
BoF: Analyzing Parallel I/O

Julian Kunkel1 Philip Carns2 Michael Kluge3

(Michaela Zimmer4 Alvaro Aguilera3)

1 German Climate Computing Center
2 Argonne National Laboratory

3 ZIH, TU Dresden
4 University of Hamburg

Supercomputing 2014

Outline

1 Introduction
I/O Stacks and Dependencies
Tools Overview

2 Highlighted tools: Vampir, Darshan, and SIOX
Overview
Experiences and limitations
Future perspective

3 Discussion

Kunkel, Carns, Kluge Analyzing Parallel I/O BoF 2 / 7

Introduction I/O Stacks and Dependencies

Introduction

A typical HPC I/O stack I/O and its cause and effect chain

Kunkel, Carns, Kluge Analyzing Parallel I/O BoF 3 / 7

Introduction Tools Overview

Tools Overview

Facets of monitoring and analysis
Scope: Client side, middleware, kernel-space, file system, block devices
Process centric vs. application centric vs. system-wide
Profile/statistics vs. Tracing
Analysis: textual, plots, group by signatures, bottlenecks
Online, upon application termination, periodically updated

Not covered in this BoF explicitly
Benchmarking, but (workload) replay tools are correlated
Optimizing I/O

Kunkel, Carns, Kluge Analyzing Parallel I/O BoF 4 / 7

Introduction Tools Overview

Existing Tool Landscape

Local tools: blktrace, /proc , ...
Cluster wide tools: Ganglia, Lustre Monitoring Tool (LMT), ...
Tracing tools for HPC

Vampir (Score-P)
TAU (Score-P)
IPM
LANL-Trace
IOSIG
PAS2P-I/O
RIOT
ScalaIOTrace
SIOX

Kunkel, Carns, Kluge Analyzing Parallel I/O BoF 5 / 7

Introduction Tools Overview

Wishlist for I/O Analysis Tools

Ease of use
Low overhead
On demand application instrumentation

comprehensive information
but focusing on abnormal behavior

System-wide instrumentation
Portability
Guided or automatic tuning
Support for non-HPC environments
Extensibility (support for new I/O libraries)

Kunkel, Carns, Kluge Analyzing Parallel I/O BoF 6 / 7

Discussion

Discussion

Requirements for future tools?
How much overhead is acceptable?
What environments/applications/platforms are most important to the
community?
What kind of information about I/O accesses is of interest for users?

Talk to us!
Darshan Philip Carns <carns@mcs.anl.gov>

SIOX Julian Kunkel <kunkel@dkrz.de>
Vampir Michael Kluge <Michael.Kluge@tu-dresden.de>

Kunkel, Carns, Kluge Analyzing Parallel I/O BoF 7 / 7

Analyzing Parallel I/O BOF:

Darshan

Phil Carns
Mathematics and Computer Science Division

Argonne National Laboratory

Darshan Overview

Darshan is a lightweight, scalable I/O characterization tool
that captures I/O access pattern information from
production applications.

Key design principle: don’t perturb application performance or
behavior
❏ Low (fixed) memory consumption
❏ Wait until MPI_Finalize() to aggregate, compress, and store data
❏ No source code or makefile changes

Typical use cases:
❏ Performance tuning
❏ Analysis of system-wide I/O trends

Analyzing Parallel I/O: Darshan

What is it?

❏ Runtime library:
❏ Instruments POSIX, MPI-IO, and some HDF5 and PnetCDF functions
❏ No kernel modifications or persistent services

❏ Command-line utilities:
❏ Post-processing of Darshan logs
❏ Includes tools to produce graphical I/O summaries

❏ Portability
❏ Works on IBM Blue Gene, Cray, and Linux environments
❏ Compatible with all popular compilers
❏ Compatible with all popular MPI implementations

❏ Low barrier to entry
❏ Depending on the platform, Darshan may be enabled by default by your

administrator. Otherwise Darshan is enabled by loading a software module
or by compiling with a Darshan-enabled compiler script.

Analyzing Parallel I/O: Darshan

A typical Darshan workflow

❏ Compile an MPI program (C, C++, or FORTRAN)
❏ Run the application

❏ Look for the Darshan log file
❏ This will be in a particular directory (depending on your system’s configuration)

❏ <dir>/<year>/<month>/<day>/<username>_<appname>*.darshan.gz

❏ Use Darshan command line tools to analyze the log file

❏ Darshan does not capture a trace of all I/O operations: it instead reports key
statistics, counters, and timing information for each file accessed by the
application.

❏ Darshan does not provide real-time monitoring: the application must run to
completion and call MPI_Finalize() before producing a log file.

Analyzing Parallel I/O: Darshan

Darshan analysis tool example

❏ Example: Darshan-job-summary.pl produces a 3-
page PDF file summarizing various aspects of I/O
performance

❏ This figure shows the I/O behavior of a 786,432
process turbulence simulation (production run)
on the Mira system at ANL

❏ This particular application is write intensive and
benefits greatly from collective buffering, no
obvious tuning needed.

Example measurements: % of runtime in I/O

access size histogram

Analyzing Parallel I/O: Darshan

Darshan analysis tool example

The darshan-job-summary.pl output also shows intervals of I/O activity. This
example shows bursts of write activity from different subsets of MPI ranks at
different points in the job execution.

M
PI

 R
an

ks

Time

Analyzing Parallel I/O: Darshan

■ Scenario: Small writes can contribute to poor performance
– Particularly when writing to shared files
– Candidates for collective I/O or batching/buffering of write operations

■ Example:
– Issued 5.7 billion writes to shared files, each less than 100 bytes in size
– Averaged just over 1 MiB/s per process during shared write phase

Example: investigating I/O performance

Analyzing Parallel I/O: Darshan

Example: finding superfluous I/O activity

❏ Scenario: Applications that read more bytes of data from the file system than
were present in the file (redundant read traffic)
❏ Disruptive to the network, even with caching
❏ Candidates for aggregation or collective I/O

❏ Example:
❏ Scale: 6,138 processes
❏ Run time: 6.5 hours
❏ Avg. I/O time per process:

27 minutes

1.3 TiB of file
data available

500+ TiB read
from file system

Analyzing Parallel I/O: Darshan

Example: system-wide analysis

Analyzing Parallel I/O: Darshan

Job size vs. data volume for Mira BG/Q system in 2014
(~128,000 logs as of October, ~8 PiB of traffic)

❏ Biggest by volume:

~300 TiB

❏ Biggest by scale:

768K processes

❏ Probably some scaling

experiments?

❏ Most jobs use power of 2

numbers of processes on

Mira

Status and future work

❏ Darshan is available (open source) at http://www.mcs.anl.
gov/research/projects/darshan

❏ Anonymized logs are also available for download and analysis

❏ Actively maintained by ANL/ALCF and LBL/NERSC

❏ Also enabled automatically for all users at those facilities

❏ Available as an optional package at many other sites

❏ Ongoing maintenance to insure portability and performance

❏ Current major development effort is to modularize Darshan so that it can be
more easily extended to cover additional I/O libraries or other use cases.

We are always looking for feedback!
Analyzing Parallel I/O: Darshan

This work was supported by Office of Advanced Scientific
Computing Research, Office of Science, U.S. Dept. of Energy,
under Contract Nos. DE-AC02-06CH11357 and
DE-AC02-05CH11231 including through the Scientific
Discovery through Advanced Computing (SciDAC) Institute
for Scalable Data Management, Analysis, and Visualization.

Analyzing Parallel I/O: Darshan

Extra material

Example: Checking I/O expectations

Analyzing Parallel I/O: Darshan

❏ Darshan summaries are often helpful in
confirming the expected behavior of
applications.

❏ In this case, there were 512 relatively small
writes of 40 KiB each

❏ That size corresponds to the file header size
of the application (as expected)

❏ But there are only 129 files, why are there
512 headers?

Example: system-wide analysis (2)

Analyzing Parallel I/O: Darshan

Job duration vs. data volume for Mira BG/Q system in 2014
(~128,000 logs as of October, ~8 PiB of traffic)

❏ Largest job by volume ran

for about 6 hours

❏ Longest jobs ran for 24

hours (maximum wall time

according to Mira policy)

❏ Most popular execution

time was roughly 1 hour

SIOX: Scalable I/O for Extreme Performance

Julian Kunkel1 Michaela Zimmer2

1 German Climate Computing Center

2 University of Hamburg

Analyzing Parallel I/O BoF
SC 2014

Outline

1 Introduction

2 The Modular Architecture of SIOX

3 Analysis and Visualization of I/O

4 Experiments

5 Outlook

6 Summary

Julian M. Kunkel & Michaela Zimmer SIOX: Scalable I/O for Extreme Performance 2 / 22

Introduction

Partners and Funding

Funded by the BMBF
Grant No.: 01 IH 11008 B

Start: Juli 1st, 2011

End: September 30, 2014

Julian M. Kunkel & Michaela Zimmer SIOX: Scalable I/O for Extreme Performance 3 / 22

Introduction

Project Goals

SIOX will

collect and analyse

activity patterns and
performance metrics

in order to

assess system performance

locate and diagnose problem

learn & apply optimizations

intelligently steer monitoring

Julian M. Kunkel & Michaela Zimmer SIOX: Scalable I/O for Extreme Performance 4 / 22

The Modular Architecture of SIOX Instrumentation

Extensibility for Alternate APIs

Work�ow

Annotation of header �le

Tool siox-wrapper-generator creates libraries

Run-time instrumentation with LD_PRELOAD
Compile-time instrumentation using ld �wrap

siox-inst tool simpli�es instrumentation

Header annotations for MPI_File_write_at()
//@activity

//@activity_link_size fh

//@activity_attribute filePosition offset

//@splice_before ''int intSize; MPI_Type_size(datatype, &intSize);

uint64_t size=(uint64_t)intSize*(uint64_t)count;''

//@activity_attribute bytesToWrite size

//@error ''ret!=MPI_SUCCESS'' ret

int MPI_File_write_at(MPI_File fh, MPI_Offset offset, void * buf, int count,

MPI_Datatype datatype, MPI_Status * status);

Julian M. Kunkel & Michaela Zimmer SIOX: Scalable I/O for Extreme Performance 5 / 22

The Modular Architecture of SIOX Instrumentation

Modularity of SIOX

The SIOX architecture is �exible and developed in C++ components

License: LGPL, vendor friendly

Upon start-up of (instrumented) applications, modules are loaded

Con�guration �le de�nes modules and options

Choose advantageous plug-ins
Regulate overhead

For debugging, reports are output at application termination

SIOX may gather statistics of (application) behavior / activity
Provide (internal) module statistics

Julian M. Kunkel & Michaela Zimmer SIOX: Scalable I/O for Extreme Performance 6 / 22

The Modular Architecture of SIOX Instrumentation

Proposed Work�ow

2) SIOX
Daemon

correlates component-wide
and compresses

3) SIOX
Transaction System

collects and correlates
across system boundaries

4) SIOX
Data Warehouse

cleanses, compresses
and archives

5) SIOX
Knowledge Base

holds analyses
and optimizations

monitoring
data

extract,
transform
and load
process

(off-line)

machine
learning

algorithms
(off-line)

Compute node / file system server

m : 1

1
 :

 m

Application
or

Library

1) sioxlib

monitor data
and apply

optimizations
supports

n : 1

reports

Monitoring Path

Knowledge Path

patterns,
optimizations
and system-
information

updates of
systeminfo,
plugindata

Data gathered is stored via the monitoring path.

Components receive the knowledge gleaned via the knowledge path.

Julian M. Kunkel & Michaela Zimmer SIOX: Scalable I/O for Extreme Performance 7 / 22

The Modular Architecture of SIOX Modules

Module Interactions of an Example Con�guration

Julian M. Kunkel & Michaela Zimmer SIOX: Scalable I/O for Extreme Performance 8 / 22

The Modular Architecture of SIOX Modules

Features of the Working Prototype

Monitoring
Application (activity) behavior
Ontology and system information
Data can be stored in �les or Postgres database
Trace reader

Daemon
Applications forward activities to the daemon
Node statistics are captured
Energy consumption (RAPL) can be captured

Activity plug-ins
GenericHistory plug-in tracks performance, proposes MPI hints
Fadvise (ReadAhead) injector
FileSurveyor prototype � Darshan-like

Reasoner component (with simple decision engine)
Intelligent monitoring: trigger monitoring on abnormal behavior

Reporting of statistics on console or �le (independent and MPI-aware)

Julian M. Kunkel & Michaela Zimmer SIOX: Scalable I/O for Extreme Performance 9 / 22

Analysis and Visualization of I/O Trace Reader

Trace Reader

Concepts

Supports di�erent �le and database back-ends

Plug-in based

Text output
Time-o�set plots for �les

Example text output created by the trace-reader
0.0006299 ID1 POSIX open(POSIX/descriptor/filename="testfile",

POSIX/descriptor/filehandle=4) = 0

0.0036336 ID2 POSIX write(POSIX/quantity/BytesToWrite=10240,

POSIX/quantity/BytesWritten=10240, POSIX/descriptor/filehandle=4,

POSIX/file/position=10229760) = 0 ID1

0.0283800 ID3 POSIX close(POSIX/descriptor/filehandle=4) = 0 ID1

Julian M. Kunkel & Michaela Zimmer SIOX: Scalable I/O for Extreme Performance 10 / 22

Analysis and Visualization of I/O Trace Reader

Trace Reader Plug-in: AccessInfoPlotter

Plot for each �le and rank information about accessed data

Example: non-contiguous MPI I/O by 2 processes to a shared �le

Reveal underlying POSIX access pattern
Read-Modify-Write cycle of data-sieving

(a) Rank 0 (b) Rank 1

Julian M. Kunkel & Michaela Zimmer SIOX: Scalable I/O for Extreme Performance 11 / 22

Analysis and Visualization of I/O Database GUI

Database GUI

A PHP GUI provides access to the Postgres DB

Overview of applications, activities, chain-of-e�ects

Activity list showing I/O function and timestamps.

Julian M. Kunkel & Michaela Zimmer SIOX: Scalable I/O for Extreme Performance 12 / 22

Analysis and Visualization of I/O Database GUI

Database GUI

Detailed view of activity showing the causal chain and list of attributes.

Julian M. Kunkel & Michaela Zimmer SIOX: Scalable I/O for Extreme Performance 13 / 22

Analysis and Visualization of I/O Reporting

Reporting: FileSurveyor

Easy to collect and track relevant application statistics

FileSurveyor prototype collects POSIX/MPI access statistics

Only 1000 LoC

... Yes we'll pretty print things at some point ...

[...] "(Aggregated over all files)"/Accesses = (40964,40964,40964)
...
[...] "/mnt/lustre/file.dat"/Accesses = (40964,40964,40964)
[...] "/mnt/lustre/file.dat"/Accesses/Reading/Random, long seek = (20481.8,20480,20482)
[...] "/mnt/lustre/file.dat"/Accesses/Reading/Random, short seek = (0,0,0)
[...] "/mnt/lustre/file.dat"/Accesses/Reading/Sequential = (0.2,0,2)
[...] "/mnt/lustre/file.dat"/Bytes = (8.38861e+09,8.38861e+09,8.38861e+09)
[...] "/mnt/lustre/file.dat"/Bytes/Read per access = (204780,204780,204780)
[...] "/mnt/lustre/file.dat"/Bytes/Total read = (4.1943e+09,4.1943e+09,4.1943e+09)
[...] "/mnt/lustre/file.dat"/Seek Distance/Average writing = (1.0238e+06,1.0238e+06,1.02382e+06)
[...] "/mnt/lustre/file.dat"/Time/Total for opening = (3.9504e+08,3.66264e+08,4.38975e+08)
[...] "/mnt/lustre/file.dat"/Time/Total for reading = (1.47169e+11,1.0968e+11,1.76617e+11)
[...] "/mnt/lustre/file.dat"/Time/Total for writing = (1.08783e+12,1.03317e+12,1.16192e+12)
[...] "/mnt/lustre/file.dat"/Time/Total for closing = (1.0856e+11,6.11782e+10,1.46834e+11)
[...] "/mnt/lustre/file.dat"/Time/Total surveyed = (1.34568e+12,1.34568e+12,1.3457e+12)

Example report created by FileSurveyor and aggregated by MPIReporter (shortened
excerpt). The number format is (average, minimum, maximum).

Julian M. Kunkel & Michaela Zimmer SIOX: Scalable I/O for Extreme Performance 14 / 22

Experiments Parabench I/O Benchmark

MPI 4-levels-of-Access

Each process accesses 10240 blocks of 100KiB
Several hint sets are evaluated

write ind-ctg read ind-ctg write coll-ctg read coll-ctg write ind-nc read ind-nc write coll-nc read coll-nc
0

100

200

300

400

500

600

700

No hints Hints Hints, MPI instr. using ld –wrap Hints, POSIX & MPI instr. with LD_PRELOAD

T
h

ro
u

g
h

p
u

t i
n

 M
iB

/s

Performance comparison of the 4-levels-of-access on our Lustre �le system. The hints
increase the collective bu�er size to 200MB and disable data sieving.

Observations

GenericHistory could inject the hints automatically for ind-nc cases

Overhead in read coll-ctg due to instrumentation of network!

Julian M. Kunkel & Michaela Zimmer SIOX: Scalable I/O for Extreme Performance 15 / 22

Experiments Injection of �I/O-Hints�

Optimization Plug-in: Read-Ahead with Fadvise

Plug-in injects posix_fadvise() for strided access

vs. no prefetching vs. in code embedded execution

Compute �Benchmark� reads data, then sleeps

100µs and 10ms for 20KiB and 1000KiB stride, respectively

Results

Experiment 20KiB stride 1000KiB stride

Regular execution 97.1µs 7855.7µs

Embedded fadvise 38.7µs 45.1µs

SIOX fadvise read-ahead 52.1µs 95.4µs

Time needed to read one 1KiB data block in a strided access pattern.

Julian M. Kunkel & Michaela Zimmer SIOX: Scalable I/O for Extreme Performance 16 / 22

Experiments Full Learning: Data Sieving Parameters

To Sieve, or Not to Sieve?

Strided data � choice of best parameters highly non-trivial:

Left: ddata =16 KiB; Right: ddata =256 KiB

Application
instrumented

for SIOX

Trace File
or

DW

S I O X
with optimization plug-ins

Trace Reader
with machine learning plug-ins

Apply full work�ow cycle:
Learning with Classi�cation and Regression Trees (CART, library: Shark)

Julian M. Kunkel & Michaela Zimmer SIOX: Scalable I/O for Extreme Performance 17 / 22

Experiments Full Learning: Data Sieving Parameters

Lessons Learned (1): A Performance Predictor

True and predicted data for pdata = 256KiB;
387 instances used for training

Julian M. Kunkel & Michaela Zimmer SIOX: Scalable I/O for Extreme Performance 18 / 22

Experiments Full Learning: Data Sieving Parameters

Lessons Learned (2): New Heuristics from Decision Rules

First 3 levels of the CART classi�er tree for classes slow, avg, fast ([0; 25],]25; 75],
> 75MiB/s). Leaf nodes show dominant labels and class probabilities

Julian M. Kunkel & Michaela Zimmer SIOX: Scalable I/O for Extreme Performance 19 / 22

Experiments Full Learning: Data Sieving Parameters

Lessons Learned (3): Performance Gain!

Default Choice CART, 387 Instances Best Choice

O� 4.2MiB/s 9.6MiB/s

1MiB/s 1.9MiB/s 7.6MiB/s

4MiB/s 6.9MiB/s 12.2MiB/s

100MiB/s 6.9MiB/s 12.2MiB/s

Average performance improvements compared to a user's default choice

Automatically closes the gap to optimum performance by 25-50%!

Julian M. Kunkel & Michaela Zimmer SIOX: Scalable I/O for Extreme Performance 20 / 22

Outlook

Future Work

More instrumentations

Partners working on GPFS
Expressed 3rd party interest in Panasas, BeeGFS/FhGFS, Lustre

More optimizations

Machine Learning plug-ins
Performance predictors
Reasoner logic

Will be used on the DKRZ's next HPC machine, HLRE3

3 PetaFlop/s
45 PetaByte HDD/SSD storage

Part of the E10 initiative, providing functionality and API

Julian M. Kunkel & Michaela Zimmer SIOX: Scalable I/O for Extreme Performance 21 / 22

Summary

Summary

SIOX aims to capture and optimize I/O

on all layers and �le systems

We analyzed the overhead of the prototype

Learns best MPI hints and data sieving parameters and sets them
Bearable monitoring overhead
Flexible con�guration

We demonstrate how we change behavior without modifying code!

Design the optimization once, apply on many applications

We are building a modular and open system

We are looking forward to contributing components to E10

Julian M. Kunkel & Michaela Zimmer SIOX: Scalable I/O for Extreme Performance 22 / 22

System Con�guration

System Con�guration

Test system

10 compute nodes

10 I/O nodes with Lustre

Compute Nodes

Dual-socket Intel Xeon X5650@2.67 GHz

Ubuntu 12.04

Applications are compiled with: GCC 4.7.2, OpenMPI 1.6.5

I/O Nodes

Intel Xeon E3-1275@3.4 GHz, 16 GByte RAM

Seagate Barracuda 7200.12 (ca. 100 MiB/s)

CentOS 6.5, Lustre 2.5

Julian M. Kunkel & Michaela Zimmer SIOX: Scalable I/O for Extreme Performance 23 / 22

Overhead

Overhead

Due to asynchronous handling applications are never stalled
A call to SIOX in the order of several µs

We see room for improvement, and have some solutions in mind!

Initialization of SIOX with �xed costs
SIOX IPC handles 90,000 (1KiB) msgs per second
PostgreSQL only 3,000 activities (we'll need to invest more time)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0
2
4
6
8

10
12
14
16
18
20

SIOX plain SIOX posix fw SIOX process

of threads

M
ic

ro
se

co
n

d
s

Overhead per thread due to critical regions in the modules.
Julian M. Kunkel & Michaela Zimmer SIOX: Scalable I/O for Extreme Performance 24 / 22

Observable Performance

Observable Performance � Discussion

Bad news

For fast I/O operations several µs is expensive

Additionally, locks protect several modules

⇒ I/O calls are synchronized (max. 100K Ops/s)

Good news

We are already monitoring overhead

⇒ We will integrate methods to control the overhead

Flexible and easy con�guration can strip costly calls

Application runs?

For the ICON climate model, only initalization overhead is measurable

A DB cache module reducing overhead

Julian M. Kunkel & Michaela Zimmer SIOX: Scalable I/O for Extreme Performance 25 / 22

Discussion

Discussion

Requirements for future tools?
How much overhead is acceptable?
What environments/applications/platforms are most important to the
community?
What kind of information about I/O accesses is of interest for users?

Talk to us!
Darshan Philip Carns <carns@mcs.anl.gov>

SIOX Julian Kunkel <kunkel@dkrz.de>
Vampir Michael Kluge <Michael.Kluge@tu-dresden.de>

Kunkel, Carns, Kluge Analyzing Parallel I/O BoF 7 / 7

