
n  Concurrency from dimensions beyond space (time, phase 

space, stochastic parameters) 
n  etc. 
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Trends according to Pete Beckman, Argonne 

c/o P. Beckman, Intro to this meeting 

* 



ATPESC, 6 Aug 2014 

More trends 

User-controlled data replication � System-controlled data replication �

User-controlled error handling � System-controlled error handling �

Adaptive variable precision � Default high precision �

Computing with “deltas”� Computing directly with QoI�

High order discretizations� Low order discretizations�

Exploitation of low rank� Default full rank�

An algorithmic theme: defeat the curses of dimensionality and 
multiple scales with the blessings of continuity and low rank 
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Thank you 

 ششككرراا   

david.keyes@kaust.edu.sa 

KAUST is 
recruiting!  Your 

office here J 


