B!
.::

!
i
‘N

’
‘
.0
U
Y
N
/ |'
0,\
l“l .
) ~ N N G o Z:m;"'m" "" o
R / ! g = g e = .au.‘.‘ —‘;;: (e R Mlh- Rt o f| r X ,;-J il p':'v -
/ 1 i T vy o Do emul —WEUSREN SStSSSU i : . ‘
Al Ay anny '\i"ﬁ‘ar_""’,’.?i‘v_"'_ﬂ;“ COEATY > it et AL s - 4P Riicn I e 2 1 e e 'b’li‘* =L

Algorithmic Adaptations to Extreme Scale

David Keyes, Applied Mathematics & Computational Science
Director, Extreme Computing Research Center (ECRC)

King Abdullah University of Science and Technology

A
=7

Just a few of the tie-ins to ATPESC ...

Jim
¢ Premium on communication reduction

o Models to know what is achievable; quantifying trade-offs between
communication saved versus extra memory and flops

Sherry
+ Hierarchical exploitation of effective low rank
Rob
¢ Multilevel methods
Barry and Carol
+ Newton methods
FastMath panel
+ Planning for extreme scale in solvers
Jack

+ DAG-based synchronization reduction and concurrency improvement
ATPESC, 6 Aug 2014

Bulk Synchronous

Parallelism

Leslie Valiant, Harvard
2010 Turing Award Winner

Bridoin
Mod%] fmg
parallel

Uomputation

The success of the von Neumann model of
sequential computation is attributable to the
fact that it is an cfficicnt bridge between software and hardware: high-level languages
can be efficiently compiled on to this model; yet it can be efficiently implemented in
hardware. The author argues that an analogous bridge between software and hardware
is required for parallel computation if that is to become as widely used. This article
introduces the bulk-synchronous parallel (BSP) model as a candidate for this role, and
gives results quantifying its efficiency both in implementing high-level language
features and algorithms, as well as in being implemented in hardware.

RRRE A
Leslie G. Valiant

Comm. of the ACM, 1990

ATPESC, 6 Aug 2014

BSP has an impressive legacy

By the Gordon Bell Prize, performance on real applications (e.g.,
mechanics, materials, petroleum reservoirs, etc.) has improved more than
a million times in two decades. Simulation cost per performance has
improved by nearly a million times.

Gordon Bell i Gordon Bell

P;)i;ec:)rl]:’e:k Glgaﬂop/s Prize: Price COSt per

Performance delivered to Performance delivered
Year applications Year Gigaflop/s

1988 1 1989 52,500,000
1998 1,020 1999 $6,900
2008 1,350,000 2009 S8

ATPESC, 6 Aug 2014

Synchronous hierarchical algorithms
underlie BSP scaling of PDE applications

Weak scaling 3d Laplacian

8

Jugene

! (BlueGene P, Jiilich)
=20
D,
aE> 5 > - 5 S — <> time assembling
5 O o= ' <> time solver
S time ass + solver
2
0=3 | | — 2
3 d o — — —
E IR s Y

2 | 8B dofs
36K|dofs

1

0 A

1 8 64 512 4,096 32,768 262,144
Number of cores (PE)
Gabriel Wittum

G-CSC
University of Frankfurt

Extrapolating exponentials eventually fails

® Scientific computing at a crossroads w.r.t. extreme scale
® Proceeded steadily for decades from giga- (1988) to tera- (1998) to
peta- (2008) with
+ same BSP programming model

+ same assumptions about who (hardware, systems software, applications
software etc.) is responsible for what (resilience, performance, processor
mapping, etc.)

¢ same classes of algorithms (cf. 25 yrs. of Gordon Bell Prizes)
® Exa- is qualitatively different and looks more difficult
+ but we once said that about message passing
® Core numerical analysis and scientific computing will confront
exascale to maintain sponsor relevance
+ not a “distraction,” but an intellectual stimulus

+ potentially big gains in adapting to new hardware environment
+ the journey will be as fun as the destination

ATPESC, 6 Aug 2014

Part of campaign to provide less synchronous
alternatives, in Supercomput. Front. Innov. 1(1)

Communication Complexity of the Fast Multipole Method and
its Algebraic Variants

Rio Yokota', George Turkiyyah', David Keyes'

A combination of hierarchical tree-like data structures and data access patterns from fast
multipole methods and hierarchical low-rank approximation of linear operators from H-matrix
methods appears to form an algorithmic path forward for efficient implementation of many linear
algebraic operations of scientific computing at the exascale. The combination provides asymptot-
ically optimal computational and communication complexity and applicability to large classes of
operators that commonly arise in scientific computing applications. A convergence of the mathe-
matical theories of the fast multipole and H-matrix methods has been underway for over a decade.
We recap this mathematical unification and describe implementation aspects of a hybrid of these
two compelling hierarchical algorithms on hierarchical distributed-shared memory architectures,
which are likely to be the first to reach the exascale. We present a new communication complexity
estimate for fast multipole methods on such architectures. We also show how the data structures
and access patterns of H-matrices for low-rank operators map onto those of fast multipole, leading
to an algebraically generalized form of fast multipole that compromises none of its architecturally
ideal properties.

Keywords: communication complexity, hierarchical low-rank approrimation, fast multipole

methods, H-matrices, sparse solvers.

ATPESC, 6 Aug 2014

Main challenge going forward for BSP

® Almost all “good” algorithms in linear algebra, differential
equations, integral equations, signal analysis, etc., require
frequent synchronizing global communication

¢ inner products, norms, and fresh global residuals are
“addictive” idioms

+ tends to hurt efficiency beyond 100,000 processors

¢ can be fragile for smaller concurrency, as well, due to
algorithmic load imbalance, hardware performance variation,
etc.

® Concurrency is heading into the billions of cores

+ already 3 million on the most powerful system today

ATPESC, 6 Aug 2014

Conclusions, up front

® Plenty of ideas exist to adapt or substitute for
favorite solvers with methods that have
¢ reduced synchrony (in frequency and/or span)
+ greater arithmetic intensity
o greater SIMD-style shared-memory concurrency

¢ built-in resilience (“algorithm-based fault tolerance” or
ABFT) to arithmetic faults or lost/delayed messages

® Programming models and runtimes may have to
be stretched to accommodate

® Everything should be on the table for trades,
beyond disciplinary thresholds = “co-design”

ATPESC, 6 Aug 2014

Bad news/good news (1) */

® One will have to explicitly control more of
the data motion

® carries the highest energy cost in the exascale
computational environment

® One finally will get the privilege of
controlling the vertical data motion

® horizontal data motion under control of users already

® but vertical replication into caches and registers was
(until recently with GPUs) mainly scheduled and laid
out by hardware and runtime systems, mostly invisibly
to users

ATPESC, 6 Aug 2014

Bad news/good news (2) {/

e “Optimal” formulations and algorithms may lead
to poorly proportioned computations for exascale
hardware resource balances

® today’s “optimal” methods presume flops are expensive and
memory and memory bandwidth are cheap

® Architecture may lure scientific and engineering
users into more arithmetically intensive
formulations than (mainly) PDEs

® tomorrow’s optimal methods will (by definition) evolve to
conserve whatever is expensive

ATPESC, 6 Aug 2014

Bad news/good news (3) i/

e FKully hardware-reliable executions may be regarded as
too costly/synchronization-vulnerable

® Algorithmic-based fault tolerance (ABFT) will be
cheaper than hardware and OS-mediated reliability

® developers will partition their data and their program units into
two sets

® a small set that must be done reliably (with today’s standards for
memory checking and IEEE ECC)

® alarge set that can be done fast and unreliably, knowing the errors
can be either detected, or their effects rigorously bounded

e Examples already in direct and iterative linear algebra

® Anticipated by Von Neumann, 1956 (“Synthesis of reliable
organisms from unreliable components”)

ATPESC, 6 Aug 2014

Bad news/good news (4) */

® Default use of (uniform) high precision in nodal bases on
dense grids may end, as wasteful of storage and bandwidth

® representation of a smooth function in a hierarchical basis or on
sparse grids requires fewer bits than storing its nodal values, for
equivalent accuracy

® we will have to compute and communicate “deltas” between states
rather than the full state quantities, as when double precision was
once expensive (e.g., iterative correction in linear algebra)

® a generalized “combining network” node or a smart memory
controller may remember the last address, but also the last values,
and forward just the deltas
® Equidistributing errors properly to minimize resource use
will lead to innovative error analyses in numerical analysis

ATPESC, 6 Aug 2014

Bad news/good news (5) i./

® Fully deterministic algorithms may be regarded as
too synchronization-vulnerable

® rather than wait for missing data, we may predict it using various
means and continue

® we do this with increasing success in problems without models
(“big data”)
® should be fruitful in problems coming from continuous models

® ‘“apply machine learning to the simulation machine”

® A rich numerical analysis of algorithms that make
use of statistically inferred “missing” quantities may
emerge

® future sensitivity to poor predictions can often be estimated

® numerical analysts will use statistics, signal processing, ML, etc.

ATPESC, 6 Aug 2014

Caveats

® This talk is not a full algorithmic picture, but
some “pixels” out of that big picture
¢ ... a point of light here, a point of light there...

¢ a full picture will emerge progressively

® Algorithms people may be able to ignore the
hardware-based disruption of numerical
computing for another ~ 5 years and let the
programming environment shake out
+ but why postpone the inevitable?

+ should offer fun for everyone

ATPESC, 6 Aug 2014

Background of this talk:
www.exascale.org/iesp

INTERNATIONAL

EXASCALE ROADMAP1.0

SOFTWARE PROJECT

Jack Dongarra
Pete Beckman
Terry Moore
Patrick Aerts
Giovanni Aloisio
Jean-Claude Andre
David Barkai
Jean-Yves Berthou
Taisuke Boku
Bertrand Braunschweig
Franck Cappello
Barbara Chapman
Xuebin Chi

SPONSORS

Alok Choudhary
Sudip Dosanjh
Thom Dunning
Sandro Fiore
Al Geist
Bill Gropp
Robert Harrison
Mark Hereld
Michael Heroux
Adolfy Hoisie
Koh Hotta
Yutaka Ishikawa
Fred Johnson

NVIDIA.

Sanjay Kale
Richard Kenway
David Keyes
Bill Kramer
Jesus Labarta
Alain Lichnewsky
Thomas Lippert
Bob Lucas
Barney Maccabe
Satoshi Matsuoka
Paul Messina
Peter Michielse
Bernd Mohr

[
RIK=N

Matthias Mueller Bob Sugar
Wolfgang Nagel Shinji Sumimoto

Hiroshi Nakashima William Tang
Michael E. Papka John Taylor

Dan Reed
Mitsuhisa Sato

Rajeev Thakur
Anne Trefethen

Ed Seidel Mateo Valero
John Shalf Aad van der Steen
David Skinner Jeffrey Vetter
Marc Snir Peg Williams
Thomas Sterling Robert Wisniewski
Rick Stevens Kathy Yelick
Fred Streitz
|}
1e=9| CERFLO
B iINRIA

The International Exascale
Software Roadmap,

J. Dongarra, P. Beckman, et al.,

International Journal of High
Performance Computer
Applications 25(1), 2011, ISSN
1094-3420.

What we have heard from IESP meetings:

® Draconian reduction required in power per flop and per
byte will make computing and copying data less reliable

+ voltage difference between “0” and *“1” will be reduced

¢ circuit elements will be smaller and subject to greater
physical noise per signal

¢ there will be more errors that must be caught and corrected
® Power may be cycled off and on or clocks slowed and
speeded

¢ based on compute schedules (user-specified or software
adaptive)

+ based on cooling capacity (hardware adaptive)

+ makes per node performance rate unreliable

ATPESC, 6 Aug 2014

What we believe

® Expanding the number of nodes (processor-memory units)
beyond 10° would not a serious threat to algorithms that lend
themselves to well-amortized precise load balancing

+ provided that the nodes are performance reliable
® The real challenge is usefully expanding the number of cores
on a node to 10°

+ must be done while memory and memory bandwidth per node
expand by (at best) ten-fold less (basically “strong” scaling)

+ don’t need to wait for full exascale systems to experiment in this
regime — the battle is fought on individual shared-memory
nodes

ATPESC, 6 Aug 2014

Philosophy

® Algorithms must adapt to span the gulf between
demanding applications and austere architectures

¢ full employment for computer scientists and
computational scientists and engineers

¢ see, e.g., recent postdoc announcements from

m Berkeley (8),
m Oak Ridge (3), and
m IBM (10)

for porting computational science applications to
extreme scale

ATPESC, 6 Aug 2014

Motivation for algorithmic attention

® High performance with high(-est possible)
productivity on “the multis”:
¢ Multi-scale, multi-physics problems in multi-dimensions
+ Using multi-models and/or multi-levels of refinement

+ Exploiting polyalgorithms in adaptively multiple precisions
in multi-protocol hybrid programming styles

+ On multi-core, massively multi-processor systems

+ Requiring a multi-disciplinary approach

Can’t cover all this in an hour, but we ask:

Given the architectural stresses, how can new algorithms help?

ATPESC, 6 Aug 2014

Why exa- is different

Which steps of FMADD take more energy?

64-bit floating-point fused multiply add or moving four 64-bit operands 20 mm across the die

934,569.299814557 input
X 52.827419489135[904 input
= 49,370,884.442971624253823
+ 4.20349729193958 input

= 49,370,888.64646892 output

20 mm
(Intel Sandy Bridge, 2.27B transistors)

Going across the die will require an order of magnitude more!
DARPA study predicts that by 2019:
¢ Double precision FMADD flop: 11pJ
¢ cross-die per word access (1.2pJ/mm): 24pJ (= 96pJ overall)

after DARPA report of P. Kogge (ND) et al. and T. Schulthess (ETH) ATPESC, 6 Aug 2014

Today’s power costs per operation

DP FMADD flop 100 pJ
DP DRAM read-to-register 4800 pJ
DP word transmit-to-neighbor 7500 pJ
DP word transmit-across-system 9000 pJ

Remember that a pico (10-1?) of something done exa (10'%)
times per second is a mega (10°%)-somethings per second
¢ 100 pJ at 1 Eflop/s is 100 MW (for the flop/s only!)
¢ 1 MW-year costs about $1M ($0.12/KW-hr x 8760 hr/yr)
* We “use” 1.4 KW continuously, so 100MW is 71,000 people

projections c/o J. Shalf (LBNL) ATPESC, 6 Aug 2014

Why exa- is different

Moore’s Law (1965) does not end but
Dennard’s MOSFET scaling (1972) does

Table 1
Scaling Results for Circuit Performance

Robert Dennard, IBM
(inventor of DRAM, 1966)

Device or Circuit Parameter Scaling Factor
Device dimension fox, L, W 1/«
Doping concentration N, K
Voltage V 1/«
Current, 1 1/«
Capacitance €4 /¢ 1/x
Delay time/circuit VC/I
Power dissipation/circuit V/

Power density VI/A
Table 2
Scaling Results for Interconnection Lines
Parameter Scaling Factor

Line resistance, Iy, = pL/Wt K

Normalized voltage drop IR, /V

Line response time R, C

Line current density I/A

Eventually processing is
limited by transmission,
as known for > 4 decades

ATPESC, 6 Aug 2014

What will first “general purpose” exaflop/s
machines look like?

® Hardware: many potentially exciting paths beyond
today’s CMOS silicon-etched logic, but not
commercially at scale within the decade

® Software: many ideas for general-purpose and
domain-specific programming models beyond
“MPI + X”, but not penetrating the mainstream
CS&E workforce for the next few years

¢ “X” is OpenMP, CUDA, OpenACC, etc., or MPI,
itself

ATPESC, 6 Aug 2014

Some exascale architecture themes

Clock rates cease to increase while arithmetic capacity
continues to increase dramatically w/concurrency
consistent with Moore’s Law

Memory storage capacity diverges exponentially below
arithmetic capacity

Transmission capacity (memory BW and network BW)
diverges exponentially below arithmetic capacity

Mean time between hardware interrupts shortens

=> Billions of $ € £ ¥ of scientific software worldwide
hangs in the balance until better algorithms arrive to
span the architectural gap

ATPESC, 6 Aug 2014

Required software

Model-related

L 4
L 2
*
L 2
<

L 4
L 2
*
L 2

4

Geometric modelers
Meshers
Discretizers

Partit
Solvers / integrators

Adaptivity systems
Random no. generators
Subgridscale physics

Uncertainty
quantification

Dynamic load balancing

Graphs and
combinatorial algs.

Compression

Development-related
+ Configuration systems

¢ Source-to-source
translators

o Compilers
¢ Simulators
¢ Messaging systems
¢ Debuggers

o Profilers

High-end computers come
with little of this stuff.
Most has to be contributed

by the user community

Production-related

*

Dynamic resource
management

Dynamic performance
optimization
Authenticators

I/O systems
Visualization systems
Workflow controllers
Frameworks

Data miners

Fault monitoring,
reporting, and recovery

ATPESC, 6 Aug 2014

How are most simulations implemented at
the petascale today?

® Iterative methods based on data decomposition and
message-passing
+ all data structures are distributed
+ each individual processor works on a subdomain of the original

+ exchanges information at its boundaries with other processors
that own portions with which it interacts causally, to evolve in
time or to establish equilibrium

+ computation and neighbor communication are both fully
parallelized and their ratio remains constant in weak scaling

® The programming model is BSP/SPMD/CSP

+ Bulk Synchronous Programming
+ Single Program, Multiple Data
o Communicating Sequential Processes

ATPESC, 6 Aug 2014

BSP parallelism w/ domain decomposition

rows assigned
to proc “2” { Asj Aj Ass }

Partitioning of the grid

induces block structure on \
the system matrix

(Jacobian)

ATPESC, 6 Aug 2014

Recap of algorithmic agenda

® New formulations with

+ greater arithmetic intensity (flops per byte moved into and out of
registers and upper cache)

= including assured accuracy with (adaptively) less floating-point
precision

¢ reduced synchronization and communication

m less frequent and/or less global
+ greater SIMD-style thread concurrency for accelerators
+ algorithmic resilience to various types of faults

® Quantification of trades between limiting resources

® Plus all of the exciting analytical agendas that exascale
is meant to exploit

¢ “post-forward” problems: data assimilation, parameter

inversion, uncertainty quantification, optimization, etc.
ATPESC, 6 Aug 2014

Some algorithmic “points of light”

~

Next section flashes six “poinfs of light” thaty
accomplish one or more of these agendas

Fast Multipole for Poisson solves,

Algebraic Fast Milltipol'e for variable coefficient

equilibrium problems

| Nonlin:ear preconditioning for Newton’s method
DAG-based data tflow fo,r. dense linear algebra
GPU implementations of dense linear algebra

New programming paradigms for PDE codes

e ’

Fast Multipole for Poisson solves

~

< Reduce synchrony

<~ Increase arithmetic intensity

< Increase conlurrencyg

Arithmetic intensity of numerical kernels

2048

— Intel Sandy Bridge
— AMD Abu Dhabi /
_ 1024/ —|BM BG/Q
—Fujitsu FX10

| —NVIDIA Kepler
Intel Xeon Phi

(6)
—
\)

64

Double precision performance (Gflop/s
0 N
N (0 0)

>
FMM M2L (Spherical)
FMM M2L (Cartesian)

] 256

.9/ c/o R. Yokota, KAUST, et al. two orders of magnitude variation ATPESC, 6 Aug 2014

Hierarchical interactions of Fast Multipole

e

TN/

il

A
|
!

‘\‘S

Iintrse

\““\\\\\\.\\:\\}

1000000050000 sseeesssstt '

‘sssss‘syy»‘sﬁ‘.¢Mofmrtrm¢ro¢r:loocoo'o “
)\

\\\\\\\\\\\Qs\\s‘ss‘g.’¢.oooooooooooooooooroml:ll)llo'lo""

L ST

fiisis g g s Y
19008000008/ 00080¢000d) \\\\\

it

i
]

vé‘A
!

i I
\

i
il
..,,_,,,.,.,,,,w,.,,,,_,,,,/,,””/

(b) Fast Multipole Method

(a) Direct method

ATPESC, 6 Aug 2014

Geometrical structure of Fast Multipole

source particles

x
I

ATPESC, 6 Aug 2014

'_;'a/ c/o R. Yokota, KAUST, et al.

Synchronization reduction - FMM

® Within an FMM application, data pipelines of
different types and different levels can be executed
asynchronously

¢ FMM simply adds up (hierarchically transformed)
contributions

¢ e.g., P2P and P2M > M2M -> M2L -> L2L -> L.2P

® Geographically distinct targets can be updated
asynchronously

ATPESC, 6 Aug 2014

Salient features of FMM

® High arithmetic intensity
® No all-to-all communication
® O(log P) messages
+ with high concurrency and asynchrony among themselves

® Up to O(N) arithmetic concurrency

® Tunable granularity in the sense of “/-p”

+ based on analytic “admissibility condition”
® Inside 8 Gordon Bell Prizes, 1997-2012
® Many effective implementations on GPUs

® Fragile (based on analytical forms of operators)

ATPESC, 6 Aug 2014

Communication complexity of FMM

Reference Processes Data per Process Communication complexity
1998 | Teng [32) O(P) O ((N/P)*3(log N +p)'/%) | O (P(N/P)**(log N +p)'F%)
2009 | Lashuk et ol 27] | O(VP) 0 ((N/P)3) 0 (VP(N/P?P)

, Global | Local | Global Local Global + Local
2014 | Theid et ol 21 O(logP) | O(1) | O(1) | O((N/P?F) 0 (log P + (N/P)?)

ATPESC, 6 Aug 2014

FMM vs. FF'T In processor scaling

1.2 ' Weak scaling of a vortex-

- FMM formulation 3D Navier-Stokes
- spectral method code simulating decaying

1t emem isotropic turbulence,
referenced to the pseudo-

spectral method, which uses
FFT.

FFT: 14% parallel
efficiency at 4096
processes, no GPU use.

S
o0

<
o

FMM: 74% going from one
to 4096 processes at one
GPU per MPI process, 3
GPUs per node.

i~
N

Parallel efficiency

Largest problem corresponds
to a 4096”3 mesh, i.e., almost
69 billion points (about 17
million points per process).

1 8 64 512 4096 Run on the TSUBAME 2.0

system of the Tokyo Institute
Number of processes
of Technology.

.O
N

c/o R. Yokota, KAUST, et al. ATPESC, 6 Aug 2014

FMM as preconditioner
© FMM is a solver for free-space problems for which

one has a Green’s function
® For finite boundaries, FMM combines with BEM

® FMM and BEM have controllable truncation
accuracies; can precondition other, different
discretizations of the same PDE

® Can be regarded as a preconditioner for “nearby”

problems, e.g., V2 for V - (1+ g(f))v

ATPESC, 6 Aug 2014

FMM'’s role in solving PDEs

u-/ S Gdr — / dF+/deQ in O
on on

BEM FMM
| A
| Nr Np)| N
PR g . _ ~ N\ ~ - ~ N
NQ \ Wi | —- Gij % - 6;3? U + Gz’j fj
\ L - - - - L . - . L - L

The preconditioner is reduced to a matvec, like the forward operator itself —
the same philosophy of the sparse approximate inverse (SPAI), but cheaper.

More concurrency, more intensity, less synchrony than ILU, MG, DD, etc.

- | clo H. Ibeid, KAUST, et al. ATPESC, 6 Aug 2014

FMM/BEM preconditioning of
FEM-dlscretlzed Poisson accelerated by CG

10 5
— FMM (e=107°)
——FMM (e=107%
... EMM (ec107D) |
S NG | - AMG
- NN\ - = GMG
3 5 N —— Inc Chol
)] ;
)
o SURURTRUTIOIN: N\ U SO UOU U UU TRt SUUUUOT oSS UNUNS SOUURTUUUTTROOONS]
-8 i i i
10 5 10 15 20

lterations

|We 4 c/o R. Yokota, KAUST, et al. ATPESC, 6 Aug 2014

FMM/BEM preconditioning of

FEM-discretized Poisson
102 FT m AR R EH R R R R RREE
| PCSetUp(FMM)|. - b
| o~ PCApply(FMM) | & & imi oo
101 g —*—PCSetUp(AMG) =E:

g D
- g T b g VTS i
[l — % — Slegs o aip e P sese ey e LR TR R R
L U [R (L R L L A NI T I I Y

. R . D . o L R R R . .

. o . o e . o ey g L R . .

i I ST B L R TR E e S U Rl L e LRI e S SRR " 1Tt ATeY A r g
. . . IR ey .

~_4ac/o R. Yokota, KAUST, et al. ATPESC, 6 Aug 2014

FMM vs AMG preconditioning:
strong scaling on Stampede*®

10°

sy s v alsn sl ad o ded ol J
... 3
..............................]
.......... SRR R e FEMIM
e e e e e e e e e e e e et e e e e e e eeme e eeem e i

Number of cores

» * FEM Poisson problem, Dirichlet BCs handled via BEM (cost included)
| i
_d c/o R. Yokota, KAUST, et al. ATPESC, 6 Aug 2014

i /.

FMM as preconditioner

® Of course, when “trapped” inside a conventional
preconditioned Krylov, FMM surrenders some
potential benefits of relaxed synchrony because of
the synchrony of the Krylov method

® Krylov methods need rework, generally, for any
preconditioner

® Pipelined CG and GMRES are included now in
PETSc and other Krylov libraries, proved
practical

ATPESC, 6 Aug 2014

Algebraic Fast Multipole-for
variable coefficient equilibrium proble;ns

< All the benefits of Fast Multipdle
4 plus »
*%. Make Fast MultipoleJess frz'lgile

e

Is there an algebraic FMM?

® Consider the H? hierarchical matrix method of
Hackbusch, et al.

| 5.
I

_]['%H %}ui

e Off diagonal blocks A4;; = U; §; V; can have low rank,
based on an “admissibility condition” [[7] |

,Eh

E,

Ui,

® Bases can be hierarchically nested |

¢ U, for columns, V; for rows e

ATPESC, 6 Aug 2014

Reminder where low rank is found, e.g.,
1D Laplacian

2 -1
-1 2 -1
-1 2 [-1 Off diagonal blocks
Full rank! A =64 x -1 2 -1 have low rank!
-1 2 -1
-1 2 -1
- —1 2 -
7 6 5[4 3 2 1|
. g }3 :g 52 g 2 g Off diagonal blocks
Full rank! Al=—"x|4 8 12|16 12 8 4 have low rank!
512 13 6 9 12 15 10 5
2 4 6 8 10 12 6
|1 2 3 4 5 6 7|

Is there an algebraic FMM?

® One needs to store the unreducible diagonal blocks, A4

® For the entire rest of the matrix, first the §;, the U; and V; at

l_] b4
the finest level

® Then the E; (column basis conversion) and F; (row basis
conversion) blocks at each level

® Two stage compression procedure: SVD each block, then
convert to common bases

........
vvvvvvvvv

ATPESC, 6 Aug 2014

“Algebraic Fast Multipole” (AFM)

* Can we cast general matrix operations (add, multiply,
invert, etc.) in terms of the fast multipole recursive

“tree-based” data structure?

/—_\\

T = e
//—\</ | DO || | EEEE
g ﬁ\
— ibéwg‘—“—” ——
B | | || B e S
R —

* Yes, after compressing the matrix in H? form
* presumes hierarchical low rank structure
* may offer breakthrough in application performance
* See Supercomput. Front. Innov. 1:62-83 (2014)

ATPESC, 6 Aug 2014

Fast matrix-vector multiply, y=Ax

() (S) s o

> > . . I
(t.)€D (7)€L (i.j)eD i€ (i,)EL UpsweeP
Dense mat-vecs .
operations o Coupling phase -
Downsweep

[T TP PP i rr ey rrryr 11

[L rrrrrrr vyl 1

ATPESC, 6 Aug 2014

Fast matrix-vector multiply, y=Ax

Table 5. Communication breakdown of hierarchical

matrix-vector multiplication compared to FMM (cf. tab. 3).

H-matrix FMM
operation | operation | Processes | Blocks per level | Blocks per Process | Communication
Global Global log P
> St M2L Z O(1) O(1) O(1) O(log P)
i
Global Global log P
> Fliy M2M Z O(1) O(1) O(1) O(log P)
i
Local Local log,4 (N/P) . d_1
S Sid; | M2L O(1) O(2(d-1)1) Y oYY | o(N/P)T)
i
Local Local _ d—1
S Aiz; | P2P 0(1) O(2(@-1i) O(2(d-Dloga(N/P)y | O((N/P)"7)

ATPESC, 6 Aug 2014

Optimal hierarchical algorithms

® Some optimal hierarchical algorithms
¢ Fast Fourier Transform (Cooley-Tukey, 1965)*
¢ Multigrid (Brandt, 1977)*
+ Fast Multipole Method (Greengard-Rokhlin, 1985)
¢ Sparse grids (Zenger, 1991)*
o H-matrices (Hackbusch, 1999)
¢ <your generation’s method> — missing so far ©
® What is the potential for reducing over-ordering

and exposing concurrency with these flop-optimal
methods?

* References to popularizing paper, not earliest conception ATPESC, 6 Aug 2014

Scalable Hierarchical Algorithms in Extreme
Computing workshop, 4-6 May 2014

N\
0\

Nonlinear preconditioning
for Newton’s method

<~ Reduce synchrony in frequency and scope

-
.
-

* Newton method for a global nonlinear system, F(u)=0,

— computes a global distributed Jacobian matrix and synchronizes
globally in both the Newton step and in solving the global linear
system for the Newton

* Nonlinearly preconditioned Newton replaces this with a
set of local problems on subsets of the global nonlinear
system

— each local problem has only local synchronization

— each of the linear systems for local Newton updates has only local
synchronization

— there is still global synchronization in a number of steps,
hopefully many fewer than required in the original Newton
method

Implemented in PETSc, as “ASPIN”

SPE10
reservoir
odel

Key idea
Finding the solution u* by solving an equivalent nonlinear system

Fu*)=0s F(u")=0

using Inexact Newton with Backtracking

How to construct the equivalent nonlinear system?

Fo,(u) = 0, 1=1,...,N ?: [‘ ‘ ' Bl
*F(u) —)w Q, =0 6k “:‘
i—1 ' | Newton convergence

C~ -
o~

'L:]. 14|

Nonlinear iterations
=

F'(u) is continuous in a neighborhood D of the exact solution u*,
and the matrix F’(u*) is nonsingular.

I I o I T i i A S S T T A
2t ASPIN convergence

(Cai and Keyes, 2002). F'(u) and F(u) are equivalent in the sense
that they have the same solution in a neighborhood of v* in D. 0 % e 250 300

c/o L. Liu, KAUST ATPESC, 6 Aug 2014

DAG-based data tlow:
for dense Ifnear algebra

< Reduce synchrony

.
<~ Increase concurrency®
.

-
.
-

Reducing over-ordering and synchronization
through datatlow: e.g., generalized eigensolver

Ax = ABx
Operation Explanation LAPACK routine name
@ B=LxL" Cholesky factorization POTRF
@ C=L"1xAxLT application of triangular factors SYGST
or HEGST
© T=QT xCxQ tridiagonal reduction SYEVD or HEEVD
Q Tx= X QR iteration STERF
o O
o @)
© >
© @
® ©
S @
© ©
© ©
@ D
D @

#llc/o H. Ltaief, KAUST ATPESC, 6 Aug 2014

Loop nests and subroutine calls, with their
over-orderings, can be replaced with DAGs

® Diagram shows a dataflow
ordering of the steps of a
4x4 symmetric
generalized eigensolver

® Nodes are tasks, color-
coded by type, and edges
are data dependencies

® Time is vertically
downward

® Wide is good; short is
good

CRONCNCRCRORONORONGRCRCRCNCRORCRONCNCRONCNCNCNC

c/o H. Ltaief, KAUST ATPESC, 6 Aug 2014

GPU implementations of
dense lintar algebra

<~ Increase SIMD-style thread conéurrency

-
.
-

Applied in European telescope (ELT)
(13X speedup - tech paper for SC’14)

The European Extremely Large Telescope

The world's biggest eye on the sky

[T

© ESO, https:/ /www.eso.org/ sci/ facilities /develop /a0 /ao_modeshtml

c/o0 Ahmad Abdelfattah & Ali Charara, KAUST ATPESC, 6 Aug 2014

80

70

60

8 Gflop/s &

30

20

New linear algebra software, KAUST’s
GPU BLAS, now in NVIDIA’s CUBLAS

_ DSYMV-LOWER Performance on K20c (ECC OFF)

kblas-1.0 ___
magmablas-1.4.0 ___

cublas-5.5(fast) T
cula-r17 ___

cublas-5.5(slow) _ . _

o
’
) SN
(e
, Ve

/\/

2000 4000 6000 10000 12000 14000

8000
Matrix Dimension

1600

20

0|

0|

WL

WL

20

o

DSYMV-LOWER Performance on K20c¢ cluster

1 gpu: kblas-1.0 __
1 gpu: magmablas-1.4.0 _ _ _

2gpu: kblas-1.0 ___
2 gpu: magmablas-1.4.0 _ _ _

3 gpu: kblas-1.0
3 gpu: magmablas-1.4.0 _ _ _

4 gpu: kblas-1.0 B

4 gpu: magmablas-1.4.0 _ _ _
5 gpu: kblas-1.0

5 gpu: magmablas-1.4.0
6 gpu: kblas-1.0

6 gpu: magmablas-1.4.0 _ _ _
7 gpu: kblas-1.0 ___

L

........

7 gpu: magmablas-1.4.0 _ _ ; g N . T
8 gpu: kblas-1.0 N
8 gou: magmablas-1.4.0 _/ _ . f N
i N - N ,' K :
- S K
St ;
’ ’ b ~
g /

e Highly optimized GEMV/SYMYV Kernels

e NVIDIA has adopted for its CUBLAS 6.0 library

40000 4800C

c/o Ahmad Abdelfattah, KAUST

ATPESC, 6 Aug 2014

New programming paradigm
for PDE codes

< Reduce synchrony

Multiphysics w/ legacy codes:
an endangered species?

Model 1 e — ! '
tO tl t2

Model 2
(subcycled)

® Many multiphysics codes operate like this, where the models may
occupy the same domain in the bulk (e.g., reactive transport) or
communicate at interfaces (e.g., ocean-atmosphere)*

® The data transfer cost represented by the blue and green arrows
may be much higher than the computation cost of the models,
even apart from first-order operator splitting error and possible
instability
*see “Multiphysics simulations: challenges and opportunities” (IJHPCA) ATPESC, 6 Aug 2014

Many codes have the algebraic and
software structure of multiphysics

e KExascale is motivated by these:
® uncertainty quantification, inverse problems,
optimization, immersive visualization and steering
® These may carry auxiliary data structures to/from
which blackbox model data is passed and they act
like just another “physics” to the hardware

® pdfs, Lagrange multipliers, etc.
® Today’s separately designed blackbox algorithms

for these may not live well on exascale hardware: co-
design may be required due to data motion

ATPESC, 6 Aug 2014

Multiphysics layouts must invade blackboxes

9198 &/ TNTE DS 2 e

Do pee

et LSVt &@@:zggﬁ
Ct)

v 5)

\

s\

27627 118 w, =P P) =§ P
B B Ve asiW Tlos wx(W
2rizrees G U8 &N 123

Each application must
first be ported to
extreme scale
(distributed, hierarchical
memory)

Then applications may
need to be interlaced at
the data structure level
to minimize copying and
allow work stealing at
synchronization points

c/o W. D. Gropp (UIUC)

ATPESC, 6 Aug 2014

HIGH
PERFORMANCE
COMPUTING
APPLICATIONS

The irmerrational jour=al of High
Performatce Compunrg Agsiasom

Multiphysics simulations: 1) ¢ 42

C The Asthor(s) 3013

Challenges and opportunities s amnr el R
DO 120177 103434201 1058181
hoc Sagepud com

®SAGE

David E Keyes'*?, Lois C Mclnnes’, Carol Woodward”,

William Gropp®, Eric Myra®, Michael Pernice’, John Bell®,

Jed Brown" Alain Clo', J Connors‘, Emil Constantinescu’. Don Estep’,

Kate Evans °, Charbel Farhat ', Ammar Hakim", Glenn Hammond", Glen Hansen“,
Judith Hill'o, Tobin Isaac'®, Xiangmin]iao", Kirk jordan”, Dinesh Kaushik’,

Efthimios Kaxiras'?, Alice Koniges®, Kihwan Lee'?, Aaron Lott*, Qiming Lu®®,

John Magerlein'’, Reed Maxwell?', Michael McCourt??, Miriam Mehl*,

Roger Pawlowski'‘, Amanda P Randles'®?, Daniel Reynolds“, Beatrice Riviére?®,

Ulrich Riide?®, Tim Scheibe'?, John Shadid'?, Brendan Sheehan’, Mark Shephard?’,
Andrew Siegel’, Barry Smith’, Xianzhu Tang?®, Cian Wilson® and Barbara Wohlmuth®*

Abstract

We consider multiphysics applications from algorithmic and architectural perspectives, where "algorithmic® includes both
mathematical analysis and computatioral complexity, and "architectural® includes both sofeware and hardware environ-
ments. Mary diverse multiphysics applications can be reduced, en route to their computational simulation, to a common
algebraic coupling paradigm. Mathematical analysis of multiphysics coupling in this form is not always practical for
realistic applications, but model problems representative of applications discussed herein can provide insight. A variety
of software frameworks for multiphysics applications have been constructed and refined within disciplinary commu-
nities and executed on leading-edge computer systems. We examine several of these, expose some commonalities
among them, and attempt to extrapolate best practices to future systems. From our study, we summarize challenges
and forecast opportunities.

ATPESC, 6 Aug 2014

How will PDE computations adapt?

Programming model will still be dominantly message-
passing (due to large legacy code base), adapted to
multicore or hybrid processors beneath a relaxed
synchronization MPI-like interface

Load-balanced blocks, scheduled today with nested loop
structures will be separated into critical and non-critical
parts

Critical parts will be scheduled with directed acyclic
graphs (DAGs) through dynamic languages or runtimes
¢ e.g., ADLB, Charm++, Quark, StarPU, OmpSs, Parallex, Argo

Noncritical parts will be made available for NUMA-aware
work-stealing in economically sized chunks

ATPESC, 6 Aug 2014

Adaptation to
asynchronous programming styles

® To take full advantage of such asynchronous
algorithms, we need to develop greater
expressiveness in scientific programming

¢ create separate threads for logically separate tasks,
whose priority is a function of algorithmic state, not
unlike the way a time-sharing OS works

¢ join priority threads in a directed acyclic graph (DAG), a
task graph showing the flow of input dependencies; fill
idleness with noncritical work or steal work

ATPESC, 6 Aug 2014

Evolution of Newton-Krylov-Schwarz:
breaking the synchrony stronghold

® Can write code in styles that do not require artifactual
synchronization

® C(ritical path of a nonlinear implicit PDE solve is essentially

lin_solve, bound_step, update; lin_solve, bound_step, update ...

® However, we often insert into this path things that could be done
less synchronously, because we have limited language

expressiveness

*

* & o o

Jacobian and preconditioner refresh
convergence testing

algorithmic parameter adaptation
I/0, compression

visualization, data mining

ATPESC, 6 Aug 2014

Sources of nonuniformity

System

¢ Already important: manufacturing, OS jitter, TLB/cache

performance variations, network contention,

¢ Newly important: dynamic power management, more soft errors,
more hard component failures, software-mediated resiliency, etc.

Algorithmic

+ physics at gridcell/particle scale (e.g., table lookup, equation of
state, external forcing), discretization adaptivity, solver adaptivity,

precision adaptivity, etc.

Effects of both types are similar when it comes to waiting

at synchronization points

Possible solutions for system nonuniformity will improve

programmability, too

ATPESC, 6 Aug 2014

Other, galaxies

Other hopeful algorithmic directions

® 74 two-page whitepapers contributed by the international
community to the Exascale Mathematics Working Group
(EMWG) at

® 20-21 August 2013 in Washington, DC
e Randomized algorithms
e On-the-fly data compression
o Algorithmic-based fault tolerance
e Adaptive precision algorithms

e Concurrency from dimensions beyond space (time, phase
space, stochastic parameters)

® etc.

ATPESC, 6 Aug 2014

Trends according to Pete Beckman, Argonne

Trending Up

Trending Down

Asynchrony, Latency Hiding

Block synchronous

Over Decomp & Load Balancing

Static partitioning per core

Massive Parallelism

Countable parallelism

Reduced RAM per Flop

Whole-socket shared memory

Software-managed memory

Simple NUMA

Expensive Data Movement

Expensive flops

Fault / Resilience Strategies

Pure checkpoint/restart

Low BW to Storage, in-situ analysis

Save all

c/o P. Beckman, Intro to this meeting

ATPESC, 6 Aug 2014

Trending Up Trending Down

User-controlled data replication System-controlled data replication
User-controlled error handling System-controlled error handling
Adaptive variable precision Default high precision

Computing with “deltas” Computing directly with Qol

High order discretizations Low order discretizations
Exploitation of low rank Default full rank

An algorithmic theme: defeat the curses of dimensionality and
multiple scales with the blessings of continuity and low rank

ATPESC, 6 Aug 2014

“SciDAC philoso

1. Hoteit

A. Fratalocchi ~ G. Schuster F. Bisetti
2 g :

U. Schwingenschloegl

Tﬂ ® A
T
YT Y
“o*e*¢"

Applications

drive cS

enable

ATPESC, 6 Aug 2014

(.

Thank you

BTR-

i el B e delh fe e CIES TR

ST R e SR

. _ - - 1
= U R ki .3

david.keyes@kaust.edu.sa

