
1

SC15 workshop on Portability among HPC architecture for Scientific Applications

Nov 15, 2015@Hilton Austin

Hiroyuki Takizawa, Shoichi Hirasawa, Kazuhiko Komatsu,

Ryusuke Egawa and Hiroaki Kobayashi

(Tohoku University/JST)

Expressing system-awareness as code transformations

for performance portability across diverse HPC systems

Please visit our booth #2315 (Tohoku University)

or #2921 (The Japan Science and Technology agency)

2

BACKGROUND

• HPC application development = team work of programmers with different concerns

• Application developers (= computational scientists)

• write a program so as to get correct results

 Main concern: relationship between simulation models and programs.

• Performance tuners (= computer scientists/engineers)

• write a program so as to get high performance

 Main concern: relationship between programs and computing systems.

simulation codemodel system

Application requirements System requirements

Assumption: Oracle Tuner
Oracle Tuner knows how to adapt the

code to a new target system..

Assumption: Legacy Code
Application code written in C or Fortran

already exists. It is not allowed to rewrite

the code because application developers

have to maintain the code.

3

WHAT’S THE PROBLEM?

• System complexity is increasing

• Need to consider both parallelism and heterogeneity

• Also need to manage deeper memory/storage hierarchy, power, fault tolerance, …

System-aware performance optimizations are needed for high performance

 An HPC application is specialized for a particular system

• System diversity is also increasing

• Different processor combinations

• Different system scales

• Different interconnect network topologies

• Different system operation policies

X 3 X 9

What can we do to achieve high performance on various systems?

4

OUR GOAL = APPROPRIATE DIVISION OF LABOR

• Separation of system-awareness from application programs

There are many approaches to abstraction of system-awareness

• System-aware implementations with a common interface = Numerical libraries

• Standardized programming models and languages = MPI, OpenMP, OpenACC …

Simulation code

System-aware implementations and optimizations

+

In reality, we still need to manually modify a code for high performance.

 How can we abstract such code modifications?

5

A MOTIVATING EXAMPLE

• Numerical Turbine (NT)

• Developed by Prof. Yamamoto (Tohoku U.)

• 44 loop nests of the code have the same loop structure.

• The loop nests are optimized for NEC SX-9 system.

• OpenACC compiler cannot achieve high performance on GPUs.

• Because of the same loop structure, all the loop nests need to be

modified in the same way for GPUs.

…

…

6

• Bad News

• System-aware code modifications are scattered over a code

• Good News

• Same (or similar) code modifications are required many times

Manual code modifications can be replaced with a

smaller number of mechanical code transformations.

 Express application-specific and/or system-specific code

modifications as mechanical code transformations

HOW IS CODE MODIFIED?

7

……………….
……………….
……………….
……………….
……………….
……………….

XEVOLVER FRAMEWORK
Various transformations are required for replacing arbitrary code modifications.

= cannot be expressed by combining predefined transformations.

 Xevolver : a framework for custom code transformations

……………….
……………….
……………….
……………….
……………….
……………….

s2s

translator

Predefined or user-defined annotations

……………….
……………….
……………….
……………….
……………….
……………….

Translation rules

• Define the code transformation of each annotation

• Different systems can use different rules

• Users can define their own code transformations

Optimized

for System A

App code

Optimized

for System B

……………….
……………….
……………….
……………….
……………….
……………….

8

PROOF-OF-CONCEPT IMPLEMENTATION

- On top of the ROSE compiler infrastructure

 Interconversion between ROSE ASTs and XML ASTs.

- XSLT is employed to describe transformation rules

 XSLT rules can be written in a text format.

 In the framework, other XML-related technologies are also available for

transformation, analysis, and visualization of ASTs.

- Xerces and Xalan libraries are used for XML data representation and transformation.

………………..

……………….

……………….

……………….

ROSE parser SRC2XML

Rose AST XML AST

XSLT

XSLT engine

XML AST

ROSE unparser

……………….

……………….

………………..

……………….

XML2SRC

Rose ASTC/Fortran C/Fortran

9

CUSTOM CODE TRANSFORMATION

!$xev loop_tag
do k=1,n-1
do j=1,n-1
do i=1,n-1
B(i,j,k)=A(i,j,k)

end do
end do

end do

Application code is just annotated with a user-defined mark (directive/comment).

<xsl:template match="SgFortranDo">
<xsl:choose>
<xsl:when test="preceding-sibling::*[1]/SgPragma/@pragma = 'xev loop_tag'">
<xsl:comment>
test-3.xsl xev loop_tag
</xsl:comment>

<xsl:variable name="step1">
<xsl:apply-templates select="." mode="chill_unroll_jam">
<xsl:with-param name="max" select="4" />
<xsl:with-param name="var" select="'k'" />
</xsl:apply-templates>
</xsl:variable>

<xsl:apply-templates select="exslt:node-set($step1)"
mode="find_loop_and_unroll" />
</xsl:when>

<xsl:otherwise>
<xsl:copy>
<xsl:copy-of select="@*" />
<xsl:apply-templates />
</xsl:copy>
</xsl:otherwise>

</xsl:choose>
</xsl:template>

Application code

The translation rule is defined in an external file

Unroll and jam

Loop unrolling

Every translation rule is written declaratively in XML (XSLT).

Users can customize it without developing their own code translators.

10

AUTOMATIC GENERATION OF TRANSLATION RULES *1

program loop_inv0

!$xev tgen variable(i_, i0_, i1_)

!$xev tgen list(stmt_)

!$xev tgen src begin

!$xev(.) loop inv

do i_ = i0_, i1_

call xev_exec(stmt_)

end do

!$xev tgen src end

!$xev tgen dst begin

do i_ = i1_, i0_, -1

call xev_exec(stmt_)

end do

!$xev tgen dst end

end program loop_inv0

A list variable catches multiple things

The code pattern before transformation

Directive that drives transform

Special form to catch arbitrary statement

Loop is reversed

Reproduces the caught statement

The code pattern after transformation

Two code versions : original and translated codes

*1 Suda et al@LHAM2015

11

CASE STUDIES WITH REAL APPLICATIONS *2

• Real-world applications originally developed for

NEC SX-9 have been ported to OpenACC.

• Numerical Turbine (Yamamoto et al@Tohoku-U)

• Nano-Powder Growth Simulation (Shigeta@Osaka-U)

• MSSG-A (Takahashi et al@JAMSTEC)

Xevolver can express system-awareness in an XML data format for migrating

all the applications to OpenACC platform without major modifications.

*2 Takizawa et al@HiPC2014.

12

PERFORMANCE EVALUATION RESULTS (NT)

Speedup due to code transformations

(Main kernels of Numerical Turbine)

Different systems require different optimizations

= importance of the separation for performance portability

GPU-aware code optimizations are expressed as

code translation rules in an external XML file.
 The optimizations are enabled for GPU and disabled for SX-9

= High performance portability between GPU and SX-9

13

AOS-TO-SOA CONVERSION

point[A].B to point.B[A]

A: any integer expression
B: any member of the struct

For AoS-to-SoA conversion
(1)Convert the declaration
(2)Convert every reference

struct aos {
double x;
double y;
double z;
} point[N];

void init(){
for(i=0;i<N;i++)

point[i].x = point[i].y = point[i].z = 0;
}

struct soa {
double x[N];
double y[N];
double z[N];

} point;

void init(){
for(i=0;i<N;i++)

point.x[i] = point.y[i] = point.z[i] = 0;
}

14

• Data layout optimizations can improve the performance of both

CPU and GPU

• The GPU performance is more sensitive to the data layout.

• The CPU performance also improves if the data size exceeds the cache capacity.

• The transformation rule is reusable if customized for individual systems and applications

IMPACT OF DATA LAYOUT OPTIMIZATION *3

*3 Yamada et al@LHAM2015.

15

CONCLUSIONS

• Xevolver Framework

• AST is converted to a text format (XML) and exposed to programmers.

• System-specific optimizations are separated from application codes.

• Application developers can maintain the original code

• Performance tuners describe system-specific optimizations in an external file

 Helpful for an appropriate division of labor.

 We need a standard way to express system-awareness

to fight against system diversity in the future.

16

VISIT OUR BOOTH!

• Tohoku University (#2315)

