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ABSTRACT Keywords

Our research project is developing a code transformation Code transformation, performance optimizations, system-
framework, Xevolver, to allow users to define their own code awareness

transformation rules and also to customize typical rules for

individual applications and systems. By expressing system-

awareness as code transformations, users do not need to di- 1. INTRODUCTION

rectly modify the application code for system-aware perfor- Even today, system-aware performance optimizations are
mance optimizations. This prevents the application code imperative to exploit the potential of a modern HPC sys-
from being specialized for a particular HPC system, and tem. As HPC system architectures are getting more compli-
thereby the application can achieve a high performance porta- cated and diversified, the importance of system-aware per-
bility across diverse HPC systems. This paper introduces formance optimizations will further increase in an upcom-
our research activities and some case studies to discuss the ing exascale-computing era. One severe problem in system-
strengths and limitations of our approach to separation of aware performance optimizations is that, as the name im-
system-awareness from application codes. Using only stan- plies, an HPC application code is optimized only for a par-
dard technologies and tools, Xevolver can achieve important ticular system architecture and thus the performance may
system-aware performance optimizations, such as loop op- not be portable to another system. HPC application devel-
timizations and data layout optimizations, without compli- opment and maintenance will become to require much more
cating the original application code. time and efforts due to the complexity and diversity of future

HPC system architectures.

To tackle this challenging problem, we have started a re-
. . . search project to explore an effective way to separate system-
Categorles and Sub-]eCt Descrlptors awarenessjfrom an HPC application co}(;le. Our approiich to
D.2.6 [Software Engineering]: Coding Tools and Techniques the separation is to express system-awareness as code trans-
formation by source-to-source translation. Manual code mod-
ifications are replaced with mechanical code transformations
defined in external files, in order to avoid specializing an
HPC application code itself for a particular system. As a
Languages, Performance result, we will be able to improve the portability of an HPC
application code across different systems in terms of both
function and performance.

One important research interest in this project is how code
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optimizations are likely to be application-specific. As far as
we know, there is no established way to abstract those code
modifications in a systematic fashion.

Our only consolation is that there are repetitive patterns
in such code modifications. Code modifications often seen
in practice are roughly classified into several patterns, even
though there could be numerous variations of each pattern.
Therefore, we are developing a code transformation frame-
work, Xevolver, to allow users to define their own code trans-
formation rules and also to customize typical rules for indi-
vidual applications and systems [8][9].

In this paper, we introduce our research activities in the
Xevolver project. This paper first describes our empirical
study to investigate repetitive code modification patterns
in practical performance optimizations. Then, this paper
reviews the Xevolver code transformation framework to ab-
stract those code modifications as code transformations in
a reusable and customizable way. Our case studies are also
presented to discuss the strengths and limitations of our ap-
proach.

2. REPETITIVE CODE MODIFICATION PAT-
TERNS IN REAL-WORLD APPLICATIONS

We empirically know that there are repetitive patterns
in code modifications for system-aware performance opti-
mizations. One reason of the repetitiveness is that HPC
application codes tend to be themselves repetitive. This is
because a typical scientific simulation code repeats process-
ing a computational grid in various ways, and its loop nests
for accessing the grid could have similar structures. A lot of
similar loop nests in an application often need to be modi-
fied similarly for several reasons, resulting in repetitive code
modification patterns.

An HPC application code needs to be written in such a
way as to exploit the architectural features of a modern HPC
system. For example, one of our target applications, Nu-
merical Turbine [4], is already optimized for NEC SX-series
vector supercomputers installed in Tohoku University Cy-
berscience Center [12]. The lengths of its inner-most loops
are maximized for vectorization by using the loop-level par-
allelism. On the other hand, it is not always best for graph-
ics processing units (GPUs) to exploit the inner-most loop
parallelism. As a result, loop interchange is required to re-
optimize the loop nests for GPUs. A difficulty in loop inter-
change arises when there exists a data dependency between
the two nested loops to be interchanged. In the case where
the data dependency can be removed in some way, there are
repetitive patterns in code modifications for the removal. In-
deed, Numerical Turbine has 44 similar loop nests to simu-
late various physical phenomena on one computational grid,
and almost the same code modifications are required to op-
timize all of those loop nests by loop interchange. If a pro-
grammer wants to migrate the application to a GPU, she/he
needs to modify all of the 44 loop nests in almost the same
way, which will be boring and time-consuming.

As well as loop optimizations, data layout optimizations
play an important role in system-aware performance opti-
mizations. Since an HPC application code is usually written
in a low-level programming language such as C or Fortran,
a data structure is represented using low-level language con-
structs and hence bound to a particular data layout. If we
convert such a data structure to another one, we need to
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Figure 1: The number of loop nests with OpenACC compiler
taboos.

replace not only its structure declaration but also every ref-
erence to the data structure. A large number of variable
references could be scattered over a whole application code,
and it is a labor-intensive and error-prone task to replace all
of them consistently and correctly.

In addition to considering the system architecture, an
HPC application code also needs to be compiler-friendly so
that a compiler can fully optimize the code and thereby ex-
tract the system performance. In other words, such a code
would be modified so as to avoid violating various taboos,
which potentially inhibit a compiler to optimize the code.
For example, there are several taboos in adapting a code to
an OpenACC platform [11|, which assumes OpenACC di-
rectives in an application code to use GPUs as accelerators.
Major taboos include Triangular loop, Variable length loop,
Live-out scalars, Once-used array data, Computed index,
Common subexpression, and Loop invariant.

As a preliminary study, we have investigated how often
each kind of taboos appear in real-world applications. Our
target applications, Numerical Turbine [4] and MSSG [7],
have been developed for NEC SX-series vector supercom-
puters for a long time. Hence, it is obvious that the codes
have been optimized under assumption of using NEC SX
compilers, and written without considering taboos of the
OpenACC compiler. Figure 1 shows the investigation re-
sults to discuss how many loop nests in their main kernels
violate each kind of taboos. The results clearly indicate
that a kind of taboos could repeatedly appear within a ker-
nel. Similar code modification patterns are often required to
remove those taboos [13]. Therefore, this preliminary study
supports our assumption that repetitive code modification
patterns are often seen in system-aware performance opti-
mizations of real-world applications.

In many cases, expert knowledge and experiences about
performance optimizations are documented as programming
tips and guidelines, which are not machine-readable. By
reading the documents, hence, other programmers manually
optimize their codes. Such code modification is likely to be
repetitive routine work, and it is hence labor-intensive and
boring. However, since advanced intelligential work is also
essential to apply the knowledge and experiences to a specific
code, it is difficult for any compilers and other programming
tools to fully automate system-aware performance optimiza-
tions. Therefore, our project intends not to fully automate



the optimizations, but to represent expert knowledge and
experiences in a reusable and customizable way to reduce
programmers’ burden of repetitive code modifications.

We have been accumulating expert knowledge and expe-
riences as a database called an HPC refactoring catalog [1].
One difficulty is that the code modifications are likely to be
application-specific and/or system-specific, resulting in low
performance portability and/or maintainability. To over-
come the difficulty, Xevolver allows users to define their own
code transformation rules in such a way that the rules are
reusable and customizable for individual applications and
systems. By replacing repetitive manual code modifications
with a smaller number of custom code transformations, Xe-
volver can achieve high performance portability without ma-
jor modifications of the original code.

3. XEVOLVER CODE TRANSFORMATION
FRAMEWORK

In our project, the Xevolver framework is designed to en-
able users to define their own code transformations. The
framework needs to be flexible and expressive enough to ab-
stract a code modification as a user-defined code transforma-
tion. To this end, at the lowest level, a code transformation
is defined by a transformation rule of an abstract syntax
tree (AST). An AST is the internal representation of code
structures used in compilers. AST transformation is what
compilers do for code transformation. In our project, many
case studies using real-world applications have demonstrated
that Xevolver can provide various code transformations fre-
quently required in practice.

One important difference between Xevolver and compil-
ers is that Xevolver offers an interface to users to concretely
direct code transformations, while compilers have been de-
veloped to automate decision making of such code trans-
formations based on code analysis. The code analysis of a
compiler is sometimes unable to work as expected by users,
unless the code is written to be friendly to the compiler. By
manually directing code transformations based on expert
knowledge and experiences, Xevolver can prevent an appli-
cation code from being specific to system architectures, com-
pilers, libraries, and so on, resulting in a high performance
portability.

Xevolver has so far been developed on top of the ROSE
compiler infrastructure [5]. Xevolver provides the intercon-
version between an ROSE AST and its XML representation.
Xevolver converts a ROSE AST to an XML representation
of the AST, called an XML AST. Then, an XML AST is
exposed to users. After some AST transformations, the
transformed XML AST is again converted back to a ROSE
AST so that ROSE can unparse it to a C or Fortran code.
Xevolver can easily collaborate with ROSE, which provides
various features of code analyses and transformations to im-
plement custom code transformation programs in C++. Us-
ing ROSE’s features, users do not need to reimplement the
same features from scratch for Xevolver.

Xevolver currently adopts XSLT (eXtensible Stylesheet
Language Transformation) [3] for describing AST transfor-
mations. XSLT is a standard specification to describe XML
data conversion in an XML format, and thus an AST and
its transformation rules are both written in XML. As a re-
sult, Xevolver enables us to express various code transfor-
mations by using only standard XML technologies and tools.

This feature is important for representing and accumulating
expert knowledge and experiences about performance opti-
mizations in a widely-available and future-proof way.

Furthermore, we are now developing several higher-level
interfaces to describe user-defined code transformations in
order to explore an effective way to represent expert knowl-
edge and experiences. For example, a JSON interface is
developed to define a custom directive and associate it with
a combination of predefined code transformation rules [10].
Thus, if an application-specific code transformation can be
expressed by a combination of basic transformation rules
such as loop unrolling and loop interchange, users just write
a simple JSON file to combine those rules and associate the
combination with a user-defined directive. If an expert user
writes a code transformation rule in XSLT, we can increase
the number of predefined rules available for the interface.
In this way, we expect that expert knowledge and experi-
ences are accumulated in a reusable and machine-readable
fashion.

Another high-level interface under active development is
named Xevtgen [6]. The purpose of Xevtgen is to allow
users to define a custom code transformation rule by just
writing two versions of a code, which are the original code
and its transformed code. Using the two versions of a code,
Xevtgen will automatically generate a code transformation
rule written in XSLT. Therefore, users will no longer need to
manually write any XSLT rules. This work is still ongoing
and will be further described in our future work.

4. CASE STUDIES AND DISCUSSIONS

This paper shows several case studies of using XSLT to
express AST transformations for practical system-aware per-
formance optimizations. The purpose of these case studies
is to explore appropriate coverage of using user-defined code
transformations on system-aware performance optimizations.

To demonstrate that system-awareness is certainly sepa-
rated from an application code, an existing application al-
ready optimized for one system is migrated to another sys-
tem without major code modifications. Since we have a lot
of real-world applications optimized for the SX vector su-
percomputer, those application codes are migrated to GPU
systems, for which GPU-aware performance optimizations
play a key role to achieve high performance. The system
specifications used for the case studies are listed in Table 1.

As mentioned in Section 2, Numerical Turbine has 44 sim-
ilar loop nests that have to be transformed to achieve a high
performance on an OpenACC platform. The code transfor-
mation uses loop interchange so that GPUs efficiently ex-
ecute the code. The GPU-aware code modification of Nu-
merical Turbine makes inner-most loops shorter and hence
remarkably degrades the performance when the application
runs on the SX system, for which the code has originally
been optimized. It is obvious that GPU-aware performance
optimization reduces the SX performance. This is a clear
instance of why we need to separate system-awareness from
an application code.

In this case study, the code modification is defined as an
application-specific code transformation rule, which is appli-
cable to all of the 44 loop nests for the GPU-aware perfor-
mance optimization. As a result, the application code can
be transformed to another version of the code optimized
for GPUs. As the GPU-awareness is expressed as a code
transformation rule in an external file, the application code



Table 1: System specifications.

Model Intel Core i7-930
No. cores 4
CPU Clock [GHz| 2.8
L3 cache [Mbytes| 8
Memory BW [GB/s] 25.6
Model NEC SX-9
No. cores 1
Clock [GHz] 3.2 (vector unit)
S 1.6 (scalar unit)
Cache [Kbytes] 256
Memory BW [GB/s] 256
Model | NVidia Tesla C2070
GPU No. CUDA cores 448
Clock |GHz| 1.0
Memory BW [GB/s] 144
Model | NVidia Tesla K20
GPU No. CUDA cores 2496
Clock |GHz| 0.7
Memory BW [GB/s] 208
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Figure 2: The performance impact of the code transforma-
tions.

hardly changes from the original one, and just a few custom
directives are inserted to the code for annotation.

As a result of code transformation as the GPU-aware
performance optimization, we have the original and trans-
formed versions of each loop nest that are optimized for
the SX and GPU systems, respectively. In this case study,
both of the two versions are executed on each system and
the performance difference between the them is evaluated.
Figure 2 shows the evaluation results to discuss the perfor-
mance impact of the code transformation. The vertical axis
indicates the speedup ratio of the transformed version to the
original one. The horizontal axis shows time-consuming six
loop nests of Numerical Turbine. The GPU performance of
the original version is extremely low, because the OpenACC
compiler cannot exploit the loop parallelism at all. On the
other hand, the OpenACC compiler can exploit the paral-
lelism of the transformed loop nests. Therefore, the code
transformation can significantly improve the GPU perfor-
mance.

Since the original version is optimized for the SX system,
the transformed version running on the SX system is slower

than the original one, and thus the speedup ratio is less
than one. However, this is not a problem in practical use
because the code transformation can be disabled when the
application is executed on the SX system. The application
code can be transformed to another version only when it
is compiled for the GPU system. In this way, Xevolver can
achieve performance portability across totally-different HPC
systems.

Another case study uses the Himeno benchmark and the
27-point stencil kernel in EPCC OpenACC benchmark suite [2]
to demonstrate that Xevolver can be used for data layout op-
timizations. Since those benchmarks already use Structure-
of-Array (SoA) for structured data, the data are rewritten in
an Array-of-Structure (AoS) manner, and the performance
difference caused by changing the data representation is
evaluated for discussions on the performance impact of data
layout optimizations.

Code transformation rules to convert AoS data to SoA
data are written in XSLT for each benchmark !. As men-
tioned in Section 2, such a transformation rule can signifi-
cantly reduce the programmers’ burdens for data layout op-
timizations, because AoS-to-SoA data conversion is a highly-
repetitive and error-prone task.

Figure 3 shows the performance impact of AoS-to-SoA
data conversion. Code 17-930 and Tesla K20 in Table 1 are
used as the CPU and the GPU, respectively. In the case of
executing the 27-point stencil kernel on the CPU, the per-
formance improvement is small because the array size is less
than the last-level cache capacity. On the other hand, the
data size of the Himeno benchmark is larger than the cache
capacity, the AoS-to-SoA conversion significantly improves
the CPU performance. The performance improvement of
the GPU is more significant than that of the CPU, because
the effective memory bandwidth of the GPU is sensitive to
memory access patterns. Since the AoS-to-SoA conversion
allows more memory accesses to be coalesced, the GPU can
achieve a better memory bandwidth and hence a higher per-
formance.

As demonstrated above, Xevolver can provide user-defined
AST transformations for system-aware performance opti-
mizations, loop optimizations and data layout optimizations,
which play a key role to exploit the performance of a modern
HPC system. However, we do not claim that Xevolver itself
is a perfect solution to the performance portability problem.
Xevolver obviously has some weak points while it also has its
unique strong points, e.g., allowing users to define custom
AST transformations for a particular case.

One weak point of Xevolver is that it does not help users
define “correct” transformation rules, because it is designed
to replace manual code modifications. Hence, as in manual
code modifications, users are still required to be responsi-
ble for the correctness of the optimized code. Correctness-
checking methods such as unit tests and assertions might be
needed whenever a user-defined AST transformation as well

'In the case of the 27-point stencil kernel, discrete arrays
are used instead of SoA. This is because we found that the
GPU performance with discrete arrays is better than that
with SoA. Use of discrete arrays is more compiler-friendly
than use of SoA in the case of this particular code. For sim-
plicity of explanation, we call AoS-to-SoA conversion even
if the data structure is converted to discrete arrays. Use
of discrete arrays instead of SoA does not make the trans-
formation difficult at all because SoA simply means a data
structure of packing discrete arrays.
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Figure 3: The speedup ratio by data layout optimizations

as manual code modification is applied to a code. Whereas,
conventional compiler-based tools provide a more reliable
code transformation based on advanced code analyses, which
have intensively been studied for a long time. Thus, if there
is such an existing solution to abstract a certain code modifi-
cation, it is better to simply use the tool. In reality, however,
we yet have to manually modify the code because it is com-
mon that there is no tool to do the same modification as we
need. For example, in the above case studies, Xevolver is
needed for adapting a code to the OpenACC compiler, and
the compiler is responsible for correctly translating the code
to a GPU program. It would be interesting to clarify the
appropriate usage and coverage of user-defined AST trans-
formations for expressing system-awareness. Therefore, an
appropriate division of labor between Xevolver and other
tools will further be discussed in our future work based on
more case studies.

If the system-awareness is separated from an application
code by appropriately using user-defined AST transforma-
tions, the application would be able to achieve a high per-
formance portability across different system architectures,
system scales, and system generations. Since the life of a
practical HPC application code is usually longer than the
life of an HPC system, the performance portability across
system generations will be more important for long-term
maintenance of HPC applications.

5. CONCLUSIONS

We often see repetitive code modification patterns in system-
aware performance optimizations. To abstract such code
modifications as code transformations, the Xevolver code
transformation framework has been developed. Unlike com-
pilers, Xevolver allows users to direct concrete transforma-
tions. In Xevolver, both an AST and its transformation
rules are written in XML. Therefore, users can transform
an AST using only standard XML technologies and tools.
That is, expert knowledge and experiences are represented
in a machine-readable, customizable, and future-proof way.

Our case studies clearly demonstrate that Xevolver can
provide important system-aware performance optimizations,
which are necessary to exploit the performance of a mod-
ern HPC system. Since the system-awareness is represented
as code transformations and separated from an application
code, Xevolver improves the performance without major
modifications of the original code. This is helpful to achieve
high performance portability across diverse HPC systems
because each system can use its own code transformation
rules for system-aware performance optimizations.

XSLT has a high expressiveness to describe XML data
conversion, and hence AST transformation. However, most
HPC programmers are not very familiar with XML technolo-
gies. Therefore, we are developing higher-level interfaces,
such as Xevtgen [6], to describe code transformation rules
more easily without manually writing any XSLT rules. This
will appear in our future work.
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