spcl.inf.ethz.ch

ETH:ziurich e LT ORI i S g W @spcl_eth

TORSTEN HOEFLER

Interconnects and Architectural Impacts
(on performance, of course ©)

o Argonne Trarnlng Program on Extreme Scale Computrng (ATPESC 2014)
August 4™ 2014, St. Charles, IL, USA

spcl.inf.ethz.ch

ETH:zurich (Y T Ax y @spcl_eth

Model-based Performance Engineering

= My dream: provably optimal performance (time and energy)
= From problem to machine code

iy
~ i

= Will demonstrate techniques & insights
= And obstacles ©

spcl.inf.ethz.ch

ETH:zurich (Y 7 N7 ¥ @spcl_eth

State of the Art Performance Modeling -

|

7 %

Communication- Cache-optimized
reducing algorithms algorithms

Y ¥
‘ Model-driven

Algorithm Design

. . G spcl.inf.ethz.ch
ETH:zurich i S _ -y @spcl_eth

Example: Message Passing, Log(G)P

A new parallel machine model reflects the critical technology

trends underlying parallel computers

4 PracTICAL MODEL of
PAarRALLEL COMPUTATION

PRAM consists of a col-

lection of processors

UR GOAL IS TO DEVELOP A MODEL OF PARALLEL COMPUTATION THAT WILL David E. Culler, Richard M. Karp,

serve as a basis for the design and analysis of fast, portable par- David Patterson, Abhijit Sahay,
. . . which compute syn-

allel algorithms, such as algorithms that can be implemented ’ Eunice E. Santos, Klaus Erik
- . . . chronously in parallel

effectively on a wide variety of current and future parallel J ¥) P i Schauser, Ramesh Subramonian,
N . - . and communicate wit

machines. If we look at the body of parallel algorithms devel- and Thorsten von Eicken

a global random access

oped under current parallel models, many are impractical

because they exploit artificial factors not present in any rea-

Process P-1 CACM 1996

PO: MPI_Recv(l); MPI_Recv (1) Broadcast
Pl: MPI_Send(0); MPI_Send(0) Problem

Process 1 Optimal

Solution [1]

Process 0

[1]: Karp et al.: “Optimal broadcast and summation in the LogP model”, SPAA 1993

. . Gy spcl.inf.ethz.ch
ETHzurich ' 3 -

3y @spcl_eth

Hardware Reality

¥

- l.()(li

Interlagos, 8/16 cores, source: AMD POWER 7, 8 cores, source: IBM Xeon Phi, 64 cores, source: Intel

spcl.inf.ethz.ch

ETH:zurich i Al A\ 9 @spcl_eth

Hardware Reality

Kepler GPU, source: NVIDIA InfiniBand, sources: Intel, Mellanox gG/Q, Cray Aries, sources: IBM, Cray

spcl.inf.ethz.ch

ETH:zurich i e A\ 9 @spcl_eth

Hardware Reality

Interlagos, 8/16 cores, source: AMD POWER 7, 8 cores, source: IBM Xeon Phi, 64 cores, source: Intel

SE M o

Kepler GPU, source: NVIDIA InfiniBand, sources: Intel, Mellanox gG/Q, Cray Aries, sources: IBM, Cray

- o G s \ spcl.inf.ethz.ch
ETHiirich S 3 TN Yamen

2

Caching Strategies (repeat)

= Remember:
= \Write Back?
= Write Through?

= Cache coherence requirements
A memory system is coherent if it guarantees the following:
= Write propagation (updates are eventually visible to all readers)
= Write serialization (writes to the same location must be observed in order)
Everything else: memory model issues (not in this talk, very complex)

spcl.inf.ethz.ch

ETH:zurich i e (Y Y _Ax o @spcl_eth

Write Through Cache

(initially X=0 in memory)

1. CPU,reads X from memory
* loads X=0 into its cache
2. CPU, reads X from memory
* loads X=0 into its cache
3. CPU, writes X=1
e stores X=1in its cache
* stores X=1 in memory

| 4. CPU, reads X from its cache
\ e loads X=0 from its cache
Incoherent value for X on CPU,

CPU, may wait for update!

Requires write propagation!

spcl.inf.ethz.ch

ETHziirich f e Ak Y Y Nx o @spel_eth

(initially X=0 in memory)

1. CPU,reads X from memory
* |oads X=0 into its cache
2. CPU, reads X from memory
* |oads X=0 into its cache
3. CPU, writes X=1
* stores X=1in its cache

Write Back Cache
. CPU, writes X =2

| | e stores X=2 in its cache

. CPU, writes back cache line
Memory e stores X=2 in in memory
. CPU, writes back cache line
* stores X=1 in memory

Later store X=2 from CPU, lost

Requires write serialization!

o G spcl.inf.ethz.ch
ETHziirich , <y TN Yamen

2

A simple example

= Assume C99: struct twoint {
int a;
int b;

}

= Two threads:

» a=b=0 and struct twoint aligned at a 64-Bytes cacheline boundary
» Thread O: write a=1
» Thread 1: write b=1

= Assume non-coherent write back cache
= What may end up in main memory?

. . s ST 3 v e TN spcl.inf.ethz.ch
ETHzurich S Bt /v@’ W @spcl_eth

Cache Coherence Protocol

= Programmer cannot deal with unpredictable behavior!

= Cache controller maintains data integrity
= All writes to different locations are visible

Fundamental Mechanisms
= Shooping

» Shared bus or (broadcast) network
= Cache controller “snoops” all transactions
= Monitors and changes the state of the cache’s data
= Directory-based
» Record information necessary to maintain coherence
= E.g., owner and state of a line etc.

T oy, PG - spcl.inf.ethz.ch
ETH:zurich D e X S /&&J W @spcl_eth

An Engineering Approach: Empirical start

= Problem 1: stale reads
» Cache 1 holds value that was already modified in cache 2
= Solution:
Disallow this state
Invalidate all remote copies before allowing a write to complete

= Problem 2: lost update

» Incorrect write back of modified line writes main memory in different order
from the order of the write operations or overwrites neighboring data

= Solution:
Disallow more than one modified copy

o R - spcl.inf.ethz.ch
ETHiirich S 3 TN Yamen

Cache Coherence Approaches -

= Based on invalidation

» Broadcast all coherency traffic (writes to shared lines)
to all caches

= Each cache snoops
Invalidate lines written by other CPUs
Signal sharing for cache lines in local cache to other caches
= Simple implementation for bus-based systems

= Works at small scale, challenging at large-scale % % - —
E.g., Intel Sandy Bridge el |] (2] e (2] (=]]
. . [GDDRS | +—> \TDHTD\...\TDHTD\
= Based on explicit updates N —
= Central directory for cache line ownership oo wcgaew--- wcgnew wcgr«ew

= Local write updates copies in remote caches

Can update all CPUs at once

Multiple writes cause multiple updates (more traffic)
= Scalable but more complex/expensive

E.g., Intel Xeon Phi

- . G \ spcl.inf.ethz.ch
ETH:zurich Sty B s / 7 -y @spcl_eth

Invalidation vs. update

= Invalidation-based:
= Only write misses hit the bus (works with write-back caches)
» Subsequent writes to the same cache line are local
= -> Good for multiple writes to the same line (in the same cache)

= Update-based:
= All sharers continue to hit cache line after one core writes
Implicit assumption: shared lines are accessed often
= Supports producer-consumer pattern well
= Many (local) writes may waste bandwidth!

= Hybrid forms are possible!

o SO (3 e DN spcl.inf.ethz.ch
ETH:zurich e B e SRR y @spcl_eth

MESI Cache Coherence

= Most common hardware implementation of discussed
requirements

aka. “lllinois protocol”
Each line has one of the following states (in a cache):
= Modified (M)
= Local copy has been modified, no copies in other caches
= Memory is stale
= Exclusive (E)
= No copies in other caches
= Memory is up to date
= Shared (S)
= Unmodified copies may exist in other caches
= Memory is up to date
= Invalid (1)
» Lineis notin cache

T oy, PG - spcl.inf.ethz.ch
ETH:zurich D e X S /&&J W @spcl_eth

2

Terminology

= Clean line:

= Content of cache line and main memory is identical (also: memory is up to
date)

= Can be evicted without write-back
= Dirty line:
= Content of cache line and main memory differ (also: memory is stale)
= Needs to be written back eventually
Time depends on protocol details
= Bus transaction:
= Asignal on the bus that can be observed by all caches
= Usually blocking
= Local read/write:
= Aload/store operation originating at a core connected to the cache

- o G s \ spcl.inf.ethz.ch
ETHiirich S 3 TN Yamen

2

Transitions in response to local reads

= Stateis M

* No bus transaction
= Stateis E

= No bus transaction
= Stateis S

= No bus transaction
= Stateis |

» Generate bus read request (BusRd)
May force other cache operations (see later)
= Other cache(s) signal “sharing” if they hold a copy
» |f shared was signaled, go to state S
= Otherwise, go to state E

= After update: return read value

o » G spcl.inf.ethz.ch
ETHiirich S 3 TN Yamen

Transitions in response to local writes

= Stateis M
= No bus transaction
= Stateis E

* No bus transaction
= (Go to state M
= Stateis S
» Line already local & clean
* There may be other copies
» Generate bus read request for upgrade to exclusive (BusRdX*)
= (o to state M
= Stateis |

» Generate bus read request for exclusive ownership (BusRdX)
= (o to state M

. . L spcl.inf.ethz.ch
ETHziirich N TN Yamen

Transitions in response to snooped BusRd

= Stateis M
= Write cache line back to main memory
= Signal “shared”
= Goto state S
= Stateis E
= Signal “shared”
» (o to state S and signal “shared”
= Stateis S
= Signal “shared”
= Stateis |
= |[gnore

. . L spcl.inf.ethz.ch
ETHziirich N TN Yamen

Transitions in response to snooped BusRdX

= Stateis M
= Write cache line back to memory
» Discard line and go to |

= Stateis E

» Discard line and go to |
= Stateis S

» Discard line and go to |
= Stateis |

= |[gnore

= BusRdX*is handled like BusRdX!

spcl.inf.ethz.ch

ETHziirich f el ok Y \s W @spel_etn

Topic: Cache-Coherent Communication

?

Core 1 /_\ Core 2
IRegistersl |Registers|

TD
Line 1 Line 1
: Bus -
Line 2 Line 2
Line 3 Line 3
P
BusRdX

Source: Wikipedia

22

iri N e ' spcl.inf.ethz.ch
ETH:zurich S A S

"y @spcl_eth

Xeon Phi (Rough) Architecture

CORE CORE L XN CORE CORE

PR
T T 1 1

D TD 00 0 TD TD <+—»| GDDR5

GDDR5 ([¢—»

GDDR5 [<—»

D TD (Y X} TD TD +“—>

//
N SN N S
T 1 1 1

CORE CORE (Y X CORE CORE

GDDR5

spcl.inf.ethz.ch

ETH:zurich ; e 7 _N\a 9 @spcl_eth

T,, read Ti, read
I]
AN T1, RFO
\\ \ \\ R
\ AN
T,, read PR T, read
i ~ /
\
A \\\ T,, RFO
\ :
W\ \Q\I\Ict
\ \ \\
\ ~
N ~o T, read

Rie

o read
T d T,, read
or €8 T,, read :
TOr RFO (2 N RL,M
RL,M

T, RFO
*RL,S

To, read
RR,M

T, RFO
To, RFO XRis

R, ¢ T, RFO

*Rr.s

To, read

(T,, read)
A, (

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13 24

(T,) evict — -

RS

spcl.inf.ethz.ch

ETH:zurich ; & Sk -y @spcl_eth

T,, RFO

T,, read
(T, read) To, read y

T1, RFO T,, RFO

T4, read Ty, read
(T,, read)

\
A
1
I
Ry « ’ | N
’//’TZ,. RFO : T2, RFO >~ RL’*
_ - evict : evict
|
RR,* |
Ty, RFO
T4, read R*

To, RFO
(T evict)
RL,*

T1, RFO
(T, evict)
RL,*

[core | [core | eee [comre | [core |
2 4

(* *) T T

) T,, read 1 P 1 I \

-(r%;’rf::d) jcoors |« | [0] [| eee [™] [| +—»[GoDRS|
Invalid read R, = 278 ns Res ol I LR e I LR e
Local read: R,= 8.6 ns —
Remote read Ry = 235 ns [cone] [core] ees [cone | [cone]

Inspired by Molka et al.: “Memory performance and cache coherency effects on an Intel Nehalem multiprocessor system”

spcl.inf.ethz.ch

ETH:zurich i e X S ok /) -y @spcl_eth

Single-Line Ping Pong

ot Thread 0 Thread 1
/ SendBuffer0 [flagh poll
= cachdline —H\ FD /'
\ ~ RecvBuffert /
i ~— cacheline — =1
[
| I SendBuffer1 |flag
) ~— cacheline \
V RecvBliffer0 |flag "
end timer |<—7(ellne 7
T, = RL,SS + Rgrs, + RRm + O =R +2Rgr +0

= Prediction for both in E state: 479 ns
= Measurement: 497 ns (O=18)

- spcl.inf.ethz.ch
ETH ziirich I e

Multi-Line Ping Pong

= More complex due to prefetch/pipelining

E.
N

27

o » G spcl.inf.ethz.ch
ETHiirich S 3 TN Yamen

2

Multi-Line Ping Pong

o S
D —1|l © average
ITn=0-N+qg— — —— model B
N * rel. error 18~
o~
= E state: = H =
" 0=76 NS = -/ B8
> ; LL]
= q=1,521ns - : o
() - 4 o >
= p=1,096ns © . ¥ 5
— O - o
. : Q/
= | state: . iy o
= 0=95ns s
= - <
g=2,750ns . ¥ % v vle
" p=2,017ns 64 128 512 2048 8192

Size (Bytes)

- o G s \ spcl.inf.ethz.ch
ETHiirich S 3 TN Yamen

2

Contention anel%epeeﬁges%ien?

o -2
I] ~ 1 © average
[] [| oo [| []
- T] wes [m] [—— model
PR Il rel. error & ~
»>- o o\o
‘CORE | [core | eee [cORE | [corE] TD\ N
5 o o
- o «© t
a >, -

_ . Ll
Te(n) =c-ngp +b— — 8 0
Nth @ o S
5~ =
_ S ©
= E state: H 9
E o X

= a=0ns N _ . N

* ; .
= p=320ns M :
= ¢=56.2ns o * ¥ * Tlo
1 3 7 15 31 59

Number of Threads

Torsten Hoefler

o G spcl.inf.ethz.ch
ETHiirich e TN Yamen

Designing a Broadcast

= Assume single cache line = forms a Tree
= We choose d levels and k; children in level |

d 7
» Reachable threads: 7w <1+ Z H k;

i=1j=1

= Example: d=2, k;=3, k,=2:

(c-k; +b)

d
=1

1=1 7

d
Z(RR+RL+C (k@—l))

c = DTD contention
b = transmit latency

Torsten Hoefler

spcl.inf.ethz.ch

ETH:zurich (Y 7 N7 ¥ @spcl_eth

Designing Optimal Algorithms

= Broadcast example:

d
=Y (Rp+ Ry +c- (ki 1))

=1
d
— 1
7;bcast %1]1611 (7}'@() ‘|‘§ C:]C —|—b))
d 7
N<1+> [k, Vi<iki <k
i=1 j=1

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13 sl

spcl.inf.ethz.ch

ETHziirich f e Ak Y N\ W @spcleth

Min-Max Modeling

= Example:
= T, + T, write CL To Ty
= T, polls for completion
Main
Memory
—

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

ETH:zurich i e X S ok /) -y @spcl_eth

Min-Max Modeling

= Example:
= T, + T, write CL To Ty
= T, polls for completion —
x Main
Memory
1. Write C 1
(R])

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

ETH:zurich i e X S ok /) -y @spcl_eth

Min-Max Modeling

= Example: _
= T,+ T, write CL T 2'(\|i\v|£')te T
= T, polls for completion 0 y 11
—
Main
Memory
1. Write |

(R})

T

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

ETH:zurich i & Sk / ? -y @spcl_eth

Min-Max Modeling

= Example:
= T,+ T, write CL
= T, polls for completion

2. Write

R
TO (RR) | Tl

Main
Memory
1. Write |
(R])
3. Read
R
-r2 . (RR)

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

ETHziirich f e Ak Y \s W @spel_etn

Min-Max Modeling

= Example:
= T,+ T, write CL
= T, polls for completion

2. Write

TO (RR) Tl

Main
Memory

1. Write |
(Ry)

3. Read
R
T2 ’ (RR)

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

ETHziirich f e Ak Y N\ W @spcleth

Min-Max Modeling

= Example:
= T, + T, write CL TO Tl
= T, polls for completion
Main
Memory
—
2. Write
TO (RR) T1
" T2
Main
Memory
1. Write [
(R1)
3. Read
T2 ’ (RR)

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

ETH:zurich i & Sk ? -y @spcl_eth

Min-Max Modeling

= Example:
= T, + T, write CL TO Tl
= T, polls for completion f—
. Main
Memory
1. Write [
(Ry)
2. Write
TO (RR) T1
. T2
Main
Memory
1. Write I |
(Ry)
3. Read
T2 ’ (RR)

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

ETH:zurich i & Sk ? -y @spcl_eth

Min-Max Modeling

= Example:
= T, + T, write CL TO Tl
= T, polls for completion
. Main
Memory
1. Write [
(R})
2. Write
To (RR) Tl 2. Read
(RR) T2
Main g
Memory
1. Write [|
(Ry)
3. Read
T2 ’ (RR)

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

ETH:zurich ; e S ok / 7 -y @spcl_eth

Min-Max Modeling

= Example:
= T, + T, write CL TO Tl
= T, polls for completion
A Main .
Memory
1. Write ——
(R)
2. Write
To (RR) Tl 2. Read
(RR) T2
Main g '
Mermory 3. Write
1. Write [(RR)
(Ry)
3. Read
T2 ’ (RR)

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

ETH:zurich ; e S ok / 7 -y @spcl_eth

Min-Max Modeling

= Example:
= T, + T, write CL TO Tl
= T, polls for completion
A Main .
Memory
1. Write [
(R})
2. Write 4 Read
T, (RR) T, 2. Read (RR)
(RR) T
Main > i
Mermory 3. Write
1. Write [| (RR)
(Ry)
3. Read
T2 ’ (RR)

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

ETHziirich f e Ak Y \s W @spel_etn

Min-Max Modeling

= Example:
= T,+ T, write CL
= T, polls for completion

2. Write
(RR)
TO Tl TO Tl
Main Main
Memory Memory
1. Write | 1. Write ||
(Ry) (Ry)
3. Read 4. Read
R 2. Read (RR)
T, R RR) | T
! 3. Write
(RR)

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

o G spcl.inf.ethz.ch
ETHziirich , <y TN Yamen

Min-Max Modeling

= Example:
= T,+ T, write CL
= T, polls for completion

Main
Memory
(|
2. Write T2
(RR)
TO Tl TO Tl
Main Main
Memory Memory
1. Write | 1. Write ||
(Rp (Ry)
3. Read 4. Read
R 2. Read (RR)
Ts ke (Rr) RR) | T
! 3. Write
(RR)

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

ETHziirich f e Ak Y N\ W @spcleth

Min-Max Modeling

= Example:
= T,+ T, write CL
= T, polls for completion

Main
Memory
(|
1. Read
(Rl) v
2. Write T2
(RR)
To| T[T T, —
Main Main
Memory Memory
1. Write | 1. Write [
(Ry) (Ry)
3. Read 4. Read
R 2. Read (RR)
T, R RR) | T
! 3. Write
(RR)

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

o G spcl.inf.ethz.ch
ETHziirich , <y TN Yamen

Min-Max Modeling

= Example: T T
. T, + T, write CL - :
= T, polls for completion L Main

2. Write Memory
(RR) ——
1. Read
(Rl) v
2. Write T2
T, (RR) T, T, T,
Main Main
Memory Memory
1. Write [1. Write]
(R]) (R
3. Read 4. Read
2. Read (RR)
Ty fR) | Toe—
! 3. Write
(RR)

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

3y @spcl_eth

ETH:zurich

Min-Max Modeling

= Example:

. To
= T,+ T, write CL

= T, polls for completion Main
2. Write Memory
(RR) —
1. Read
(RI) \4
2. W T2
. Write >
3. Read
(RR)
To R Tl To T (RR)
Main Main
Memory Memory
1. Write | 1. Write [
(Ry) (Ry)
3. Read 4. Read
R 2. Read (RR)
T2) (RR) RR) T2)
! 3. Write
(RR)

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

3y @spcl_eth

ETH:zurich

Min-Max Modeling

= Example:

. To
= T,+ T, write CL

= T, polls for completion Main E
2. Write Memory
(RR) ——
1. Read
(R)) _'I'_
2 4. Write
2. Write >)
3. Read (RR)
(RR) R
To i T1 To T (RR)
Main Main
Memory Memory
1. Write (| 1. Write [|
(R1) (R
3. Read 4. Read
R 2. Read (RR)
T2) (RR) RR) T2)
! 3. Write
(RR)

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

, @SPCI_eth

ETHzurich

Min-Max Modeling

= Example:

= T,+ T, write CL

= T, polls for completion Main ‘
2. Write) ' Memory
(RR)
1. Read en
(R}) T ‘ fe
2 4. Write
2. Write ‘ .
3. Read (R)
(RR) |
To R T1 TO Tl =
- Main
Memory Memory
1. Write 1. Write
(R}) .
3. Read - |
T, (RR) P
> 3. Write
(RR)

To

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

ETH:zurich

Min-Max Modeling

Example:
= Ty+ T, write CL

= T, polls for completion

To

2. Write
(RR)

spcl.inf.ethz.ch
@spcl_eth

L

Main
Memory
| —

1.

Read
v

5. Read

(RR)

(Ry)
T,

»

2. Write
(RR)
TO Tl TO Tl
Main Main
Memory Memory
1. Write | 1. Write ||
(Ry) (Ry)
3. Read 4. Read
R 2. Read (RR)
T, R R) | T
! 3. Write
(RR)

3. Read
(RR)

4. Write
(RR)

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

- o G s \ spcl.inf.ethz.ch
ETH:zurich Sty B s I -y @spcl_eth

Small Broadcast (8 Bytes)

0 |
—— Broadcast
—— Min-Max Model
—— Intel MPI
AS_
%) o —
= - :
> T [
5 |
© » o .
— . A :
o - + -
g
O_
[[[[[[[
0 10 20 30 40 50 60

Number of Threads

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

ETH:zurich

spcl.inf.ethz.ch

Barrier

v .
™

o .
™

25
|

Latency (us)
20

10
|

15
|

|—>— Barrier

— Min-Max Model

—— Intel MPI

|=%— Intel OpenMP
I I I I I I
10 20 30 40 50 60

Number of threads

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

3y @spcl_eth

spcl.inf.ethz.ch

ETHzirich et Sak o @spoleth

Small Reduction

o .
® |- Reduce
—— Min-Max Model
2 | |[—o— Intel MPI
|2 Intel OpenMP
8 _

Latency (us)
15

10

0 10 20 30 40 50 60
Number of threads

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

. vy, S IR L e spcl.inf.ethz.ch
E'HZUFIC/‘) RNy G Z\@J 3y @spcl_eth

Lessons learned

= Rigorous modeling has large potential
= Coming with great cost (working on tool support [1])

= Understanding cache-coherent communication
performance is incredibly complex (but fun)!

= Many states, min-max modeling, NUMA, ... s ST : I
. OLCURS -"'I'L\"',_...- *_.r
» Have models for Sandy Bridge now (QPI, worse!) &

— up to 10x improvements
= Cache coherence really gets in our way here ®

"T BUNK Mou SHOwD 8c MORE
EXPLIUT HEZE N STEP WO,V

= Obvious question: why do we need cache coherence?

= Answer: well, we don’t! If we program right!
= One option: Remote Memory Access (RMA) programming [2]

[1]: Calotoiu et al.: Using Automated Performance Modeling to Find Scalability Bugs in Complex Codes, SC13
[2]: Gerstenberger et al.: Enabling Highly-Scalable Remote Memory Access Programming with MPI1-3 One Sided, SC13, Best Paper

