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A Performance Tuning Methodology: From the System 
Down to the Hardware yDiving Deeper
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Optimization: A Top -down Approach
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System

Application

Processor

H/W tuning:

BIOS (TB, HT)

Memory 

Network I/O 

Disk I/O

OS tuning:
Page size
Swap file
RAM Disk
Power settings
Network protocols

Better application design :

Parallelization

Fast algorithms / data bases

Programming language and RT libs

Performance libraries

Driver tuning

Tuning for Microarchitecture:

Compiler settings/ Vectorization

Memory/Cache usage

CPU pitfalls
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Performance Tuning yDiving Deeper
Perform System and Algorithm tuning first 

This presentation uses screenshots from IntelÈ VTuneÊ Amplifier XE
The concepts are widely applicable
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Algorithm Tuning
A Few Words

¤There is no one-size fits all solution to algorithm tuning

¤Algorithm changes are often incorporated into the fixes 
for common issues

¤Some considerations:
ïParallelizable and scalable over fastest serial implementations

ïCompute a little more to save memory and communication

ïData locality -> vectorization
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Compiler Performance Considerations

Feature Flag

Optimization levels -O0, O1, O2, O3

Vectorization -xHost, -xavx# áðß+

Multi -file inter -procedural optimization -ipo

Profile guided optimization (multi -step 
build)

-prof -gen

-prof -use

Optimize for speed across the entire 
program

**warning: -âÝïð àáâĊê ßäÝêãáï ëòáî ðåéá

-fast 
(same as: -ipo yO3 -no-prec-div -
static -xHost)

Automatic parallelization -parallel

This is from the Intel compiler reference, but others are similar

Å Compilers can provide considerable performance gains when used intelligently
Å Consider compiling hot libraries and routines with more optimizations
Å Always check documentation for accuracy effects
Å This could be a day-long talk on its own
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MPI Tuning

34

Is your 
application 

MPI-
bound?

Is your 
application 

CPU-bound?

Resource usage

Largest MPI 
consumers

Next Steps

Intel® Trace Analyzer and Collector: http:// intel.ly/traceanalyzer -collector

Å Find the MPI/OpenMP sweet spot
Å Determine how much memory do your ranks/threads share
Å Communication and synchronization overhead   
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Common Scaling Barriers

¤Static Thread Scheduling

¤Load Imbalance

¤Lock Contention

You paid for the nodes, so use them!
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Static Thread Scheduling

ƛ

NUM_THREADS = 4;

pthread_t threads[NUM_THREADS];

int rc ;

long t;

int chunk = limit/NUM_THREADS;

for (t=0;t< NUM_THREADS;t++){

range *r = new range();

r - >begin = t*chunk;

r - >end = t*chunk+chunk - 1;

rc = pthread_create (&threads[t], NULL, FindPrimes , ( void *)r);

}

ƛ

Å Statically determining thread counts does not scale
Å Core counts are trending higher
Å Designs must consider future hardware
Å Commonly found in legacy applications
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Static Thread Scheduling

Å Statically determining thread counts does not scale
Å Core counts are trending higher
Å Designs must consider future hardware
Å Commonly found in legacy applications

ƛ

NUM_THREADS = 4;

pthread_t threads[NUM_THREADS];

int rc ;

long t;

int chunk = limit/NUM_THREADS;

for (t=0;t< NUM_THREADS;t++){

range *r = new range();

r - >begin = t*chunk;

r - >end = t*chunk+chunk - 1;

rc = pthread_create (&threads[t], NULL, FindPrimes , ( void *)r);

}

ƛ

Create Threads Dynamically - NUM_THREADS = get_num_procs ();
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Load Imbalance

Å ÆõêÝéåßÝèèõ àáðáîéåêåêã ðäîáÝà ßëñêð äáèìï+ Þñð åïêĊð Ý ïåèòáî bullet
Å Workload distribution must be intelligent
Å Threads should be kept busy 
Å Maximize hardware utilization

Ideally all threads would 
complete their work at the 
same time
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Load Imbalance

Å ÆõêÝéåßÝèèõ àáðáîéåêåêã ðäîáÝà ßëñêð äáèìï+ Þñð åïêĊð Ý ïåèòáî bullet
Å Workload distribution must be intelligent
Å Threads should be kept busy 
Å Maximize hardware utilization

The key to balancing loads is to use a threading model that supports tasking 
and work stealing

Some examples:

ÅOpenMP* dynamic scheduling 

ÅIntel Threading® Building Blocks

ÅËêðáèü Ååèçø Òèñï 
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Lock Contention

Å A well balanced application can still suffer from shared -resource competition
Å Synchronization is a necessary component
Å Excessive overhead can destroy performance gains
Å Numerous choices for where and how to synchronize 
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Lock Contention

Å A well balanced application can still suffer from shared -resource competition
Å Synchronization is a necessary component
Å Excessive overhead can destroy performance gains
Å Numerous choices for where and how to synchronize 

Some solutions to consider :

ÅLock granularity

ÅAccess overhead vs. wait time

ÅUsing lock free or thread safe data structures

tbb ::atomic< int > primes; 

tbb :: concurrent_vector <int > all_primes ;

ÅLocal storage and reductions
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Microarchitectural Tuning

¤Intel uArch specific tuning

¤After high -level changes look at PMUs for more tuning
ïFind tuning guide for your hardware at www.intel.com/vtune -

tuning -guides

¤Every architecture has different events and metrics

¤We try to keep things as consistent as possible

¤Start with the Top-Down Methodology
ïIntegrated with the tuning guides
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¤Registers on Intel CPUs to count architectural events
ïE.g. Instructions, Cache Misses, Branch Mispredict

¤Events can be counted or sampled
ïSampled events include Instruction Pointer

¤Raw event counts are difficult to interpret
ïUse a tool like VTune or Perf with predefined metrics 

45

Introduction to Performance Monitoring Unit 
(PMU)
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Hardware Definitions

¤ Front -end: 

ï Fetches the program code

ï Decodes them into low -level hardware operations -
micro -ops (uops)

ï uops are fed to the Back-end in a process called 
allocation

ï Can allocate 4 uops per cycle

¤ Back-end: 

ï Monitors when a ñëìĊïdata operands are available

ï Executes the uop in an available execution unit

ï The completion of a ñëìĊïexecution is called 
retirement, and is where results of the uop are 
committed to the architectural state

ï Can retire 4 uops per cycle

¤ Pipeline Slot: 

ï Represents the hardware resources needed to 
process one uop

Background
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Öäáîáâëîá# éëàáîê ČÄåã Åëîáč ÅÒ×ï äÝòá 1 ČÒåìáèåêá Õèëðïč ìáî ßõßèá

Background

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. 

*Other brands and names are the property of their respective owners.

The Top-Down Characterization

¤Each pipeline slot on each cycle is classified into 1 of 4 
categories.

¤For each slot on each cycle:
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The Top-Down Characterization

ÅDetermines the hardware bottleneck in an application

ÅSum to 1.0

Å×êåð åï ČÒáîßáêðÝãá ëâ ðëðÝè Òåìáèåêá Õèëðïč

ÅThis is the core of the new Top -Down characterization

ÅEach category is further broken down depending on available 
events 

ÅTop-Down Characterization White Paper
Å http ://software.intel.com/en -us/articles/how -to-tune-applications -using-a-top -down-characterization -of-

microarchitectural -issues
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Tuning Guide Recommendations

Expected Range of Pipeline Slots in this Category, for a 
Hotspot in a Well - tuned:

Category
Client/ 
Desktop 
application

Server/ Database/ 
Distributed 
application

High Performance 
Computing (HPC) 
application

Retiring 20 -50% 10 -30% 30 -70%

Back -End 
Bound

20 -40% 20 -60% 20 -40%

Front -End 
Bound

5-10% 10 -25% 5-10%

Bad 
Speculation

5-10% 5-10% 1-5%
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Efficiency Method: % Retiring Pipeline Slots

¤Why: Helps you understand how efficiently your app is using 
the processors


