
spcl.inf.ethz.ch

@spcl_eth

TORSTEN HOEFLER

Interconnects and Architectural Impacts

(on performance, of course )

Argonne Training Program on Extreme-Scale Computing (ATPESC 2014)

August 4th 2014, St. Charles, IL, USA

spcl.inf.ethz.ch

@spcl_eth

 My dream: provably optimal performance (time and energy)

 From problem to machine code

 Will demonstrate techniques & insights

 And obstacles 

Model-based Performance Engineering

2

Design System

Model

Define Problem

Find (close to)

optimal Solution

Implement and

Test

Refine System

Model

spcl.inf.ethz.ch

@spcl_eth

3

State of the Art Performance Modeling

Locality

Computational

Complexity

Input/Output

Complexity

Red/Blue

Pebble Game

Communication-

reducing algorithms

Cache-optimized

algorithms

Detailed (Automated)

Architecture Models

Model-driven

Algorithm Design

spcl.inf.ethz.ch

@spcl_eth

Example: Message Passing, Log(G)P

CACM 1996

Optimal

Solution [1]

Broadcast

Problem

4 [1]: Karp et al.: “Optimal broadcast and summation in the LogP model”, SPAA 1993

spcl.inf.ethz.ch

@spcl_eth

Hardware Reality

POWER 7, 8 cores, source: IBM Xeon Phi, 64 cores, source: Intel Interlagos, 8/16 cores, source: AMD

5

spcl.inf.ethz.ch

@spcl_eth

Hardware Reality

POWER 7, 8 cores, source: IBM Xeon Phi, 64 cores, source: Intel Interlagos, 8/16 cores, source: AMD

InfiniBand, sources: Intel, Mellanox BG/Q, Cray Aries, sources: IBM, Cray
Kepler GPU, source: NVIDIA

6

spcl.inf.ethz.ch

@spcl_eth

Hardware Reality

POWER 7, 8 cores, source: IBM Xeon Phi, 64 cores, source: Intel Interlagos, 8/16 cores, source: AMD

InfiniBand, sources: Intel, Mellanox BG/Q, Cray Aries, sources: IBM, Cray
Kepler GPU, source: NVIDIA

7

spcl.inf.ethz.ch

@spcl_eth

 Remember:

 Write Back?

 Write Through?

 Cache coherence requirements

A memory system is coherent if it guarantees the following:

 Write propagation (updates are eventually visible to all readers)

 Write serialization (writes to the same location must be observed in order)

Everything else: memory model issues (not in this talk, very complex)

8

Caching Strategies (repeat)

spcl.inf.ethz.ch

@spcl_eth

9

Write Through Cache
(initially X=0 in memory)

1. CPU0 reads X from memory

• loads X=0 into its cache
2. CPU1 reads X from memory

• loads X=0 into its cache
3. CPU0 writes X=1

• stores X=1 in its cache
• stores X=1 in memory

4. CPU1 reads X from its cache
• loads X=0 from its cache
Incoherent value for X on CPU1

CPU1 may wait for update!

Requires write propagation!

spcl.inf.ethz.ch

@spcl_eth

10

Write Back Cache
(initially X=0 in memory)

1. CPU0 reads X from memory

• loads X=0 into its cache
2. CPU1 reads X from memory

• loads X=0 into its cache
3. CPU0 writes X=1

• stores X=1 in its cache
4. CPU1 writes X =2

• stores X=2 in its cache
5. CPU1 writes back cache line

• stores X=2 in in memory
6. CPU0 writes back cache line

• stores X=1 in memory
Later store X=2 from CPU1 lost

 Requires write serialization!

spcl.inf.ethz.ch

@spcl_eth

 Assume C99:

 Two threads:

 a=b=0 and struct twoint aligned at a 64-Bytes cacheline boundary

 Thread 0: write a=1

 Thread 1: write b=1

 Assume non-coherent write back cache

 What may end up in main memory?

11

A simple example

struct twoint {

 int a;

 int b;

}

spcl.inf.ethz.ch

@spcl_eth

 Programmer cannot deal with unpredictable behavior!

 Cache controller maintains data integrity

 All writes to different locations are visible

 Snooping

 Shared bus or (broadcast) network

 Cache controller “snoops” all transactions

 Monitors and changes the state of the cache’s data

 Directory-based

 Record information necessary to maintain coherence

 E.g., owner and state of a line etc.

12

Cache Coherence Protocol

Fundamental Mechanisms

spcl.inf.ethz.ch

@spcl_eth

 Problem 1: stale reads

 Cache 1 holds value that was already modified in cache 2

 Solution:

Disallow this state

Invalidate all remote copies before allowing a write to complete

 Problem 2: lost update

 Incorrect write back of modified line writes main memory in different order

from the order of the write operations or overwrites neighboring data

 Solution:

Disallow more than one modified copy

13

An Engineering Approach: Empirical start

spcl.inf.ethz.ch

@spcl_eth

 Based on invalidation

 Broadcast all coherency traffic (writes to shared lines)

to all caches

 Each cache snoops

Invalidate lines written by other CPUs

Signal sharing for cache lines in local cache to other caches

 Simple implementation for bus-based systems

 Works at small scale, challenging at large-scale

E.g., Intel Sandy Bridge

 Based on explicit updates

 Central directory for cache line ownership

 Local write updates copies in remote caches

Can update all CPUs at once

Multiple writes cause multiple updates (more traffic)

 Scalable but more complex/expensive

E.g., Intel Xeon Phi

 14

Cache Coherence Approaches

Source: Intel

spcl.inf.ethz.ch

@spcl_eth

 Invalidation-based:

 Only write misses hit the bus (works with write-back caches)

 Subsequent writes to the same cache line are local

  Good for multiple writes to the same line (in the same cache)

 Update-based:

 All sharers continue to hit cache line after one core writes

Implicit assumption: shared lines are accessed often

 Supports producer-consumer pattern well

 Many (local) writes may waste bandwidth!

 Hybrid forms are possible!

15

Invalidation vs. update

spcl.inf.ethz.ch

@spcl_eth

 Most common hardware implementation of discussed

requirements

aka. “Illinois protocol”

Each line has one of the following states (in a cache):

 Modified (M)

 Local copy has been modified, no copies in other caches

 Memory is stale

 Exclusive (E)

 No copies in other caches

 Memory is up to date

 Shared (S)

 Unmodified copies may exist in other caches

 Memory is up to date

 Invalid (I)

 Line is not in cache

16

MESI Cache Coherence

spcl.inf.ethz.ch

@spcl_eth

 Clean line:

 Content of cache line and main memory is identical (also: memory is up to

date)

 Can be evicted without write-back

 Dirty line:

 Content of cache line and main memory differ (also: memory is stale)

 Needs to be written back eventually

Time depends on protocol details

 Bus transaction:

 A signal on the bus that can be observed by all caches

 Usually blocking

 Local read/write:

 A load/store operation originating at a core connected to the cache

17

Terminology

spcl.inf.ethz.ch

@spcl_eth

 State is M

 No bus transaction

 State is E

 No bus transaction

 State is S

 No bus transaction

 State is I

 Generate bus read request (BusRd)

May force other cache operations (see later)

 Other cache(s) signal “sharing” if they hold a copy

 If shared was signaled, go to state S

 Otherwise, go to state E

 After update: return read value

18

Transitions in response to local reads

spcl.inf.ethz.ch

@spcl_eth

 State is M

 No bus transaction

 State is E

 No bus transaction

 Go to state M

 State is S

 Line already local & clean

 There may be other copies

 Generate bus read request for upgrade to exclusive (BusRdX*)

 Go to state M

 State is I

 Generate bus read request for exclusive ownership (BusRdX)

 Go to state M

19

Transitions in response to local writes

spcl.inf.ethz.ch

@spcl_eth

 State is M

 Write cache line back to main memory

 Signal “shared”

 Go to state S

 State is E

 Signal “shared”

 Go to state S and signal “shared”

 State is S

 Signal “shared”

 State is I

 Ignore

20

Transitions in response to snooped BusRd

spcl.inf.ethz.ch

@spcl_eth

 State is M

 Write cache line back to memory

 Discard line and go to I

 State is E

 Discard line and go to I

 State is S

 Discard line and go to I

 State is I

 Ignore

 BusRdX* is handled like BusRdX!

21

Transitions in response to snooped BusRdX

spcl.inf.ethz.ch

@spcl_eth

Topic: Cache-Coherent Communication

Source: Wikipedia

22

spcl.inf.ethz.ch

@spcl_eth

23

Xeon Phi (Rough) Architecture

spcl.inf.ethz.ch

@spcl_eth

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13 24

spcl.inf.ethz.ch

@spcl_eth

Local read: RL= 8.6 ns

Remote read RR = 235 ns

Invalid read RI = 278 ns

Inspired by Molka et al.: “Memory performance and cache coherency effects on an Intel Nehalem multiprocessor system” 25

spcl.inf.ethz.ch

@spcl_eth

 Prediction for both in E state: 479 ns

 Measurement: 497 ns (O=18)

Single-Line Ping Pong

26

spcl.inf.ethz.ch

@spcl_eth

 More complex due to prefetch/pipelining

Multi-Line Ping Pong

Asymptotic Fetch

Latency for each

cache line (optimal

prefetch!)

Number of

CLs

Startup

overhead

Amortization

of startup

27

spcl.inf.ethz.ch

@spcl_eth

 E state:

 o=76 ns

 q=1,521ns

 p=1,096ns

 I state:

 o=95ns

 q=2,750ns

 p=2,017ns

Multi-Line Ping Pong

28

spcl.inf.ethz.ch

@spcl_eth

 E state:

 a=0ns

 b=320ns

 c=56.2ns

Torsten Hoefler

Slide 29 of 42

Contention and/or Congestion? -

spcl.inf.ethz.ch

@spcl_eth

 Assume single cache line  forms a Tree

 We choose d levels and kj children in level j

 Reachable threads:

 Example: d=2, k1=3, k2=2:

Torsten Hoefler
Slide 30 of 42

Designing a Broadcast

c = DTD contention

b = transmit latency

spcl.inf.ethz.ch

@spcl_eth

 Broadcast example:

Designing Optimal Algorithms

Bcast cost
Number of

levels Reached

threads

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13 31

spcl.inf.ethz.ch

@spcl_eth

 Example:

 T0 + T1 write CL

 T2 polls for completion

Min-Max Modeling

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

@spcl_eth

 Example:

 T0 + T1 write CL

 T2 polls for completion

Min-Max Modeling

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

@spcl_eth

 Example:

 T0 + T1 write CL

 T2 polls for completion

Min-Max Modeling

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

@spcl_eth

 Example:

 T0 + T1 write CL

 T2 polls for completion

Min-Max Modeling

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

@spcl_eth

 Example:

 T0 + T1 write CL

 T2 polls for completion

Min-Max Modeling

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

@spcl_eth

 Example:

 T0 + T1 write CL

 T2 polls for completion

Min-Max Modeling

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

@spcl_eth

 Example:

 T0 + T1 write CL

 T2 polls for completion

Min-Max Modeling

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

@spcl_eth

 Example:

 T0 + T1 write CL

 T2 polls for completion

Min-Max Modeling

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

@spcl_eth

 Example:

 T0 + T1 write CL

 T2 polls for completion

Min-Max Modeling

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

@spcl_eth

 Example:

 T0 + T1 write CL

 T2 polls for completion

Min-Max Modeling

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

@spcl_eth

 Example:

 T0 + T1 write CL

 T2 polls for completion

Min-Max Modeling

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

@spcl_eth

 Example:

 T0 + T1 write CL

 T2 polls for completion

Min-Max Modeling

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

@spcl_eth

 Example:

 T0 + T1 write CL

 T2 polls for completion

Min-Max Modeling

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

@spcl_eth

 Example:

 T0 + T1 write CL

 T2 polls for completion

Min-Max Modeling

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

@spcl_eth

 Example:

 T0 + T1 write CL

 T2 polls for completion

Min-Max Modeling

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

@spcl_eth

 Example:

 T0 + T1 write CL

 T2 polls for completion

Min-Max Modeling

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

@spcl_eth

 Example:

 T0 + T1 write CL

 T2 polls for completion

Min-Max Modeling

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

@spcl_eth

 Example:

 T0 + T1 write CL

 T2 polls for completion

Min-Max Modeling

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

@spcl_eth

Small Broadcast (8 Bytes)

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13 50

spcl.inf.ethz.ch

@spcl_eth

Barrier

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13 51

spcl.inf.ethz.ch

@spcl_eth

Small Reduction

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13 52

spcl.inf.ethz.ch

@spcl_eth

 Rigorous modeling has large potential

 Coming with great cost (working on tool support [1])

 Understanding cache-coherent communication

performance is incredibly complex (but fun)!

 Many states, min-max modeling, NUMA, …

 Have models for Sandy Bridge now (QPI, worse!)

→ up to 10x improvements

 Cache coherence really gets in our way here 

 Obvious question: why do we need cache coherence?

 Answer: well, we don’t! If we program right!

 One option: Remote Memory Access (RMA) programming [2]

Lessons learned

53
[1]: Calotoiu et al.: Using Automated Performance Modeling to Find Scalability Bugs in Complex Codes, SC13

[2]: Gerstenberger et al.: Enabling Highly-Scalable Remote Memory Access Programming with MPI-3 One Sided, SC13, Best Paper

