
ATPESC, 6 Aug 2014

David Keyes, Applied Mathematics & Computational Science
Director, Extreme Computing Research Center (ECRC)
King Abdullah University of Science and Technology

Algorithmic Adaptations to Extreme Scale

ATPESC, 6 Aug 2014

Just a few of the tie-ins to ATPESC …
n  Jim

  Premium on communication reduction
  Models to know what is achievable; quantifying trade-offs between

communication saved versus extra memory and flops
n  Sherry

  Hierarchical exploitation of effective low rank
n  Rob

  Multilevel methods
n  Barry and Carol

  Newton methods
n  FastMath panel

  Planning for extreme scale in solvers
n  Jack

  DAG-based synchronization reduction and concurrency improvement

ATPESC, 6 Aug 2014

BSP
generation

Energy-aware
generation

ATPESC, 6 Aug 2014

Bulk Synchronous
Parallelism

Leslie Valiant, Harvard
2010 Turing Award Winner Comm. of the ACM, 1990

ATPESC, 6 Aug 2014

BSP has an impressive legacy

	

	

Year	

Cost	
 per	

delivered	

Gigaflop/s	

1989	
 $2,500,000	
 	
 	
 	
 	
 	
 	
 	

1999	
 $6,900	

2009	
 $8	

	

	

Year	

Gigaflop/s	

delivered	
 to	

applica4ons	

1988	
 1	

1998	
 1,020	

2008	
 1,350,000	

By the Gordon Bell Prize, performance on real applications (e.g.,
mechanics, materials, petroleum reservoirs, etc.) has improved more than
a million times in two decades. Simulation cost per performance has
improved by nearly a million times.

Gordon Bell
Prize: Peak
Performance

Gordon Bell
Prize: Price
Performance

ATPESC, 6 Aug 2014

Synchronous hierarchical algorithms
underlie BSP scaling of PDE applications

36K dofs
8B dofs

ATPESC, 6 Aug 2014

Extrapolating exponentials eventually fails
n  Scientific computing at a crossroads w.r.t. extreme scale
n  Proceeded steadily for decades from giga- (1988) to tera- (1998) to

peta- (2008) with
  same BSP programming model
  same assumptions about who (hardware, systems software, applications

software etc.) is responsible for what (resilience, performance, processor
mapping, etc.)

  same classes of algorithms (cf. 25 yrs. of Gordon Bell Prizes)
n  Exa- is qualitatively different and looks more difficult

  but we once said that about message passing
n  Core numerical analysis and scientific computing will confront

exascale to maintain sponsor relevance
  not a “distraction,” but an intellectual stimulus
  potentially big gains in adapting to new hardware environment
  the journey will be as fun as the destination

ATPESC, 6 Aug 2014

Part of campaign to provide less synchronous
alternatives, in Supercomput. Front. Innov. 1(1)

ATPESC, 6 Aug 2014

Main challenge going forward for BSP

n  Almost all “good” algorithms in linear algebra, differential
equations, integral equations, signal analysis, etc., require
frequent synchronizing global communication
  inner products, norms, and fresh global residuals are

“addictive” idioms
  tends to hurt efficiency beyond 100,000 processors
  can be fragile for smaller concurrency, as well, due to

algorithmic load imbalance, hardware performance variation,
etc.

n  Concurrency is heading into the billions of cores
  already 3 million on the most powerful system today

ATPESC, 6 Aug 2014

Conclusions, up front
n Plenty of ideas exist to adapt or substitute for

favorite solvers with methods that have
  reduced synchrony (in frequency and/or span)
  greater arithmetic intensity
  greater SIMD-style shared-memory concurrency
  built-in resilience (“algorithm-based fault tolerance” or

ABFT) to arithmetic faults or lost/delayed messages

n Programming models and runtimes may have to
be stretched to accommodate

n Everything should be on the table for trades,
beyond disciplinary thresholds è “co-design”

ATPESC, 6 Aug 2014

Bad news/good news (1)
  One will have to explicitly control more of

the data motion
  carries the highest energy cost in the exascale

computational environment

  One finally will get the privilege of
controlling the vertical data motion
  horizontal data motion under control of users already
  but vertical replication into caches and registers was

(until recently with GPUs) mainly scheduled and laid
out by hardware and runtime systems, mostly invisibly
to users

ATPESC, 6 Aug 2014

  “Optimal” formulations and algorithms may lead
to poorly proportioned computations for exascale
hardware resource balances
  today’s “optimal” methods presume flops are expensive and

memory and memory bandwidth are cheap

  Architecture may lure scientific and engineering
users into more arithmetically intensive
formulations than (mainly) PDEs
  tomorrow’s optimal methods will (by definition) evolve to

conserve whatever is expensive

Bad news/good news (2)

ATPESC, 6 Aug 2014

  Fully hardware-reliable executions may be regarded as
too costly/synchronization-vulnerable

  Algorithmic-based fault tolerance (ABFT) will be
cheaper than hardware and OS-mediated reliability
  developers will partition their data and their program units into

two sets
  a small set that must be done reliably (with today’s standards for

memory checking and IEEE ECC)
  a large set that can be done fast and unreliably, knowing the errors

can be either detected, or their effects rigorously bounded

  Examples already in direct and iterative linear algebra
  Anticipated by Von Neumann, 1956 (“Synthesis of reliable

organisms from unreliable components”)

Bad news/good news (3)

ATPESC, 6 Aug 2014

  Default use of (uniform) high precision in nodal bases on
dense grids may end, as wasteful of storage and bandwidth
  representation of a smooth function in a hierarchical basis or on

sparse grids requires fewer bits than storing its nodal values, for
equivalent accuracy

  we will have to compute and communicate “deltas” between states
rather than the full state quantities, as when double precision was
once expensive (e.g., iterative correction in linear algebra)

  a generalized “combining network” node or a smart memory
controller may remember the last address, but also the last values,
and forward just the deltas

  Equidistributing errors properly to minimize resource use
will lead to innovative error analyses in numerical analysis

Bad news/good news (4)

ATPESC, 6 Aug 2014

  Fully deterministic algorithms may be regarded as
too synchronization-vulnerable
  rather than wait for missing data, we may predict it using various

means and continue
  we do this with increasing success in problems without models

(“big data”)
  should be fruitful in problems coming from continuous models
  “apply machine learning to the simulation machine”

  A rich numerical analysis of algorithms that make
use of statistically inferred “missing” quantities may
emerge
  future sensitivity to poor predictions can often be estimated
  numerical analysts will use statistics, signal processing, ML, etc.

Bad news/good news (5)

ATPESC, 6 Aug 2014

Caveats
n This talk is not a full algorithmic picture, but

some “pixels” out of that big picture
  … a point of light here, a point of light there…
  a full picture will emerge progressively

n Algorithms people may be able to ignore the
hardware-based disruption of numerical
computing for another ~ 5 years and let the
programming environment shake out
  but why postpone the inevitable?
  should offer fun for everyone

Jack Dongarra
Pete Beckman

Terry Moore
Patrick Aerts

Giovanni Aloisio
Jean-Claude Andre

David Barkai
Jean-Yves Berthou

Taisuke Boku
Bertrand Braunschweig

Franck Cappello
Barbara Chapman

Xuebin Chi

Alok Choudhary
Sudip Dosanjh
Thom Dunning
Sandro Fiore

Al Geist
Bill Gropp

Robert Harrison
Mark Hereld

Michael Heroux
Adolfy Hoisie

Koh Hotta
Yutaka Ishikawa
Fred Johnson

Sanjay Kale
Richard Kenway

David Keyes
Bill Kramer

Jesus Labarta
Alain Lichnewsky
Thomas Lippert

Bob Lucas
Barney Maccabe
Satoshi Matsuoka

Paul Messina
Peter Michielse

Bernd Mohr

Matthias Mueller
Wolfgang Nagel

Hiroshi Nakashima
Michael E. Papka

Dan Reed
Mitsuhisa Sato

Ed Seidel
John Shalf

David Skinner
Marc Snir

Thomas Sterling
Rick Stevens
Fred Streitz

Bob Sugar
Shinji Sumimoto

William Tang
John Taylor

Rajeev Thakur
Anne Trefethen
Mateo Valero

Aad van der Steen
Jeffrey Vetter
Peg Williams

Robert Wisniewski
Kathy Yelick

SPONSORS

ROADMAP 1.0

 Background of this talk:
www.exascale.org/iesp

The International Exascale
Software Roadmap,
J. Dongarra, P. Beckman, et al.,
International Journal of High
Performance Computer
Applications 25(1), 2011, ISSN
1094-3420.

ATPESC, 6 Aug 2014

What we have heard from IESP meetings:
n  Draconian reduction required in power per flop and per

byte will make computing and copying data less reliable
  voltage difference between “0” and “1” will be reduced
  circuit elements will be smaller and subject to greater

physical noise per signal
  there will be more errors that must be caught and corrected

n  Power may be cycled off and on or clocks slowed and
speeded
  based on compute schedules (user-specified or software

adaptive)
  based on cooling capacity (hardware adaptive)
  makes per node performance rate unreliable

ATPESC, 6 Aug 2014

What we believe
n  Expanding the number of nodes (processor-memory units)

beyond 106 would not a serious threat to algorithms that lend
themselves to well-amortized precise load balancing
  provided that the nodes are performance reliable

n  The real challenge is usefully expanding the number of cores
on a node to 103

  must be done while memory and memory bandwidth per node
expand by (at best) ten-fold less (basically “strong” scaling)

  don’t need to wait for full exascale systems to experiment in this
regime – the battle is fought on individual shared-memory
nodes

ATPESC, 6 Aug 2014

Philosophy

  full employment for computer scientists and
computational scientists and engineers

  see, e.g., recent postdoc announcements from
  Berkeley (8),
  Oak Ridge (3), and
  IBM (10)

for porting computational science applications to
extreme scale

n Algorithms must adapt to span the gulf between
demanding applications and austere architectures

ATPESC, 6 Aug 2014

Motivation for algorithmic attention
n High performance with high(-est possible)

productivity on “the multis”:
  Multi-scale, multi-physics problems in multi-dimensions
  Using multi-models and/or multi-levels of refinement
  Exploiting polyalgorithms in adaptively multiple precisions

in multi-protocol hybrid programming styles
  On multi-core, massively multi-processor systems
  Requiring a multi-disciplinary approach

Can’t cover all this in an hour, but we ask:
Given the architectural stresses, how can new algorithms help?

ATPESC, 6 Aug 2014

Why exa- is different

(Intel Sandy Bridge, 2.27B transistors)

 after DARPA report of P. Kogge (ND) et al. and T. Schulthess (ETH)

Going across the die will require an order of magnitude more!
DARPA study predicts that by 2019:
u  Double precision FMADD flop: 11pJ
u  cross-die per word access (1.2pJ/mm): 24pJ (= 96pJ overall)

Which steps of FMADD take more energy?

input
input

input

output

four

ATPESC, 6 Aug 2014

Today’s power costs per operation

 projections c/o J. Shalf (LBNL)

Remember that a pico (10-12) of something done exa (1018)
times per second is a mega (106)-somethings per second
u  100 pJ at 1 Eflop/s is 100 MW (for the flop/s only!)
u  1 MW-year costs about $1M ($0.12/KW-hr × 8760 hr/yr)

•  We “use” 1.4 KW continuously, so 100MW is 71,000 people

Operation approximate energy cost
DP FMADD flop 100 pJ
DP DRAM read-to-register 4800 pJ
DP word transmit-to-neighbor 7500 pJ
DP word transmit-across-system 9000 pJ

ATPESC, 6 Aug 2014

Why exa- is different

Moore’s Law (1965) does not end but
Dennard’s MOSFET scaling (1972) does

Eventually processing is
limited by transmission,
as known for > 4 decades

Robert Dennard, IBM
(inventor of DRAM, 1966)

ATPESC, 6 Aug 2014

What will first “general purpose” exaflop/s
machines look like?

n Hardware: many potentially exciting paths beyond
today’s CMOS silicon-etched logic, but not
commercially at scale within the decade

n Software: many ideas for general-purpose and
domain-specific programming models beyond
“MPI + X”, but not penetrating the mainstream
CS&E workforce for the next few years
  “X” is OpenMP, CUDA, OpenACC, etc., or MPI,

itself

ATPESC, 6 Aug 2014

Some exascale architecture themes

  Clock rates cease to increase while arithmetic capacity
continues to increase dramatically w/concurrency
consistent with Moore’s Law

  Memory storage capacity diverges exponentially below
arithmetic capacity

  Transmission capacity (memory BW and network BW)
diverges exponentially below arithmetic capacity

  Mean time between hardware interrupts shortens
  è Billions of $ € £ ¥ of scientific software worldwide

hangs in the balance until better algorithms arrive to
span the architectural gap

ATPESC, 6 Aug 2014

Required software
 Model-related

  Geometric modelers
  Meshers
  Discretizers
  Partitioners
  Solvers / integrators
  Adaptivity systems
  Random no. generators
  Subgridscale physics
  Uncertainty

quantification
  Dynamic load balancing
  Graphs and

combinatorial algs.
  Compression

 Development-related
u  Configuration systems
u  Source-to-source

translators
u  Compilers
u  Simulators
u  Messaging systems
u  Debuggers
u  Profilers

 Production-related
u  Dynamic resource

management
u  Dynamic performance

optimization
u  Authenticators
u  I/O systems
u  Visualization systems
u  Workflow controllers
u  Frameworks
u  Data miners
u  Fault monitoring,

reporting, and recovery

High-end computers come
with little of this stuff.

Most has to be contributed
by the user community

ATPESC, 6 Aug 2014

How are most simulations implemented at
the petascale today?

n  Iterative methods based on data decomposition and
message-passing
  all data structures are distributed
  each individual processor works on a subdomain of the original
  exchanges information at its boundaries with other processors

that own portions with which it interacts causally, to evolve in
time or to establish equilibrium

  computation and neighbor communication are both fully
parallelized and their ratio remains constant in weak scaling

n The programming model is BSP/SPMD/CSP
  Bulk Synchronous Programming
  Single Program, Multiple Data
  Communicating Sequential Processes

ATPESC, 6 Aug 2014

BSP parallelism w/ domain decomposition

Partitioning of the grid
induces block structure on
the system matrix
(Jacobian)

Ω1

Ω2

Ω3

A23 A21 A22
rows assigned

to proc “2”

ATPESC, 6 Aug 2014

Recap of algorithmic agenda
n  New formulations with

  greater arithmetic intensity (flops per byte moved into and out of
registers and upper cache)
  including assured accuracy with (adaptively) less floating-point

precision
  reduced synchronization and communication

  less frequent and/or less global
  greater SIMD-style thread concurrency for accelerators
  algorithmic resilience to various types of faults

n  Quantification of trades between limiting resources
n  Plus all of the exciting analytical agendas that exascale

is meant to exploit
  “post-forward” problems: data assimilation, parameter

inversion, uncertainty quantification, optimization, etc.

ATPESC, 6 Aug 2014

Some algorithmic “points of light”
Next section flashes six “points of light” that
accomplish one or more of these agendas

²  Fast Multipole for Poisson solves
²  Algebraic Fast Multipole for variable coefficient

equilibrium problems
²  Nonlinear preconditioning for Newton’s method
²  DAG-based data flow for dense linear algebra
²  GPU implementations of dense linear algebra
²  New programming paradigms for PDE codes

ATPESC, 6 Aug 2014

Fast Multipole for Poisson solves
²  Reduce synchrony
²  Increase arithmetic intensity
²  Increase concurrency

ATPESC, 6 Aug 2014

Arithmetic intensity of numerical kernels

c/o R. Yokota, KAUST, et al.

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256
8

16

32

64

128

256

512

1024

2048

Operational intensity (flop/byte)

D
o
u
b
le

 p
re

c
is

io
n
 p

e
rf

o
rm

a
n
c
e
 (

G
fl
o
p
/s

)

F
M

M
 P

2
P

D
G

E
M

M

F
M

M
 M

2
L
 (

C
a
rt

e
s
ia

n
)

F
M

M
 M

2
L
 (

S
p
h
e
ri
c
a
l)

3
D

 F
F

T

S
te

n
c
il

S
p
M

V

Intel Sandy Bridge

AMD Abu Dhabi

IBM BG/Q

Fujitsu FX10

NVIDIA Kepler

Intel Xeon Phi

two	
 orders	
 of	
 magnitude	
 varia;on	

ATPESC, 6 Aug 2014

Hierarchical interactions of Fast Multipole

c/o R. Yokota, KAUST, et al.

ATPESC, 6 Aug 2014

Geometrical structure of Fast Multipole

c/o R. Yokota, KAUST, et al.

ATPESC, 6 Aug 2014

 Synchronization reduction – FMM

n Within an FMM application, data pipelines of
different types and different levels can be executed
asynchronously
  FMM simply adds up (hierarchically transformed)

contributions
  e.g., P2P and P2M -> M2M -> M2L -> L2L -> L2P

n Geographically distinct targets can be updated
asynchronously

ATPESC, 6 Aug 2014

Salient features of FMM
n High arithmetic intensity
n No all-to-all communication
n O(log P) messages

  with high concurrency and asynchrony among themselves

n Up to O(N) arithmetic concurrency
n Tunable granularity in the sense of “h-p”

  based on analytic “admissibility condition”

n  Inside 8 Gordon Bell Prizes, 1997-2012
n Many effective implementations on GPUs
n Fragile (based on analytical forms of operators)

ATPESC, 6 Aug 2014

Communication complexity of FMM

1998
2009
2014

ATPESC, 6 Aug 2014

FMM vs. FFT in processor scaling

! " #$ %!& $'(#
'

')&

')$

')#

')"

!

!)&

*+,-./01203/14.55.5

67
/7
88.
80.
229
49
.:
4;

<==
53.4>/780,.>?1@

Weak	
 scaling	
 of	
 a	
 vortex-­‐
formula;on	
 3D	
 Navier-­‐Stokes	

code	
 simula;ng	
 decaying	

isotropic	
 turbulence,	

referenced	
 to	
 the	
 pseudo-­‐
spectral	
 method,	
 which	
 uses	

FFT.	

FFT:	
 14%	
 parallel	

efficiency	
 at	
 4096	

processes,	
 no	
 GPU	
 use.	

FMM:	
 74%	
 going	
 from	
 one	

to	
 4096	
 processes	
 at	
 one	

GPU	
 per	
 MPI	
 process,	
 3	

GPUs	
 per	
 node.	

Largest	
 problem	
 corresponds	

to	
 a	
 4096^3	
 mesh,	
 i.e.,	
 almost	

69	
 billion	
 points	
 (about	
 17	

million	
 points	
 per	
 process).	

Run	
 on	
 the	
 TSUBAME	
 2.0	

system	
 of	
 the	
 Tokyo	
 Ins;tute	

of	
 Technology.	
 	

c/o R. Yokota, KAUST, et al.

ATPESC, 6 Aug 2014

FMM as preconditioner
n FMM is a solver for free-space problems for which

one has a Green’s function
n For finite boundaries, FMM combines with BEM
n FMM and BEM have controllable truncation

accuracies; can precondition other, different
discretizations of the same PDE

n Can be regarded as a preconditioner for “nearby”
problems, e.g., for !2 !" (1+!(!x))!

ATPESC, 6 Aug 2014

FMM’s role in solving PDEs

The preconditioner is reduced to a matvec, like the forward operator itself –
the same philosophy of the sparse approximate inverse (SPAI), but cheaper.

More concurrency, more intensity, less synchrony than ILU, MG, DD, etc.

BEM FMM

c/o H. Ibeid, KAUST, et al.

ATPESC, 6 Aug 2014

FMM/BEM preconditioning of
FEM-discretized Poisson accelerated by CG

c/o R. Yokota, KAUST, et al.

ATPESC, 6 Aug 2014 c/o R. Yokota, KAUST, et al.

FMM/BEM preconditioning of
FEM-discretized Poisson

ATPESC, 6 Aug 2014

FMM vs AMG preconditioning:
strong scaling on Stampede*

*	
 FEM	
 Poisson	
 problem,	
 Dirichlet	
 BCs	
 handled	
 via	
 BEM	
 	
 (cost	
 included)	

c/o R. Yokota, KAUST, et al.

ATPESC, 6 Aug 2014

FMM as preconditioner
n Of course, when “trapped” inside a conventional

preconditioned Krylov, FMM surrenders some
potential benefits of relaxed synchrony because of
the synchrony of the Krylov method

n Krylov methods need rework, generally, for any
preconditioner

n Pipelined CG and GMRES are included now in
PETSc and other Krylov libraries, proved
practical

ATPESC, 6 Aug 2014

Algebraic Fast Multipole for
variable coefficient equilibrium problems

²  All the benefits of Fast Multipole
 plus
²  Make Fast Multipole less fragile

ATPESC, 6 Aug 2014

Is there an algebraic FMM?
n Consider the H2 hierarchical matrix method of

Hackbusch, et al.

n Off diagonal blocks Aij ≅ Ui Sij Vj can have low rank,
based on an “admissibility condition”

n Bases can be hierarchically nested
  Ui for columns, Vj for rows

Reminder where low rank is found, e.g.,
1D Laplacian

Full	
 rank!	

Full	
 rank!	

Off	
 diagonal	
 blocks	

have	
 low	
 rank!	

Off	
 diagonal	
 blocks	

have	
 low	
 rank!	

ATPESC, 6 Aug 2014

Is there an algebraic FMM?
n  One needs to store the unreducible diagonal blocks, Aii
n  For the entire rest of the matrix, first the Sij , the Ui and Vj at

the finest level
n  Then the Eij (column basis conversion) and Fij (row basis

conversion) blocks at each level
n  Two stage compression procedure: SVD each block, then

convert to common bases

ATPESC, 6 Aug 2014

“Algebraic Fast Multipole” (AFM)
•  Can we cast general matrix operations (add, multiply,

invert, etc.) in terms of the fast multipole recursive
“tree-based” data structure?

•  Yes, after compressing the matrix in H2 form
•  presumes hierarchical low rank structure
•  may offer breakthrough in application performance
•  See Supercomput. Front. Innov. 1:62-83 (2014)

ATPESC, 6 Aug 2014

Fast matrix-vector multiply, y=Ax

ATPESC, 6 Aug 2014

Fast matrix-vector multiply, y=Ax

ATPESC, 6 Aug 2014

Optimal hierarchical algorithms
n Some optimal hierarchical algorithms

  Fast Fourier Transform (Cooley-Tukey, 1965)*
  Multigrid (Brandt, 1977)*
  Fast Multipole Method (Greengard-Rokhlin, 1985)
  Sparse grids (Zenger, 1991)*
  H-matrices (Hackbusch, 1999)
  <your generation’s method> − missing so far J

n What is the potential for reducing over-ordering
and exposing concurrency with these flop-optimal
methods?

* References to popularizing paper, not earliest conception

Scalable Hierarchical Algorithms in Extreme
Computing workshop, 4-6 May 2014

ATPESC, 6 Aug 2014

Nonlinear preconditioning
for Newton’s method

²  Reduce synchrony in frequency and scope

ATPESC, 6 Aug 2014

Reduction of domain of synchronization in
nonlinearly preconditioned Newton

•  Newton method for a global nonlinear system, F(u)=0,
–  computes a global distributed Jacobian matrix and synchronizes

globally in both the Newton step and in solving the global linear
system for the Newton

•  Nonlinearly preconditioned Newton replaces this with a
set of local problems on subsets of the global nonlinear
system
–  each local problem has only local synchronization
–  each of the linear systems for local Newton updates has only local

synchronization
–  there is still global synchronization in a number of steps,

hopefully many fewer than required in the original Newton
method

ATPESC, 6 Aug 2014

 SPE10
reservoir

model

ASPIN convergence

Newton convergence

Implemented in PETSc, as “ASPIN”

c/o L. Liu, KAUST

ATPESC, 6 Aug 2014

DAG-based data flow
for dense linear algebra

²  Reduce synchrony
²  Increase concurrency

ATPESC, 6 Aug 2014

Reducing over-ordering and synchronization
through dataflow: e.g., generalized eigensolver

c/o H. Ltaief, KAUST

ATPESC, 6 Aug 2014

Loop nests and subroutine calls, with their
over-orderings, can be replaced with DAGs

  Diagram shows a dataflow
ordering of the steps of a
4×4 symmetric
generalized eigensolver

  Nodes are tasks, color-
coded by type, and edges
are data dependencies

  Time is vertically
downward

  Wide is good; short is
good

c/o H. Ltaief, KAUST

ATPESC, 6 Aug 2014

GPU implementations of
dense linear algebra

²  Increase SIMD-style thread concurrency

ATPESC, 6 Aug 2014 c/o Ahmad Abdelfattah & Ali Charara, KAUST

Applied in European telescope (ELT)
(13X speedup - tech paper for SC’14)

ATPESC, 6 Aug 2014

n Highly optimized GEMV/SYMV kernels
n NVIDIA has adopted for its CUBLAS 6.0 library

c/o Ahmad Abdelfattah, KAUST

New linear algebra software, KAUST’s
GPU BLAS, now in NVIDIA’s CUBLAS

ATPESC, 6 Aug 2014

New programming paradigm
for PDE codes

²  Reduce synchrony

ATPESC, 6 Aug 2014

Multiphysics w/ legacy codes:
an endangered species?

n  Many multiphysics codes operate like this, where the models may
occupy the same domain in the bulk (e.g., reactive transport) or
communicate at interfaces (e.g., ocean-atmosphere)*

n  The data transfer cost represented by the blue and green arrows
may be much higher than the computation cost of the models,
even apart from first-order operator splitting error and possible
instability

Model 1

Model 2
(subcycled)

*see “Multiphysics simulations: challenges and opportunities” (IJHPCA)

ATPESC, 6 Aug 2014

Many codes have the algebraic and
software structure of multiphysics

  Exascale is motivated by these:
  uncertainty quantification, inverse problems,

optimization, immersive visualization and steering

  These may carry auxiliary data structures to/from
which blackbox model data is passed and they act
like just another “physics” to the hardware
  pdfs, Lagrange multipliers, etc.

  Today’s separately designed blackbox algorithms
for these may not live well on exascale hardware: co-
design may be required due to data motion

ATPESC, 6 Aug 2014

Multiphysics layouts must invade blackboxes

ocean
atm

ice

c/o W. D. Gropp (UIUC)

n  Each application must
first be ported to
extreme scale
(distributed, hierarchical
memory)

n  Then applications may
need to be interlaced at
the data structure level
to minimize copying and
allow work stealing at
synchronization points

ATPESC, 6 Aug 2014

ATPESC, 6 Aug 2014

How will PDE computations adapt?
n  Programming model will still be dominantly message-

passing (due to large legacy code base), adapted to
multicore or hybrid processors beneath a relaxed
synchronization MPI-like interface

n  Load-balanced blocks, scheduled today with nested loop
structures will be separated into critical and non-critical
parts

n  Critical parts will be scheduled with directed acyclic
graphs (DAGs) through dynamic languages or runtimes
  e.g., ADLB, Charm++, Quark, StarPU, OmpSs, Parallex, Argo

n  Noncritical parts will be made available for NUMA-aware
work-stealing in economically sized chunks

ATPESC, 6 Aug 2014

Adaptation to
asynchronous programming styles

n  To take full advantage of such asynchronous
algorithms, we need to develop greater
expressiveness in scientific programming
  create separate threads for logically separate tasks,

whose priority is a function of algorithmic state, not
unlike the way a time-sharing OS works

  join priority threads in a directed acyclic graph (DAG), a
task graph showing the flow of input dependencies; fill
idleness with noncritical work or steal work

ATPESC, 6 Aug 2014

n  Can write code in styles that do not require artifactual
synchronization

n  Critical path of a nonlinear implicit PDE solve is essentially
… lin_solve, bound_step, update; lin_solve, bound_step, update …

n  However, we often insert into this path things that could be done
less synchronously, because we have limited language
expressiveness
  Jacobian and preconditioner refresh
  convergence testing
  algorithmic parameter adaptation
  I/O, compression
  visualization, data mining

Evolution of Newton-Krylov-Schwarz:
breaking the synchrony stronghold

ATPESC, 6 Aug 2014

Sources of nonuniformity
n  System

  Already important: manufacturing, OS jitter, TLB/cache
performance variations, network contention,

  Newly important: dynamic power management, more soft errors,
more hard component failures, software-mediated resiliency, etc.

n  Algorithmic
  physics at gridcell/particle scale (e.g., table lookup, equation of

state, external forcing), discretization adaptivity, solver adaptivity,
precision adaptivity, etc.

n  Effects of both types are similar when it comes to waiting
at synchronization points

n  Possible solutions for system nonuniformity will improve
programmability, too

ATPESC, 6 Aug 2014

Other galaxies

ATPESC, 6 Aug 2014

Other hopeful algorithmic directions
n  74 two-page whitepapers contributed by the international

community to the Exascale Mathematics Working Group
(EMWG) at

 https://collab.mcs.anl.gov/display/examath/Submitted+Papers

n  20-21 August 2013 in Washington, DC
n  Randomized algorithms
n  On-the-fly data compression
n  Algorithmic-based fault tolerance
n  Adaptive precision algorithms
n  Concurrency from dimensions beyond space (time, phase

space, stochastic parameters)
n  etc.

ATPESC, 6 Aug 2014

Trends according to Pete Beckman, Argonne

c/o P. Beckman, Intro to this meeting

*

ATPESC, 6 Aug 2014

More trends

User-controlled data replication � System-controlled data replication �

User-controlled error handling � System-controlled error handling �

Adaptive variable precision � Default high precision �

Computing with “deltas”� Computing directly with QoI�

High order discretizations� Low order discretizations�

Exploitation of low rank� Default full rank�

An algorithmic theme: defeat the curses of dimensionality and
multiple scales with the blessings of continuity and low rank

ATPESC, 6 Aug 2014

	
 	
 	
 CS	

Math	

Applica;ons	

Math	
 &	
 CS	

enable	

Applica;ons	

drive	

U. Schwingenschloegl

A. Fratalocchi G. Schuster F. Bisetti R. Samtaney

G. Stenchikov

I. Hoteit V. Bajic M. Mai

Thank you

 ششككرراا

david.keyes@kaust.edu.sa

KAUST is
recruiting! Your

office here J

