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 My dream: provably optimal performance (time and energy) 

 From problem to machine code 

 

 

 

 

 

 

 

 

 

 

 

 Will demonstrate techniques & insights 

 And obstacles  

 

Model-based Performance Engineering 
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Design System 

Model 

Define Problem 

Find (close to) 

optimal Solution 

Implement and 

Test 

Refine System 

Model 
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State of the Art Performance Modeling 

Locality 

Computational 

Complexity 

Input/Output 

Complexity 

Red/Blue 

Pebble Game 

Communication-

reducing algorithms 

Cache-optimized  

algorithms 

Detailed (Automated) 

Architecture Models 

Model-driven 

Algorithm Design 
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Example: Message Passing, Log(G)P 

CACM 1996 

Optimal 

Solution [1] 

Broadcast  

Problem 

4 [1]: Karp et al.: “Optimal broadcast and summation in the LogP model”, SPAA 1993 
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Hardware Reality 

POWER 7, 8 cores, source: IBM Xeon Phi, 64 cores, source: Intel Interlagos, 8/16 cores, source: AMD 
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Kepler GPU, source: NVIDIA 

6 



spcl.inf.ethz.ch 

@spcl_eth 

Hardware Reality 

POWER 7, 8 cores, source: IBM Xeon Phi, 64 cores, source: Intel Interlagos, 8/16 cores, source: AMD 

InfiniBand, sources: Intel, Mellanox BG/Q, Cray Aries, sources: IBM, Cray 
Kepler GPU, source: NVIDIA 

7 



spcl.inf.ethz.ch 

@spcl_eth 

 Remember: 

 Write Back? 

 Write Through? 

 

 Cache coherence requirements 

A memory system is coherent if it guarantees the following: 

 Write propagation (updates are eventually visible to all readers) 

 Write serialization (writes to the same location must be observed in order) 

Everything else: memory model issues (not in this talk, very complex) 
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Caching Strategies (repeat) 
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Write Through Cache 
(initially X=0 in memory) 
 
1. CPU0 reads X from memory 

• loads X=0 into its cache 
2. CPU1 reads X from memory 

• loads X=0 into its cache 
3. CPU0 writes X=1 

• stores X=1 in its cache 
• stores X=1 in memory 

4. CPU1 reads X from its cache 
• loads X=0 from its cache 
Incoherent value for X on CPU1 

 
CPU1 may wait for update! 

Requires write propagation! 
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Write Back Cache 
(initially X=0 in memory) 
 
1. CPU0 reads X from memory 

• loads X=0 into its cache 
2. CPU1 reads X from memory 

• loads X=0 into its cache 
3. CPU0 writes X=1 

• stores X=1 in its cache 
4. CPU1 writes X =2  

• stores X=2 in its cache 
5. CPU1 writes back cache line 

• stores X=2 in in memory 
6. CPU0 writes back cache line 

• stores X=1 in memory 
Later store X=2 from CPU1 lost 

 
 Requires write serialization! 
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 Assume C99: 

 

 

 Two threads: 

 a=b=0 and struct twoint aligned at a 64-Bytes cacheline boundary  

 Thread 0: write a=1 

 Thread 1: write b=1 

 

 Assume non-coherent write back cache 

 What may end up in main memory? 

 

11 

A simple example 

struct twoint { 

   int a; 

   int b; 

} 
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 Programmer cannot deal with unpredictable behavior! 

 Cache controller maintains data integrity 

 All writes to different locations are visible 

 

 

 Snooping 

 Shared bus or (broadcast) network  

 Cache controller “snoops” all transactions 

 Monitors and changes the state of the cache’s data 

 Directory-based  

 Record information necessary to maintain coherence 

 E.g., owner and state of a line etc. 
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Cache Coherence Protocol 

Fundamental Mechanisms 
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 Problem 1: stale reads 

 Cache 1 holds value that was already modified in cache 2 

 Solution: 

Disallow this state 

Invalidate all remote copies before allowing a write to complete 

 

 Problem 2: lost update 

 Incorrect write back of modified line writes main memory in different order 

from the order of the write operations or overwrites neighboring data 

 Solution: 

Disallow more than one modified copy 
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An Engineering Approach: Empirical start 
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 Based on invalidation 

 Broadcast all coherency traffic (writes to shared lines)  

to all caches 

 Each cache snoops 

Invalidate lines written by other CPUs 

Signal sharing for cache lines in local cache to other caches 

 Simple implementation for bus-based systems 

 Works at small scale, challenging at large-scale 

E.g., Intel Sandy Bridge 

 Based on explicit updates 

 Central directory for cache line ownership 

 Local write updates copies in remote caches 

Can update all CPUs at once 

Multiple writes cause multiple updates (more traffic) 

 Scalable but more complex/expensive 

E.g., Intel Xeon Phi 
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Cache Coherence Approaches 

Source: Intel 
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 Invalidation-based: 

 Only write misses hit the bus (works with write-back caches) 

 Subsequent writes to the same cache line are local 

  Good for multiple writes to the same line (in the same cache) 

 

 Update-based: 

 All sharers continue to hit cache line after one core writes 

Implicit assumption: shared lines are accessed often 

 Supports producer-consumer pattern well 

 Many (local) writes may waste bandwidth! 

 

 Hybrid forms are possible! 
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Invalidation vs. update 
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 Most common hardware implementation of discussed 

requirements 

aka. “Illinois protocol” 

Each line has one of the following states (in a cache): 

 Modified (M) 

 Local copy has been modified, no copies in other caches 

 Memory is stale 

 Exclusive (E) 

 No copies in other caches 

 Memory is up to date 

 Shared (S) 

 Unmodified copies may exist in other caches  

 Memory is up to date 

 Invalid (I) 

 Line is not in cache 
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MESI Cache Coherence 
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 Clean line: 

 Content of cache line and main memory is identical (also: memory is up to 

date) 

 Can be evicted without write-back 

 Dirty line: 

 Content of cache line and main memory differ (also: memory is stale) 

 Needs to be written back eventually 

Time  depends on protocol details 

 Bus transaction: 

 A signal on the bus that can be observed by all caches 

 Usually blocking 

 Local read/write: 

 A load/store operation originating at a core connected to the cache 

17 

Terminology 
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 State is M 

 No bus transaction 

 State is E 

 No bus transaction 

 State is S 

 No bus transaction 

 State is I 

 Generate bus read request (BusRd) 

May force other cache operations (see later) 

 Other cache(s) signal “sharing” if they hold a copy 

 If shared was signaled, go to state S 

 Otherwise, go to state E 

 After update: return read value 
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Transitions in response to local reads 
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 State is M 

 No bus transaction 

 State is E 

 No bus transaction 

 Go to state M 

 State is S 

 Line already local & clean 

 There may be other copies 

 Generate bus read request for upgrade to exclusive (BusRdX*) 

 Go to state M 

 State is I 

 Generate bus read request for exclusive ownership (BusRdX) 

 Go to state M 
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Transitions in response to local writes 
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 State is M 

 Write cache line back to main memory 

 Signal “shared” 

 Go to state S  

 State is E 

 Signal “shared” 

 Go to state S and signal “shared” 

 State is S 

 Signal “shared” 

 State is I 

 Ignore 
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Transitions in response to snooped BusRd  
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 State is M 

 Write cache line back to memory 

 Discard line and go to I 

 State is E 

 Discard line and go to I 

 State is S 

 Discard line and go to I 

 State is I 

 Ignore 

 

 BusRdX* is handled like BusRdX! 
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Transitions in response to snooped BusRdX  
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Topic: Cache-Coherent Communication 

Source: Wikipedia 

22 
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Xeon Phi (Rough) Architecture 
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Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13 24 
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Local read: RL= 8.6 ns 

Remote read RR = 235 ns 

Invalid read RI = 278 ns 

Inspired by Molka et al.: “Memory performance and cache coherency effects on an Intel Nehalem multiprocessor system” 25 
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 Prediction for both in E state: 479 ns 

 Measurement: 497 ns (O=18) 

 

Single-Line Ping Pong 

26 
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 More complex due to prefetch/pipelining 

 

Multi-Line Ping Pong 

Asymptotic Fetch 

Latency for each 

cache line (optimal 

prefetch!) 

Number of 

CLs 

Startup 

overhead 

Amortization 

of startup 

27 
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 E state: 

 o=76 ns 

 q=1,521ns 

 p=1,096ns 

 I state: 

 o=95ns 

 q=2,750ns 

 p=2,017ns 

Multi-Line Ping Pong 

28 
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 E state: 

 a=0ns 

 b=320ns 

 c=56.2ns 

 

 

 
Torsten Hoefler 

Slide 29 of 42

Contention and/or Congestion?                     -           
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 Assume single cache line  forms a Tree 

 We choose d levels and kj children in level j 

 

 Reachable threads:  

 

 Example: d=2, k1=3, k2=2: 

Torsten Hoefler 
Slide 30 of 42

Designing a Broadcast 

c = DTD contention 

b = transmit latency 
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 Broadcast example: 

Designing Optimal Algorithms 

Bcast cost 
Number of 

levels Reached 

threads 

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13 31 
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 Example:  

 T0 + T1 write CL 

 T2 polls for completion 

Min-Max Modeling 

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13 
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Small Broadcast (8 Bytes) 

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13 50 
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Barrier 

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13 51 
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Small Reduction 

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13 52 
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 Rigorous modeling has large potential 

 Coming with great cost (working on tool support [1]) 

 

 Understanding cache-coherent communication  

performance is incredibly complex (but fun)! 

 Many states, min-max modeling, NUMA, … 

 Have models for Sandy Bridge now (QPI, worse!) 

→ up to 10x improvements 

 Cache coherence really gets in our way here  

 

 

 Obvious question: why do we need cache coherence? 

 Answer: well, we don’t! If we program right! 

 One option: Remote Memory Access (RMA) programming [2] 

 

Lessons learned 

53 
[1]: Calotoiu et al.: Using Automated Performance Modeling to Find Scalability Bugs in Complex Codes, SC13 

[2]: Gerstenberger et al.: Enabling Highly-Scalable Remote Memory Access Programming with MPI-3 One Sided, SC13, Best Paper 

 


