
Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

A Performance Tuning Methodology: From the System
Down to the Hardware yDiving Deeper

29

Jackson Marusarz

Intel Corporation

ATPESC 2014

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization: A Top -down Approach

30

System

Application

Processor

H/W tuning:

BIOS (TB, HT)

Memory

Network I/O

Disk I/O

OS tuning:
Page size
Swap file
RAM Disk
Power settings
Network protocols

Better application design :

Parallelization

Fast algorithms / data bases

Programming language and RT libs

Performance libraries

Driver tuning

Tuning for Microarchitecture:

Compiler settings/ Vectorization

Memory/Cache usage

CPU pitfalls

O
S

, S
y
s
te

m

E
x
p

e
rtis

e
S

W
/
u

A
rc

h

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Performance Tuning yDiving Deeper
Perform System and Algorithm tuning first

This presentation uses screenshots from IntelÈ VTuneÊ Amplifier XE
The concepts are widely applicable

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Algorithm Tuning
A Few Words

¤There is no one-size fits all solution to algorithm tuning

¤Algorithm changes are often incorporated into the fixes
for common issues

¤Some considerations:
ïParallelizable and scalable over fastest serial implementations

ïCompute a little more to save memory and communication

ïData locality -> vectorization

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Compiler Performance Considerations

Feature Flag

Optimization levels -O0, O1, O2, O3

Vectorization -xHost, -xavx# áðß+

Multi -file inter -procedural optimization -ipo

Profile guided optimization (multi -step
build)

-prof -gen

-prof -use

Optimize for speed across the entire
program

**warning: -âÝïð àáâĊê ßäÝêãáï ëòáî ðåéá

-fast
(same as: -ipo yO3 -no-prec-div -
static -xHost)

Automatic parallelization -parallel

This is from the Intel compiler reference, but others are similar

Å Compilers can provide considerable performance gains when used intelligently
Å Consider compiling hot libraries and routines with more optimizations
Å Always check documentation for accuracy effects
Å This could be a day-long talk on its own

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

MPI Tuning

34

Is your
application

MPI-
bound?

Is your
application

CPU-bound?

Resource usage

Largest MPI
consumers

Next Steps

Intel® Trace Analyzer and Collector: http:// intel.ly/traceanalyzer -collector

Å Find the MPI/OpenMP sweet spot
Å Determine how much memory do your ranks/threads share
Å Communication and synchronization overhead

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/
http://intel.ly/traceanalyzer-collector

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Common Scaling Barriers

¤Static Thread Scheduling

¤Load Imbalance

¤Lock Contention

You paid for the nodes, so use them!

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Static Thread Scheduling

ƛ

NUM_THREADS = 4;

pthread_t threads[NUM_THREADS];

int rc ;

long t;

int chunk = limit/NUM_THREADS;

for (t=0;t< NUM_THREADS;t++){

range *r = new range();

r - >begin = t*chunk;

r - >end = t*chunk+chunk - 1;

rc = pthread_create (&threads[t], NULL, FindPrimes , (void *)r);

}

ƛ

Å Statically determining thread counts does not scale
Å Core counts are trending higher
Å Designs must consider future hardware
Å Commonly found in legacy applications

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Static Thread Scheduling

ƛ

NUM_THREADS = 4;

pthread_t threads[NUM_THREADS];

int rc ;

long t;

int chunk = limit/NUM_THREADS;

for (t=0;t< NUM_THREADS;t++){

range *r = new range();

r - >begin = t*chunk;

r - >end = t*chunk+chunk - 1;

rc = pthread_create (&threads[t], NULL, FindPrimes , (void *)r);

}

ƛ

Å Statically determining thread counts does not scale
Å Core counts are trending higher
Å Designs must consider future hardware
Å Commonly found in legacy applications

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Static Thread Scheduling

Å Statically determining thread counts does not scale
Å Core counts are trending higher
Å Designs must consider future hardware
Å Commonly found in legacy applications

ƛ

NUM_THREADS = 4;

pthread_t threads[NUM_THREADS];

int rc ;

long t;

int chunk = limit/NUM_THREADS;

for (t=0;t< NUM_THREADS;t++){

range *r = new range();

r - >begin = t*chunk;

r - >end = t*chunk+chunk - 1;

rc = pthread_create (&threads[t], NULL, FindPrimes , (void *)r);

}

ƛ

Create Threads Dynamically - NUM_THREADS = get_num_procs ();

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Load Imbalance

Å ÆõêÝéåßÝèèõ àáðáîéåêåêã ðäîáÝà ßëñêð äáèìï+ Þñð åïêĊð Ý ïåèòáî bullet
Å Workload distribution must be intelligent
Å Threads should be kept busy
Å Maximize hardware utilization

Ideally all threads would
complete their work at the
same time

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Load Imbalance

Å ÆõêÝéåßÝèèõ àáðáîéåêåêã ðäîáÝà ßëñêð äáèìï+ Þñð åïêĊð Ý ïåèòáî bullet
Å Workload distribution must be intelligent
Å Threads should be kept busy
Å Maximize hardware utilization

The key to balancing loads is to use a threading model that supports tasking
and work stealing

Some examples:

ÅOpenMP* dynamic scheduling

ÅIntel Threading® Building Blocks

ÅËêðáèü Ååèçø Òèñï

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Lock Contention

Å A well balanced application can still suffer from shared -resource competition
Å Synchronization is a necessary component
Å Excessive overhead can destroy performance gains
Å Numerous choices for where and how to synchronize

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Lock Contention

Å A well balanced application can still suffer from shared -resource competition
Å Synchronization is a necessary component
Å Excessive overhead can destroy performance gains
Å Numerous choices for where and how to synchronize

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Lock Contention

Å A well balanced application can still suffer from shared -resource competition
Å Synchronization is a necessary component
Å Excessive overhead can destroy performance gains
Å Numerous choices for where and how to synchronize

Some solutions to consider :

ÅLock granularity

ÅAccess overhead vs. wait time

ÅUsing lock free or thread safe data structures

tbb ::atomic< int > primes;

tbb :: concurrent_vector <int > all_primes ;

ÅLocal storage and reductions

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Microarchitectural Tuning

¤Intel uArch specific tuning

¤After high -level changes look at PMUs for more tuning
ïFind tuning guide for your hardware at www.intel.com/vtune -

tuning -guides

¤Every architecture has different events and metrics

¤We try to keep things as consistent as possible

¤Start with the Top-Down Methodology
ïIntegrated with the tuning guides

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/
http://www.intel.com/vtune-tuning-guides

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

¤Registers on Intel CPUs to count architectural events
ïE.g. Instructions, Cache Misses, Branch Mispredict

¤Events can be counted or sampled
ïSampled events include Instruction Pointer

¤Raw event counts are difficult to interpret
ïUse a tool like VTune or Perf with predefined metrics

45

Introduction to Performance Monitoring Unit
(PMU)

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Hardware Definitions

¤ Front -end:

ï Fetches the program code

ï Decodes them into low -level hardware operations -
micro -ops (uops)

ï uops are fed to the Back-end in a process called
allocation

ï Can allocate 4 uops per cycle

¤ Back-end:

ï Monitors when a ñëìĊïdata operands are available

ï Executes the uop in an available execution unit

ï The completion of a ñëìĊïexecution is called
retirement, and is where results of the uop are
committed to the architectural state

ï Can retire 4 uops per cycle

¤ Pipeline Slot:

ï Represents the hardware resources needed to
process one uop

Background

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Hardware Definitions

¤ Front -end:

ï Fetches the program code

ï Decodes them into low -level hardware operations -
micro -ops (uops)

ï uops are fed to the Back-end in a process called
allocation

ï Can allocate 4 uops per cycle

¤ Back-end:

ï Monitors when a ñëìĊïdata operands are available

ï Executes the uop in an available execution unit

ï The completion of a ñëìĊïexecution is called
retirement, and is where results of the uop are
committed to the architectural state

ï Can retire 4 uops per cycle

¤ Pipeline Slot:

ï Represents the hardware resources needed to
process one uop

Öäáîáâëîá# éëàáîê ČÄåã Åëîáč ÅÒ×ï äÝòá 1 ČÒåìáèåêá Õèëðïč ìáî ßõßèá

Background

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

The Top-Down Characterization

¤Each pipeline slot on each cycle is classified into 1 of 4
categories.

¤For each slot on each cycle:

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

The Top-Down Characterization

ÅDetermines the hardware bottleneck in an application

ÅSum to 1.0

Å×êåð åï ČÒáîßáêðÝãá ëâ ðëðÝè Òåìáèåêá Õèëðïč

ÅThis is the core of the new Top -Down characterization

ÅEach category is further broken down depending on available
events

ÅTop-Down Characterization White Paper
Å http ://software.intel.com/en -us/articles/how -to-tune-applications -using-a-top -down-characterization -of-

microarchitectural -issues

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/how-to-tune-applications-using-a-top-down-characterization-of-microarchitectural-issues

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Tuning Guide Recommendations

Expected Range of Pipeline Slots in this Category, for a
Hotspot in a Well - tuned:

Category
Client/
Desktop
application

Server/ Database/
Distributed
application

High Performance
Computing (HPC)
application

Retiring 20 -50% 10 -30% 30 -70%

Back -End
Bound

20 -40% 20 -60% 20 -40%

Front -End
Bound

5-10% 10 -25% 5-10%

Bad
Speculation

5-10% 5-10% 1-5%

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Efficiency Method: % Retiring Pipeline Slots

¤Why: Helps you understand how efficiently your app is using
the processors

