Argonne Training Program on

EXTREME-SCALE COMPUTING August 3 - August 15, 2014

NATIONAL SARORATORY

Adaptive Linear Solvers and Eigensolvers

Jack Dongarra

University of Tennessee
Oak Ridge National Laboratory
University of Manchester

8/13/14 1

IS
<~ Dense Linear Algebra

- Common Operations

Ax=b; minllAx—>bll; Ax= Ax

A major source of large dense linear systems is problems
involving the solution of boundary integral equations.

> The price one pays for replacing three dimensions with two
is that what started as a sparse problem in O(n®) variables
is replaced by a dense problem in O(n?).

Dense systems of linear equations are found in numerous
other applications, including:

> airplane wing design;

> radar cross-section studies;

> flow around ships and other off-shore constructions:

> diffusion of solid bodies in a liquid;

> noise reduction; and ,

> diffusion of light through small particles.

e

o Existing Math Software - Dense LA

DIRECT SOLVERS License Support Type Language Mode

Real | Complex | F77 C C++ |Shared | GPU Dist
Eigen Mozilla yes X X X X
Elemental BSD yes X X X M
FLAME LGPL yes X X X X X
FLENS BSD yes X X X X
LAPACK BSD yes X X X X X
LAPACK95 BSD yes X X F95 X
MAGMA BSD yes X X X X X C/O/X
NAPACK BSD yes X X X
PLAPACK ? no X X X X M
PLASMA BSD yes X X X X X
PRISM ? no X X X M
rejtrix by-nc-sa yes X X X
Sca. APACK BSD yes X X X X M/P
Trilinos/Pliris BSD yes X X X X M
ViennaCL MIT yes X X X C/0/X

http://www.netlib.org/utk/people/JackDongarra/la-sw.html

" LINPACK, EISPACK, LAPACK, ScalLAPACK
>PLASMA, MAGMA

4

<= DLA Solvers

" We are interested in developing
Dense Linear Algebra Solvers

" Retool LAPACK and ScalLAPACK for
multicore and hybrid architectures

8/13/14

What do you mean by performance?

¢ What is a xflop/s?

> xflop/s is a rate of execution, some number of floating
point operations per second.
» Whenever this term is used it will refer to 64 bit floating point

operations and the operations will be either addition or
multiplication.

¢ What is the theoretical peak performance?

» The theoretical peak is based not on an actual ferfor'mance
from a benchmark run, but on a paper computation to
determine the theoretical peak rate of execution of floating
point operations for the machine.

> The theoretical peak performance is determined by counting
the number of floating-point additions and multiplications (in
full precision) that can be completed during a period of
time, usually the cycle time of the machine.

> For example, an Intel Xeon 5570 quad core at 2.93 GHz
can complete 4 floating point operations éper' cycle or a
theoretical peak performance of 11.72 GFlop/s per core or

46 .88 Gflop/s for the socket.

Computing Theoretical Peak

To get the number of operation per cycle per core, you need to
look for special instruction set:
— Most of the computer nowadays have FMA (Fused multiple add):
(i.e. x €x + y*z in one cycle)
— Intel Pentium and AMD Opteron have SSE2
» 2 flops/cycle DP & 4 flops/cycle SP
— Intel Xeon Nehalem & Westmire have AVX
» 4 flops/cycle DP & 8 flops/cycle SP
— Intel Xeon Sandy Bridge & Ivy Bridge have AVX
» 8 flops/cycle DP & 16 flops/cycle SP
— Intel Xeon Haswell has AVX
» 16 flops/cycle DP & 32 flops/cycle SP

— IBM PowerPC has AltiVec
» 8 flops/cycle SP
* 4 flops/cycle DP

Memory transfer

* One level of memory model on my laptop:

| 56 GFLOP/sec/core x 2 cores

w— A (Omitting latency here.)
Cycle time = 2.3 GHz g y :

Turbo Boost = 3.5 GHz

3.5 GHz*16 flops/cycle =
56 Gflop/s per core

Cache
(6 MB)
25.6 GB/sec]

Main memory

(16 GB)

The model IS simplified (see next slide) but it provides an upper bound on
performance as well. l.e., we will never go faster than what the model predicts.
(And, of course, we can go slower ...)

FMA: fused multiply-add

axpy: M T %W + | for (j=0;j<n;j++) n MUL
yli] +=a * x[i]; n ADD
2n FLOP
(without increment) n FMA
DOT: a <_ Y alpha = Oe+OO, n MUL
for (j=0;j<n;j++) n ADD
alpha +=x[i] * y[il; 2n FLOP
n FMA
(without increment)

Note: It is reasonable to expect the one loop codes shown here to perform as well as
their Level 1 BLAS counterpart (on multicore with an OpenMP pragma for example).

The true gain these days with using the BLAS is (1) Level 3 BLAS, and (2) portability.

Take two double precision vectors x and y of size
n=375,000. a <—

DOT:

Data size:

— (375,000 double) * (8 Bytes / double) = 3 MBytes
per vector

(Two vectors fit in cache (6 MBytes). OK.)

Time to move the vectors in cache:
— (6 MBytes) / (25.6 GBytes/sec) = 0.23 ms

Time to perform computation of AXPY:
— (2nflop)/ (56 Gflop/sec) = 0.01 ms

total time >time_comm + time_comp
=0.23ms + 0.01ms =0.24ms

1. The equation assumes that communication and computation do not
overlap. This assumption is hardly true. For a AXPY (without INCX), a nice
streaming/pipeline occurs. Data locality is perfect.

2. We will assume overlapping communication and computation. We are

looking for a strict lower bound, and there is no need to second guessing
and make assumptions.

total time > max (time_comm , time_comp)
= max(0.23ms, 0.01lms) =0.23ms

performance for DOT< 3.2 Gflop/s

We say that the performance operation is
communication bounded.

Peak is 56 Gflop/s

Level 1, 2 and 3 BLAS

Level 1 BLAS Matrix-Vector operations 2nfiop

— Q) y a — [
AXPY: M O‘| +| DOT:

2n memory reference
AXPY: 2n READ, n WRITE
DOT: 2n READ

RATIO: 1

N B OL- |
A

_evel 2 BLAS Matrix-Vector operations

2nZ FLOP
n2 memory references

RATIO: 2

GEMM: n
C — a A +B C

_evel 3 BLAS Matrix-Matrix operations

2n3 FLOP
3n2 memory references
3n2READ, n2 WRITE

RATIO: 2/3 n

Take three double precision matrices A, B, and C

of size n=50

' D +B
Data size:

— (500% double) * (8 Bytes / double) = 2 MBytes per
matrix

(Three matrices fit in cache (6 MBytes). OK.)

Time to move the matrices in cache:
— (6 MBytes) / (25.6 GBytes/sec) = 0.23 ms

Time to perform computation of GEMM:
— (2n3flop) / (56 Gflop/sec) = 4.46 ms

total _time > max (time_comm , time_comp)
= max(0.23ms, 4.46ms) = 4.46ms

For this example, communication time is less than 6% of the
computation time.

There is a lots of data reuse in a GEMM — 2/3n ops per data
element. We have good temporal locality.

If we assume total_time = time_comm + time_comp, we get
performance for GEMM = 53.3 Gflop/sec

(Out of 56 Gflop/sec possible, so that would be 95% peak
performance efficiency.)

Issues

 Reuse based on matrices that fit into cache.
 What if you have matrices bigger than cache?

Issues

e Reuse based on matrices that fit into cache.
 What if you have matrices bigger than cache?

 Break matrices into blocks or tiles that will fit.

— A --EEE - EE
AEE BEE

By the way
Performance for your laptop
* |f you are interested in running the Linpack
Benchmark on your system see:

https://software.intel.com/en-us/node/
157667 ?wapkw=mkl+linpack

* Also Intel has a power meter, see:

https://software.intel.com/en-us/articles/intel-
power-gadget-20

The Standard LU Factorization LINPACK
1970’s HPC of the Day: Vector Architecture

Factor column Divide by Schur Next Step
with Level 1 Pivot complement
BLAS row update

(Rank 1 update)

Main points
» Factorization column (zero) mostly sequential due to memory bottleneck
« Level 1 BLAS
» Divide pivot row has little parallelism
« Rank -1 Schur complement update is the only easy parallelize task
» Partial pivoting complicates things even further
* Bulk synchronous parallelism (fork-join)
* Load imbalance
» Non-trivial Amdahl fraction in the panel
» Potential workaround (look-ahead) has complicated implementation

C

ICLOr

Gflops

Level 1, 2 and 3 BLAS
I core Intel Xeon E5-2670 (Sandy Bridge); 2.6 GHz; Peak = 20.8 Gflop/s

20
18
16 =¢="Level 3 BLAS: DGEMM"

14
12

=="Level 2 BLAS: DGEMV"

——ie

12 Level 1 BLAS: DAXPY
2 B Vi 3.3 Gflop/s
2 ?l 1 02 Gflopss
o Wik | | .
0 1000 2000 3000 4000 5000

Matrix size

1 core Intel Xeon E5-2670 (Sandy Bridge), 2.6 GHz.

24 MB shared L3 cache, and each core has a private 256 KB L2 and 64 KB L1.
The theoretical peak per core DP is 8 flop/cycle * 2.6 GHz = 20.8 Gflop/s per core.
Compiled with gcc 4.4.6 and using MKL_composer_xe_2013.3.163

The Standard LU Factorization LAPACK
1980’°s HPC of the Day: Cache Based SMP

% %
OO OO
e 000000 ® 000000000

atatatatatatatotadoatatatata atatatatatatatatatatototat

seessveeveese Sesesaeeieveese

OO0 ottt tatatatodototatatated

atatatatsl

atatatatsl
Factor panel Triangular Schur Next Step
with Level 1,2 update complement
BLAS update

Main points
« Panel factorization mostly sequential due to memory bottleneck
« Triangular solve has little parallelism
« Schur complement update is the only easy parallelize task
« Partial pivoting complicates things even further
» Bulk synchronous parallelism (fork-join)
» Load imbalance
* Non-trivial Amdahl fraction in the panel
« Potential workaround (look-ahead) has complicated implementation

e Last Generations of DLA Software

LINPACK (70's)
(Vector operations)

LAPACK (80's)
(Blocking, cache
friendly)

ScalLAPACK (90's)
(Distributed Memory)

2D Block Cyclic Layout

Software/Algorithms follow hardware evolution in time

Rely on
- Level-1 BLAS
operations

Rely on
- Level-3 BLAS
operations

Rely on
- PBLAS Mess Passing

|| Proces: oint of view
0(0|0

w](~]
o || s =
2

noilE
w](~]
o][+]

[e]=]l=]~
|][][o

|][][o
|1]

I
|

ofl=|loff=lloff=|lof-=|o 3
B
1 E3(0Y E3(0Y E3 (Y ISR+
=5
o,
Slo | s flofs o flo]ls |2

Parallelization of LU and QR.

“ Parallelize the update:
— « Easy and done in any reasonable software.
* This is the 2/3n3 term in the FLOPs count.
» Can be done efficiently with LAPACK+multithreaded BLAS

\Y W/

dgetf2
I‘— Iu(I) l
A7 INN
dtrsm (+ dswp)
l l l l l Fork - Join parallelism
R Y — ' ‘ ‘ ‘ ‘ Bulk Sync Processing

dgemm

O-m1=
N7

o
<« Synchronization (in LAPACK LU)

GETF2 ﬂ » fork jOin
(Facior a panel | » bulk synchronous processing

!
l

/\

1111

>

1111

PLASMA LU Factorization

Dataflow Driven

A

ICLLr"

Numerical program generates tasks and

run time system executes tasks respecting

data dependences.

=

2

e

—

X
ssessfeeces
ssassfeess
00000100000
ssessfeeees
ssassfeess
00000 00000
sssssfeeces
22222122222
R
ssassfeess
0000000000

&

< Data Layout is Critical

Y

" Tile data layout where each data
tile is contiguous in memory

" Decomposed into several fine-
grained tasks, which better fit the
memory of the small core caches

PLASMA LU: Tile Algorithm and
Nested Parallelism

Operates on one, two, or three matrix tiles at a time using a
single core

— This is called a kernel; executed independently of other kernels

— Mostly Level 3 BLAS are used

Data flows between kernels as prescribed by the programmer
Coordination is done transparently via runtime scheduler
(QUARK)

— Parallelism level adjusted at runtime

— Look-ahead adjusted at runtime

Uses single-threaded BLAS with all the optimization benefits

Panel is done on multiple cores
— Recursive formulation of LU for better BLAS use
— Level 1 BLAS are faster because they work on combined cache size

" A runtime environment for the
dynamic execution of

precedence-constraint tasks
(DAGs) in a multicore machine
» Translation

> If you have a serial program that
consists of computational kernels
(tasks) that are related by data
dependencies, QUARK can help you
& execute that program (relatively
efficiently and easily) in parallel on
a multicore machine

27

{\
<-QUARK

Shared Memory Superscalar Scheduling

FOR k =0..TILES-1 Ty
ALKIK] < DPOTRF(AIKIIK]) definition — pseudocode

FOR m = k+1..TILES-1
A[m][K] < DTRSM(A[k][k] A[m][K])
FOR m =k+1..TILE
A[m][m] < DSYRK(A[m][k] A[m][m])
FOR n = k+1..m-1
A[m][n] <~ DGEMM(A[m][K], A[n][k], A[m][n])

ICL

The Purpose of a QUARK Runtime

"Objectives

“Methodology

> High utilization of each core
> Scaling to large number of cores P
» Synchronization reducing algorithms

> Dynamic DAG scheduling (QUARK)
> Explicit parallelism

> Implicit communication

> Fine granularity / block data layout

"Arbitrary DAG with dynamic SCthUling

DAG scheduled
parallelism

Vir

Fork-join parallelism
Notice the synchronization

penalty in the presence of
heterogeneity.

29

‘ @@I@Q,L,
/@S ‘égzzae &&*

b PLASMA Local Scheduling

Dynamic Scheduling: Sliding Window

 DAGs get very big, very
fast

e So windows of active
tasks are used; this

means no global critical
path

o Matrix of NBxNB tiles;
NB3 operation

« NB=100 gives 1 million
tasks

7
L4

I/

b PLASMA Local Scheduling

Dynamic Scheduling: Sliding Window

 DAGs get very big, very
fast

e So windows of active
tasks are used; this

means no global critical
path

o Matrix of NBxNB tiles;
NB3 operation

« NB=100 gives 1 million
tasks

[

b PLASMA Local Scheduling

Dynamic Scheduling: Sliding Window

 DAGs get very big, very
fast

e So windows of active
tasks are used; this

means no global critical
path

o Matrix of NBxNB tiles;
NB3 operation

« NB=100 gives 1 million
¢
tasks

b PLASMA Local Scheduling

Dynamic Scheduling: Sliding Window

 DAGs get very big, very
fast

e So windows of active
tasks are used; this

means no global critical
path

o Matrix of NBxNB tiles;
NB3 operation

« NB=100 gives 1 million
o tasks

N

< Example: QR Factorization

FOR k = 0 .. SIZE - 1
Alk]Lk], TLk][k] <- GEQRT(A[k][k])
FOR m = k+1 .. SIZE - 1

Alk]1L[k]|Up, A[mI[k], T[m][k] <-
TSORT(ATk][kI[Up, A[m][k], T[m][k])

FOR n = k+1 .. SIZE - 1
ALk][n] <- (ATk][k]|Low, T[kI[k], A[kl[n])
FOR m = k+1 .. SIZE - 1

Alkl[n], A[m][n] <-
TSMOR(A[m][k], TImI[kI, Alk]l[n], A[m][n])

GEQRT

TSQRT

UNMQR

TSMQR

“Input Format - Quark (PLASMA)

for (k =0; k < A.mt; k++) {
Insert_Task(zgeqrt, A[k][k], INOUT,
T[k][k], OUTPUT);
for (m = k+1; m < A.mt; m++) { °
Insert_Task(ztsqrt, A[k][k], INOUT | REGION_D|REGION_U,
A[m][k], INOUT | LOCALITY,
T[m][k], OUTPUT);

}
for (n = k+1; n < A.nt; n++) {
Insert_Task(zunmqr, A[k][k], INPUT | REGION_L,
T[k][k], INPUT,
A[k][m], INOUT);
for (m = k+1; m < A.mt; m++) { .
Insert_Task(ztsmqr, A[k][n], INOUT,
A[m][n], INOUT | LOCALITY,
A[m][k], INPUT,
T[m][k], INPUT);

Sequential C code

Annotated through
QUARK specific syntax

Insert_Task
INOUT, OUTPUT, INPUT

REGION_L, REGION_U,
REGION D, ...

LOCALITY

Executes thru the QUARK RT to
run on multicore SMPs

N
.cf Algorithms [PLASMA [scdz]potrf[Tile][Async]() }
Cholesky

e Algorithm
e equivalent to LAPACK

e Numerics
e same as LAPACK

e Performance

e comparable to vendor on few cores

much better than vendor on many cores

Cholesky Performance (double prec.)

AMD Istanbul, 2.8 GHz, 8 sockets (48 cores)

250
PLASMA

200
MKL

150

Gflop/s

100

50
»—3y—% LAPACK

0 2000 4000 6000 8000 10000 12000

Size

N
<-Algorithms
LU

[PLASMA [scdz]getrf[_Tile][Async]() }

e Algorithm

Gflop/s

e equivalent to LAPACK

e Ssame pivot vector

e same L and U factors

e same forward substitution procedure

Numerics

e same as LAPACK

Performance

e comparable to vendor on few cores

e much better than vendor on many cores 16 Sandy Bridge cores
280

260

240

220

200 A 7H /,

180} L/bS

1eo} /]

140}

120

100 | —&— partial 100 A/ —&— partial

o0 el 0rY B e
60 —*—PRBT 60 & —*—PRBT
40 i nMoK—fivoting 40 i nMoK—If)ivoting
20 20

2K 4K 6K BK 10K 14K 18K 22K 26K 30K 2K 4K 6K 8K 10K 14K 18K 22K 26K 80K
Matrix dimension (n=m) Matrix dimension (n=m)

Factorization alone, using16 cores Factorization and solve with iterative refinement, using 16 cores

e}
|cT Algorithms [PLASMA [scdz]geqrt[Tile][Async]() }

incremental QR Factorization

e Algorithm
e the same R factor as LAPACK (absolute values)

‘..... o different set of Householder reflectors
e different Q matrix

o different Q generation / application procedure

G
G
.----- e Numerics

e same as LAPACK

e Performance

e comparable to vendor on few cores

e much better than vendor on many cores

e}
|cT Algorithms [PLASMA [scdz]geqrt[Tile][Async]())

incremental QR Factorization (Communication Avoiding) -

PLASMA_HOUSEHOLDER_MODE,
PLASMA_TREE_HOUSEHOLDER);

kPLASMA Set

e Algorithm
e the same R factor as LAPACK (absolute values)

o different set of Householder reflectors
e different Q matrix

o different Q generation / application procedure

e Numerics
e same as LAPACK

e Performance

e absolutely superior for tall matrices

processes

Communication Avoiding QR

1

R(RgY)

(B

0O - ;
QR(I) —> (RN) —’[QR(e | —> (N ’] _-)[Q

Quad-socket, quad-core machine Intel Xeon
EMT64 E7340 at 2.39 GHz.

Theoretical peak is 153.2 Gflop/s with 16

cores.
Matrix size 51200 by 3200

R
QT LN PNCUE BN

A= Q1Q2Q3R =QR

Theoretical Peak

DGEMM Peak

——T SP-CAQR

. / |
~—0 : !
) = | — Em(=°')—"(R" '}I
160
.L / 140
CR() —> (R, ’\ / 120
100
3
o 80
[Y 2

_/«‘bﬂmm

60

‘T ScaLAPACK

[LAPACK |

4 6 8 10 12
Number of Column Tiles (Width)

14 16

{\
<-Algorithms

three-stage symmetric EVP

{ PLASMA _[scdz]syev][Tile][Async]() }

Speedup: Time(MKL)/Time(PLASMA)

10

e Algorithm
e two-stage tridiagonal reduction + QR Algorithm

o fast eigenvalues, slower eigenvectors

(possibility to calculate a subset)

e Numerics
e same as LAPACK

e Performance

e comparable to MKL for very small problem°s‘° R

e absolutely superior for larger problems

PLASMA symmetric Eigenvalue problem

- A-DSYTRD

—4—DSYEVD noVec
—a— DSYEVR 20% V
DSYEVD allV

8k

10k

12k 14k
Matrix size

16k

18k

20k

22k

24k

26k

16 cores of Intel Sandy Bridge

N

.cf Al g (o) rith ms [PLASMA [scdz]gesvd[Tile][Async]() }
three-stage SVD

e Algorithm
e two-stage bidiagonal reduction + QR iteration

\ o fast singular values, slower singular vectors

N

(possibility of calculating a subset)

A
A

e Numerics
e same as LAPACK

A
N |
L]
HENE

e Performance

e comparable with MKL for very small problems

e absolutely superior for larger problems

10— T T T T T T T T T T T 6
—a&— 2-stages / MKL (DGEBRD) —A— 2-stages / MKL (DGEBRD)
o|| —=—2-stages / MKL (DGESDD NO Vectors) i 5.5[1 —=— 2-stages / MKL (DGESDD NO Vectors)
—e— 2-stages / MKL (DGESDD 20% Vectors) sH —e— 2-stages / MKL (DGESDD 20% Vectors)
—o— 2. ges / MKL (DGESDD ALL Vectors) | —0—2 ges / MKL (DGESDD ALL Vectors)

4»
a
a 6 %3.5—
3
. 3
7]

L 1) ! 1 |) ! L | 1 L L
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k
Matrix size

. s n n . L L s L n n .
4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k

2k
DGESDD on 48 AMD cB/eg DGESDD on 16 Sandy Bridge cores

£ Pipelining: Cholesky Inversion

3 Steps: Factor, Invert L, Multiply L’s

L e B

I-} e |
A

BAEATS Rt oo
i I mm e .'.'.'.h... 1 1 |?I“

A i

| u |] oo

<. $t2' R
o

'hLI L o o D O

i @

TRTRI

,

LAUUM

48 cores
POTRF, TRTRI and LAUUM.
The matrix is 4000 x 4000,tile size is 200 x 200,

POTRF+TRTRI+LAUUM: 25 (71-3)
Cholesky Factorization alone: 3t-2

Pipelined: 18 (3t+6)

N

A

“” Random Butterfly Pivoting (RBP)

 Tosolve Ax=b:
= Compute A, = UTAV, with U and V random matrices

» Factorize A, without pivoting (GENP)
= Solve A,y = UT b and then Solve x =Vy
U and V are Recursive Butterfly Matrices

= Randomization is cheap (O(n?) operations)
= GENP is fast (“Cholesky” speed, take advantage of

the GPU)
= Accuracy is in practice similar to GEPP (with iterative
refi nement) but A butterfly matrix is defined as any n-by-n matrix of the form:
, [X X]
1 /R S
Think of this as a preconditioner step. B= V2 (R -S)
Goal: Transform A into a matrix that would be sufficiently where A and S are random diagonal matrices.
‘random” so that, with a probability close to 1, pivoting is
AN

not needed. B= <\)

v PLASMA RBT execution trace

IcLOr"

| | |
0O O e A e R 3
L T A O] T P e R
B I T 2 T A T T Ae
L e TR G AV R E T/ ST
| AR YN FARRI TR ECTER A AT A R DT R T

O 7 e 2 T e i o
L T T R T G T
DA B T] T Ay A
LB T e e eI v
e e e T T

| LA |

- with n=2000, nb=250 on 12-core AMD Opteron -

Partial randomization (i.e. gray) is inexpensive.
Factorization without pivoting is scalable without synchronizations.

ICL

“Mixed Precision Methods

* Mixed precision, use the lowest
precision required to achieve a given
accuracy outcome

= [mproves runtime, reduce power
consumption, lower data movement

= Reformulate to find correction to
solution, rather than solution; Ax rather
than x.

S (xi)

S (xi)

46 : - i]: ;(();ii))

Xi+1 = Xj —

N

< |dea Goes Something Like This...

o Exploit 32 bit floating point as much as
possible.

= Especially for the bulk of the computation

e Correct or update the solution with selective
use of 64 bit floating point to provide a
refined results

e Intuitively:
= Compute a 32 bit result,

= Calculate a correction to 32 bit result using
selected higher precision and,

= Perform the update of the 32 bit results with the
correction using high precision.

47

N
~ Mixed-Precision lterative Refinement

 Iterative refinement for dense systems, Ax = b, can work this

way.
L U = lu(A) o(n’)
x = L\(U\b) o(n?
r=>b- Ax o(n?)
WHILE || r || not small enough
z = L\(U\r) o(n?)
X=X+2Z o(n’)
r=b- Ax o(n?)
END

= Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.

~ Mixed-Precision lterative Refinement

Iterative refinement for dense systems, Ax = b, can work this

way.
L U = lu(A) SINGLE o(n’)
x = L\(U\b) SINGLE o(n?
r=b- Ax DOUBLE o(n?)
WHILE || r || not small enough
z = L\(U\r) SINGLE o(n?)
X=X+2Z DOUBLE o(n’)
r=b- Ax DOUBLE o(n?)
END

= Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.

= |t can be shown that using this approach we can compute the solution
to 64-bit floating point precision.

Requires extra storage, total is 1.5 times normal;
O(n3) work is done in lower precision

O(n?) work is done in high precision

Problems if the matrix is ill-conditioned in sp; O(108)

~. Mixed precision iterative refinement

Solving general dense linear systems using mixed precision iterative refinement

1600

1400 =4SP Solve

1200
-
1000 DP Solve

800

GFlop/s

600

400

GPU K20c (13 MP @0.7 GHz, peak 1165 GFlop/s)
CPU Genuine Intel (2x8 @2.60GHz, peak 333 GFlop/s)

200

0

D A O A QO O O N M O
X O N9 O O O O O O
F S S & F S

Matrix size

~. Mixed precision iterative refinement

Solving general dense linear systems using mixed precision iterative refinement

1600
=*=SP Solve
1400
<#-DP Solve (MP
1200 lter.Ref.)
1000 -#-DP Solve
2]
3
O 800
L
O 600
400
GPU K20c (13 MP @0.7 GHz, peak 1165 GFlop/s)
CPU Genuine Intel (2x8 @2.60GHz, peak 333 GFlop/s)
200
0
© A o QO Q Q Q QO
D N O Q S O Q" & O
TS S F S

Matrix size

¢. Critical Issues at Peta & Exascale for

IcLOr-

Algorithm and Software Design

* Synchronization-reducing algorithms

= Break Fork-Join model
« Communication-reducing algorithms

= Use methods which have lower bound on communication
* Mixed precision methods

= 2x speed of ops and 2x speed for data movement

* Autotuning

= Today’s machines are too complicated, build “smarts” into
software to adapt to the hardware

« Fault resilient algorithms
= Implement algorithms that can recover from failures/bit flips

« Reproducibility of results

= Today we can’t guarantee this. We understand the issues,
but some of our “colleagues” have a hard time with this.

ICL

Collaborators / Software / Support

. PLASMA e el FUJITSU
http://icl.cs.utk.edu/plasma/ RVIDIA. nag@ AMDZ
¢
- MAGMA &\ The MathWorks

http://icl.cs.utk.edu/magmal/

'_; U.S. DEPARTMENT OF
A'__‘: ‘_~.-'J ,

. Quark (RT for Shared Memory) @f JENERGY

http://icl.cs.utk.edu/quark/

<

. Collaborating partners
University of Tennessee, Knoxville

. PaRSEC(Parallel Runtime Scheduling ~ jiiversy of Gatforna. Serkeley

and Execution Control
MAGMA PLASMA

http://icl.cs.utk.edu/parsec/ EYEE [E:3[E
x
56 o

