

 1
Workshop on Portability Among HPC Architectures for Scientific
Applications, 2015, Austin, Texas USA

Multiple platforms: Issues of porting Agent-Based
Simulation from Grids to Graphics cards

[Extended Abstact]
 Mariam Kiran

School of Electrical Engineering and
Computer Science

University of Bradford
Bradford, UK

m.kiran@bradford.ac.uk

ABSTRACT
Agent-based modelling and simulation techniques are
computationally demanding, allowing simulation of large complex
models which can scale up and have high memory processing and
storage demands. Simulating biological models formed by
individual cells are particularly favoured on these kinds of
modelling techniques. FLAME (Flexible Large scale Modelling
Environment) framework is one example of a framework which
allows modellers to build serial and parallelized versions of the
models by simply adding extra flags during execution. In this paper,
we discuss the issues faced when porting the same model developed
for simulation from FLAME-HPC to graphics card version
FLAME-GPU, highlighting the advantages and disadvantages from
the modelling and simulation perspectives. The paper discusses the
experience and issues faced when models had to be essentially
rewritten for a GPU version, enhancing simulation time but limiting
model complexity in the process.

Categories and Subject Descriptors
C.1.4 [Parallel Architectures]: Distributed computing I.6
[Simulation and Modelling] architectures and languages

General Terms
Performance, Design, Experimentation, Modelling.

Keywords
FLAME, FLAME GPU, Biological modelling

1. INTRODUCTION
Modelling behavior of complex systems is an emergent science
which demonstrates the complex and social behavior of large scale
communities working together in real world scenarios. Examples
of ant colonies, social networks and even bird flocking is referred
to as complex systems consisting of individuals interacting together
to produce emergent behavior (Figure 1). Simulating complex
models is a cumbersome task involving massive data processing,
storage issues and pattern recognition of behaviors within the
system. Depending on the complexity of the model, some
simulations may take days or even weeks to finish processing.
Sometimes these would abandon due to low memory or loss of
processing power of the infrastructure underneath. Past modelling
techniques which involve large-scale system modelling have used
high performance computing grids and GPU cards to quickly
process large complex equations for multi-massive variables to
produce emergent solutions [3, 4, 6] to predict how systems behave.
Agent-based modelling (ABM), also known as individual-based
modelling, is a technique which best models complex systems by
modelling the individual interacting elements rather than a whole
system and serves as an alternative to conventional differential

equation which models the complete system. This approach allows
a bottom-up approach of generating behaviour from the bottom up
concentrating on the individual interacting units which are given
clear defined rules and allowed to simulate. The produced emergent
pattern of system behaviour, can then be studied to test and
understand the behaviour of complex systems which is otherwise
not possible from studying these systems from an outside view.

Figure 1. Mapping real world complexity to simulated

environment. C.f. [1]
Due to the complexity of these models and the time it takes to
simulate them, researchers often use high performance computing
girds to reduce the time it takes to simulate and analyse the results.
Working with economists and biologists, computer scientists
developed the FLAME framework which can allow non computer
scientists to easily write their models in an easy to understand
language specification, which could then automatically produce
parallelizable code to execute on grids. Initially developed for HPC
grids, the framework was adapted for executing on Nvidia graphics
cards to allow simulations to run faster, improving performance
upto 80% on a single machine [8]. However this capability comes
with a cost and technical limitations on the models themselves. This
paper aims to discuss these experiences from a modeller’s
perspective, highlighting the challenges of multiple platforms being
used to simulate the same complex model across two platforms, to
discuss the following research questions:

RQ1: Is it feasible to have unified modelling language to define a
model abstraction, to allow execution on multiple platforms?

RQ2: Is it useful to define favourable architectures for particular
models in advance?

RQ3: What are the tradeoff when using multiple platforms for
simulation?

 2

RQ4: Challenges faced by modelers in writing, simulating and
testing the models.

2. FLAME FRAMEWORK
The Flexible Large-scale Agent Modelling Environment (FLAME)
(www.flame.ac.uk) is a framework which is specially written for
simulating large populations of agents or individual software
elements on parallel architecture. Till date, there are various agent-
modelling frameworks such as Repast, Jade developed by IBM and
Netlogo being extensively used by the social science community,
some of these allow only serial executions requiring the model to
be specially rewritten for parallel execution.

Figure 2. Block diagram of FLAME framework

FLAME acts as an enabling tool to create agent-based models. The
agents are based on the extended state machine (X-machine)
methodology which allows definition of state machines to be
equipped with memory and communicating messages. Transitions
between functions of each X-machine is determined by the memory
state and messages being read by the X-machine agent (Figure 3).
These agents can be defined by modellers, from any domain, as
cells in a biological model or as banks and firms in an economic
model. Different agents interact using messages being read/written
through the transition functions and message boards.

Agent-based model engineering orients towards how the
requirements and the system are represented. Use of formal
specification methods and different processes to capture internal
and external concepts of multi-agent systems has been highly
researched [10, 11]. Various approaches have been discussed on
how the behavior of the system can be represented using semantic
approaches such as model checking [12].

Figure 3. X-Machine agent

Figure 4. Block diagram of FLAME working.

Figure 4 describes how models are written in a descriptive XML
notation, which is then fed into a parser. The parser produces
automatic parallelizable code which is ready to be run over multiple
processors of a grid. The same parser can also run the code on GPU
cards. Simulation results are produced on disk to be analysed later.

ABMs are based on the principles of cellular automata updates.
Popular agent-based frameworks allow synchronizations using
update schedulers such as used in MASON, REPAST, and
SWARM. FLAME uses initial synchronization calculations using
the definition of the model from the definition language. The
parallelization is then done using MPI interacting with C functions
to allow agents to be distributed across multiple processors
synchronization every time they write and read to message boards.
FLAME prevents any asynchronous agent update as in cellular
automata models.

2.1 Porting on GPU
The GPU version of FLAME shares the same principles such as
using the same specification language (XML) as an initial
description of the models. However the agent functions are written
in C++ and interface with CUDA libraries such that they can be
processed on the machine’s local graphics cards. The models
showed an 80% improvement in simulation time and allowed real-
time and 3D rendering of results which the simulations are running
[8]. Each agent would thus become an independent thread
performing its functions wrapped by the GPU kernel.

3. PORTING PROBLEMS
Although both versions of FLAME use similar methodologies and
description languages, a number of changes had to be introduced
into the model itself, prior to the parser step, to ensure it runs on the
GPU. Upon inspection, most of these changes were due to the basic
capability of the HPC grid versus the GPU cards. These changes
have been discussed below to highlight some issues raised by
portability from a modellers point of view:

3.1.1 Writing the Agents
From the modeller’s perspective, implementing the system in
FLAME in general was quite straight forward provided certain
rules were being follows. Due to synchronization nature of the

 3

framework which are predefined before the simulation runs,
FLAME does not allow agent behavior to contain loops which may
cause it to go back to a previous states. Similarly communications
are decided at specific steps before the code is parallelized to ensure
synchronization points (when the message boards are locked for
reading and writing) to prevent any discordances in the data of the
messages read, following a step-by-step progression in the model.

3.1.1.1 Pre-allocation of Agent memory
The grid FLAME version allowed memory to be allocated
dynamically as the simulation runs. This allowed complex agent
memory such as using dynamic arrays or linked lists to be generated
as the model runs on the grid. This however, is not the same on
GPUs. The GPU needs for all memory to be allocated in advance
before the simulation starts, due to the manner in which the agents
are executed as threads on the cards. The means that all dynamic
arrays in a model had to be changed to static arrays of specific sizes,
which caused considerable changes on the model reducing some of
the model complexity by limiting the memory size of the agents.

In addition to the strict memory sizes, the grid version allows
memory data structures of multiple data types to be created. This
capability was not exhibited by FLAME GPU, allowing only a
specific type of variables of fixed lengths data types. This raises
issues if there are certain data structures used in the model which
act as records of multiple datasets used by the agent such as a
product inventory or biological rules. The cell model [9] was
changed from a data structure into a 1D array and stored in memory
where agents could globally read it serially. This caused a
considerable rewriting of the model itself, however it did reduce the
potential processing time of the model a data was being access
serially rather than as dynamic data structures in the HPC version.

3.1.1.2 Message Communication between agents
In the grid version of FLAME, signals can be passed between
agents as messages with each agent creating multiple messages as
needed. FLAME GPU limits this to only one message per function
to be created which limited the amount of information that was
possible with one function. The model has to be broken down to
allow multiple function transitions within one function to allow
messages to be communicated making the model quite complex or
expanding the message at times to create much more information
than previously designed. This constraint was introduced due to the
manner in which the agent threads communicate allowing only
single message to be synchronized per function.

3.1.1.3 Simpler versus Complex
Although both versions grid and GPU are suitable for simulation,
the GPU version seems more suitable for simpler model executions
with agents with basic memory allowing much faster simulations
as compared to the grid version. This makes it suitable for game
based simulations to quickly visualize the results quickly and where
data analysis is not an extensive requirement. However with more
complex models such as the model of the complete European
economy, with 15 different agent types with increasing complexity
and multiple interactions, such models could not be processed on
GPU cards.

3.1.1.4 Looping through Messages
Following is an example of looping through a message list as
defined in FLAME HPC, which allows an agent to read through all
messages in the list and find the agent id and state from the message
and record it in its memory.

int MyFunction (xmahine_memory* agent,
xmachine_message_list* list) {
 xmachine_message* message = get_first_message(list);
 while(message) {
 if (message->id == agent->id) {
 agent->state += message->state;
 return 0;
 }
 message = get_next_message(message, list);
 }
 return 0;
}
However the above code does not work in FLAME GPU, causing
the simulation to crash or hang. Instead an extra flag ‘finished’
needs to be introduced to tell the code to leave the while loop.

int MyFunction(xmahine_memory* agent,
xmachine_message_list* list) {
 bool finished = false;
 xmachine_message* message = get_first_message(list);
 while(message) {
 if (!finished) {
 if (message->id == agent->id) {
 agent->state += message->state;
 finished = true;
 }
 }
 message = get_next_message(message, list);
 }
 return 0;
}

This behavior was only observed in the GPU version, raising a
concern if while loops have to be explicitly broken for GPU
execution when compared to the gird version.

3.1.1.5 Discrete versus continuous
In the GPU version, agents need to be defined in advanced if they
are of natures – discrete or continuous agents. This affects how their
messages are parsed and handled during the simulation. This
required modellers to understand this in advance which was not
seen in the grid version. The grid version allows easier writing of
the agents and all are handled the same way.

3.1.1.6 Agent birth and death
Both architectures were able to handle agent addition similarly.
Similar to the problem of dynamic memory allocation, agents can
be introduced in the system if predetermined for the GPU. Every
simulation the agent would be introduced using an environment
agent, which keeps track of the maximum agents and generate a
new agent by using the thread_id :

ID= Maxid +thread ID, where thread ID = blockIDx.x *block
Dimx+threadId.x

This should guarantee that all the generated ID's are unique
(although they won't be sequential), without using complicated
atomic operations. However the GPU could only add 1 agent at a
time step, whereas the Grid version could add multiple agents per
step.

3.1.1.7 Real time visualization
The Grid version allows simulations to run as batch files producing
results on disk. The results have to later downloaded and processed
to find data patterns for the simulations. The GPU was much

 4

simpler to do this, as it immediately integrates with a visualization
engine. The agent could be observed as the simulation happens and
no time waits were needed to visualize the simulations.

4. FUTURE WORK
The current lessons from FLAME are now being ported as a
simulation service on the cloud. Table 1 presents why this would
be beneficial comparing it to the grid versions.

Table 1. Case for Cloud computing for ABMs
Issues High performance

computing
Cloud computing

Kind of
models and
processing

The processing is
limited to the nature of
simple equation models
to be processed.

Can introduce
dynamic scalability
for more complex
processing.

Cost Access to expensive
hardware to model and
simulate systems.

Resources can be
hired as needed.

Failure
recovery

No fault recovery when
disk space runs out.

Applications can burst
to more Clouds if
needed, automatically.

Dynamic
changes in
the model

No real time processing,
jobs are submitted to a
queue, which means real
time changes cannot be
incorporated in the
models.

Can execute jobs on
the fly which can read
real time data feeding
to the models directly.

In addition to the advantages, the cloud based systems introduces
multiple levels of complexity which are discussed in Figure 5.

Figure 5. Block diagram of FLAME –Cloud.

Figure 5 describes the architecture of ABMaaS platform. The
agent code and model description are input to an ABMaaS parser
which is able to perform task distribution and allocation in order to
allocate resource efficiently on the backend platforms. The
platform providers will have certain service level agreements that
need to be consulted when resources are pooled and distributed
with the nature of simulations. Depending on the demands, virtual
machines can be allocated. These machines are monitored and
communicated to a central database to store agent data which is
continuously being referenced to during the simulation processing
on the machines. Further mechanism such as fault tolerance have
to be implemented which will be prevent the high demand of the
simulation to affect the active virtual machines.

However the current design faces a multiple additional
challenges such as workload balance over virtual machines, model

verification issues, fault tolerance, security and performance
optimization. Each of these are still open research problems which
need to be solves separately before the system is put together.

5. CONCLUSIONS
Modellers and decision makers are increasingly looking at

simulations larger and larger simulations. The motivation is clear
– more realistic simulations requires larger populations, or multiple
types of population, as the validity of emergent characteristic
dependent on both: the accuracy of the behaviour modelled and
population sizes. In addition there is a need to forecast behaviours
of systems faster than the wall-clock time, and run-time costs are
presently inhibiting the effective use of ABM as forecasting tool.

Agent-based models have successfully been able to uncover new
aspects of economic systems such as the effect of migration on EU
labor markets [1] or uncovering some underlying facts in biological
systems [6, 7]. In agent-based modelling, the agents can be complex
(e.g. humans), or simple (e.g. ants), with varying memory and
functions. Simulating natural systems, researchers have shown how
complex ant colony optimizations can be used to help solve
complex network routing problems [8] or study the biological
transcription functions in cells or bacterial behavior living in
human tissues [6, 7].

The current Agent-based Modelling Environments can simulate
regional economies on supercomputers – focusing on a number of
markets – labour, credit, financial – integrated into a large model
running on supercomputers. The frameworks need to be extended
to provide a more powerful mechanism for dealing with the
complex agent behavior and cloud environments could enable on
demand high performance computing to solve some of the current
issues faced by present architectures. Eve with this route, models
written for HPC and GPU should portray similar characteristics,
hiding away much orf the software complexity from the non
computing scientists using the tools to write their models which is
a challenge in its own right.

6. ACKNOWLEDGMENTS
Our acknowledgement to the whole FLAME group developers and
modellers for allowing us to study both models in detail.

7. REFERENCES
[1] Grimm, Volker; Railsback, Steven F. (2005). Individual-based

Modeling and Ecology. Princeton University Press. p. 485.
ISBN 978-0-691-09666-7

[2] Coakley ST, Holcombe, M. Smallwood R, From molecules to
insect communities - how formal agent based computational
modelling is uncovering new biological facts, Scientiae
Mathematicae Japonicae Online, pp.765–778, 2006.

[3] M. Kiran, P. Richmond, M. Holcombe, L. S Chin, D. Worth,
and C. Greenough, FLAME: Simulating large populations of
agents on parallel hardware architectures, in Proceedings of
the 9th International Conference on Autonomous Agents and
Multiagent Systems, 2010, pp. 1633–163

[4] M. Holcombe, S. Chin, S. Cincotti, M. Raberto, A. Teglio, S.
Coakley, C. Deissenberg, S. vander Hoog, C. Greenough, H.
Dawid, M. Neugart, S. Gemkow, P. Harting, M. Kiran, and D.
Worth, Large-scale modelling of economic systems, Complex
Systems, no. 2, pp. 175–191, 2012.

[5] M. Pogson, M. Holcombe, R. Smallwood, and E. Qwarnstrom,
Introducing spatial information into predictive NF-kB
modelling – an agent-based approach, PLoS ONE, vol. 3, no.
6, p. e2367, 2008.

 5

[6] S. Maleki-Dizaji, M. Holcombe, M. Rolfe, P. Fisher, J. Green,
R. Poole, and A. Graham, A systematic approach to
understanding Escherichia coli responses to oxygen from
microarray raw data to pathways and published abstracts,
Online Journal of Bioinformatics, vol. 10, no. 1, pp. 51–59,
2011

[7] S. Coakley, M. Gheorghe, M. Holcombe, S. Chin, D. Worth,
and C. Greenough, Exploitation of high performance
computing in the flame agent-based simulation framework, in
2012 IEEE High Performance Computing and
Communication, June 2012, pp. 538–545

[8] Richmond P., Romano D. (2008), A High Performance
Framework For Agent Based Pedestrian Dynamics On GPU
Hardware, Proceedings of EUROSIS ESM 2008 (European
Simulation and Modelling), October 27-29, 2008, Universite
du Havre, Le Havre, France

[9] M. Burkitt, M. Kiran, S. Konur, M. Gheorghe, F. Ipate Agent-
based High-Performance Simulation of Biological Systems on
the GPU, IEEE International Conference on High
Performance Computing and Communications, Aug, 2015,
accepted

[10] Gómez-Sanz J.J., Gervais M.P, Weiss G., 2004, Survey on
Agent-Oriented Software Engineering Research,
Methodologies and Software Engineering, Multiagent
Systems, Artificial Societies and Simulated Organizations.

[11] Wooldridge M., 1998, Agent-based software engineering,
IEEE Proceedings software 144(1)

[12] Rao A., Georgeff M., 1993, A model theoretic approach to
verification of situated reasoning systems. Artificial
Intelligence.

