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Background & Motivation 

•  In normal operation, North America’s three major 
synchronous power grids are extremely stable. 

•  But when large, wide-area blackouts occur (e.g., 
eastern U.S. Aug 2003, WECC July/Aug 1996), 
dynamic instability is often the ultimate culprit. 

•  Industry state-of-the art today: highly developed time 
domain simulation tools.   Able to predict physical 
system response with high fidelity on milliseconds to 
minutes time scales (caveat: … for a precisely 
specified scenario, given detailed model data.) 



WIDDOW Seminar 
Series Nov. 2012 

3 

Background & Motivation 

•  Given extremely high cost of wide area blackouts, 
avoidance of instability phenomena is among the key 
drivers justifying major grid investments, under broad 
umbrella of “enhancing grid reliability.” 

•  Wisconsin example – Rockdale/West Middleton  
345 kV power line being constructed along Madison’s 
Beltline.  Justification for this line appears in 2009 
testimony by American Transmission Company (ATC), 
before WI Public Service Commission.   

•  Interpreting ATC’s justification will require some  
translation from the power-system-ese… 
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Background & Motivation 

Feb. 2009 Testimony to WI PSC, by ATC’s Manager for Transmission Planning,  
Mr. Jamal Khudai, docket 137-CE-147, under “Need for the Project”: 

•  “The transmission system in Dane Co. … is marginally 
adequate under normal operating conditions.  Low 
voltage conditions are projected to occur in the 
2015-2020 period with the system intact… If not 
addressed, these issues lead to non-convergence of 
the power flow model (the problem doesn’t ‘solve’), 
which indicates voltage collapse conditions.  No 
significant thermal violations are projected in this 
period under system intact or system normal 
conditions.” 
http://psc.wi.gov/apps35/ERF_view/viewdoc.aspx?docid=107754  
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Background & Motivation 

Translation from power engineering terminology: 

•  The existing, “intact” system (without the new 
transmission line) was judged adequate for steady 
state operation through 2020 (“no significant thermal 
violations are projected in this period under system 
intact or system normal conditions.”) 

•  This new transmission line, 32 miles at a cost of $220 
million, was justified largely to protect against dynamic 
instability phenomena (“voltage collapse”). 
 
Power system specialists will recognize that grid standards require reliability be maintained  
under failure of a major transmission line; “N-1 contingency analysis.”  Mr. Khudai’s testimony goes on  
to describe some thermal overloads, and more severe voltage collapse, under contingencies. 
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Background & Motivation 

•  Abstracting, significant analytic challenge implicit here. 

•  Capital investment decisions for transmission system 
have very long time horizon (30+ year life). Yet they’re 
driven in part by their impact on the stability of a very 
high-dimension, nonlinear dynamical system, on very 
short time scales (milliseconds to minutes). 

•  Current state of the art, that of scenario-by-scenario 
time domain simulation, is woefully inadequate.  
Critical need for tools to relate qualitative stability 
properties to network structure, and incorporate  
such tools into infrastructure optimization. 
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What are Grid’s Dynamics, and 
why Hamiltonian Structure? 
•  Power grid is primarily a very large electric circuit, with 

some mechanical dynamics at select nodes. 

•  A standard means to derive O.D.E. or D.A.E. state 
equations is common throughout EE – start from 
constitutive relations of individual components  
(e.g., v = Ldi/dt), then algebraically couple components 
via topological network constraints  (KVL, KCL). 

•  Alternative viewpoint, much less common in EE:  
Euler-Lagrange formalism focuses on stored energies 
as fundamental quantities, then derives dynamics  
via variational operations on these. 
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What are Grid’s Dynamics, and 
why Hamiltonian Structure? 
•  Full Euler-Lagrange beyond scope of this brief talk.  

But as simple special case, recall lossless Hamiltonian 
system, as studied in classical mechanics. 

•  Classic mechanical Hamiltonian system has an even 
dimension state space (with “symplectic structure”).   
In naïve view, defined by a vector of positions, say z,  
a like-dimensioned momenta vector, p, and a scalar 
function H(z, p)  {H is often potential + kinetic energy}. 
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What are Grid’s Dynamics, and 
why Hamiltonian Structure? 
•  ODE’s describing Hamiltonian dynamics are then: 

 

or more compactly, 

 

 
with                            (negative semidefinite, full rank) 
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Nearly Hamiltonian Structure in 
Power Grid Stability Studies 
•  This suggests a simple generalization, which proves 

common to wide class of power system models: 

  
 
     with      negative semidefinite, full rank. 

•  There exists a long literature devoted to construction 
of energy/Lyapunov function for power systems, with 
objective of estimating basins of attraction.  In this 
author’s experience, ALL of these prove to have form 
above, with           serving as Lyapunov function. 
 

x = A∇xΦ(x)

Φ(x)

A
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Nearly Hamiltonian Structure in 
Power Grid Stability Studies 
•  Suggests this scalar valued, “energy-like” Lyapunov 

function          captures considerable information  
regarding dynamic grid behavior.   

•  Q2: How to relate           to practical stability problems,  
such as voltage collapse phenomena, and then to  
grid topology, to inform optimal network expansion? 

•  Q1: As simpler first step, how to relate            to  
standard, familiar computations in grid studies, such 
as the power flow equations? 

Φ(x)

Φ(x)

Φ(x)
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Structure in the Power  
Flow Problem 
•  Perhaps the most ubiquitous of computations in grid 

studies is that of the power flow equations.   

•  These characterize the active and reactive power 
absorbed by the network at each bus(node), as a 
function of the magnitudes and phase angles of the 
sinusoidal voltages at each bus. 

•  Commonly exploited feature in power flow equations  
is fact that their Jacobian matrix is very nearly 
symmetric (and can be made exactly symmetric with 
approximations that “move” line losses from  
branches to nodes). 
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Power Flow Problem Structure 

•  But recall basic fact of vector calculus:  
 
Consider a function  

•  Condition for such a function to be exactly integrable  
is that its Jacobian be structurally symmetric. 

•  Hence (with mild modeling approximation), power flow 
equations are exactly integrable!  Their integral is the 
dominant network-related term in 
for power system stability analysis (other terms relate 
to load/generation, and are local to each node). 

f :ℜn →ℜn

Φ(x)
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Power Flow Structure and Voltage 
Collapse Problem : Example 
•  Consider simple one-line power system, with one load, 

active power demand, P, reactive power demand Q.  
Generator holds its voltage magnitude constant, and 
adjusts its power output to meet load. 

•  Then only two variables: voltage magnitude at load 
bus (denote V), and relative phase angle (denote δ). 
 
 G 

Load Demand: 
Active Power P 
Reactive Power Q 
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Power Flow Structure and Voltage 
Collapse Problem : Example 

 

 

•  Power flow solution is then a (δ, V) pair that defines  
an equilibrium operating point for system.  But if power 
flow equations are            , such a solution must be a 
stationary point of          (and not coincidentally, a  
stable point must be a local minimum of          ). 

G 

Load Demand: 
Active Power P 
Reactive Power Q 

∇Φ(x)
Φ(x)

Φ(x)
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Power Flow Structure and Voltage 
Collapse Problem : Example 
•  Viewed in x = (δ, V) plane, color contour plot of        

for this example appears as below. 
 
 

Φ(x)
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Power Flow Structure and Voltage 
Collapse Problem : Example 
•  More interesting is change in these contours of 

as load level slowly changes (detail: we impose a one-
degree-of-freedom increase in load, with reactive load 
increase more pronounced). 

•  In animation on following slide (embedded movie), 
watch as the two stationary points of            , initially 
well-separated, coalesce under the influence of 
increasing load.   

•  As this (reverse) bifurcation occurs, the potential well 
about the operating point “opens up,” and stability 
is lost. 

Φ(x)

Φ(x)
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Power Flow Structure and Voltage 
Collapse Problem 
•  Recall American Transmission Co.’s testimony on 

issues justifying Dane County’s new $220 million line:  
“these issues lead to non-convergence of the power 
flow model (the problem doesn’t ‘solve’), which 
indicates voltage collapse conditions.” 

•  Note that if gradient of           yields the power flow 
equations, the Hessian  of           (its curvature) must 
correspond to power flow Jacobian. 

•  Opening of potential well implies power flow Jacobian 
becomes singular – precisely the conditions under 
which standard Newton-Raphson “doesn’t solve.” 

Φ(x)
Φ(x)
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And where are the optimization 
problems in all this…  ? 
Short answer:  

•  scale computations from this n=2 dimensional 
example, to n=80,000 that describes bulk transmission 
system for Eastern Interconnect of U.S. power grid. 
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And where are the optimization 
problems in all this…  ? 
More substantive answer – deterministic:  

•  Suppose one didn’t know a priori the relation between 
the vector field defining the power grid’s dynamics, 
and the potential function           . 

•  Recognize that load demands (and wind/solar power 
generation) also have fast variation, ΔP(t), ΔQ(t), on 
timescale commensurate with dynamics. 

•  Stability-related optimization problem: What is the 
“size” of the smallest disturbance (ΔP(t), ΔQ(t)) that 
drives system state out of its basin of attraction? 

Φ(x)
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And where are the optimization 
problems in all this…  ? 
•  Moreover, these fast time scale variations in power 

demands ΔP(t), ΔQ(t) are inevitably stochastic. 

•  Load demand at a major distribution substation bus is 
the aggregation of 100’s of thousands of individual 
customer devices.  These switch on/off and vary 
demand under influence of individual human 
decisions, and very local automatic control systems. 

•  A laptop power supply provides microcosm of load 
behavior on grid.  A predictable, slow moving average 
power demand.  About the average, a random jump 
process, order ±15%, second-by-second. 
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•  Experimental validation of random jump behavior in load 
demand (lab instrumentation courtesy of Ace Hardware) 
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And where are the optimization 
problems in all this…  ? 
•  With ΔP(t), ΔQ(t) stochastic, more sophisticated 

problem formulations could include stochastic stability 
measures, treating state as a diffusion, e.g.   

 - Expected exit time from basin; 
 

 -Relative probability of different paths of exit. 

•  Assuming certain structural features, answers to 
several of these problems reduce to a deterministic 
counterpart in the asymptotic limit of “small noise.” 

•  More general cases depend on statistics of noise – 
these become extremely challenging. 
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Optimization Problems in Power 
System Stability Characterization 
•  With u(t)=(ΔP(t), ΔQ(t)) treated as deterministic 

“control” input, it enters power model linearly. 

•  Measuring size of this control in standard integral 
squared fashion, one might first like to know minimum 
cost of control to steer system state from the stable 
equilibrium to any other point x. 

•   With some added assumptions (weights with which 
these inputs enter), associated cost of control is 
solvable in close form for traditional power system 
model, and is precisely our           . Φ(x)
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Optimization Problems in Power 
System Stability Characterization 
•  But even with closed form cost of control, challenging 

problem remains: finding easiest path of escape out of 
potential well surrounding a stable equilibirum, xs… 
 
… more precisely, wish to find lowest energy saddle 
point on boundary of potential well. 

•  One simplistic approach, that does not scale well: from 
neighborhood of stable equilibrium, expand constant 
contours of           .  On any given constant contour, 
seek x that minimizes                 .  Terminate when 
contour and associated x at which gradient goes to 
zero is located – this is lowest saddle point, xu. 

Φ(x)
∇Φ(x)   
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Optimization Problems in Power 
System Stability Characterization 
•  How might one use this to characterize stability impact 

of network expansion (i.e., addition of new 
transmission lines)? 

•  Both the energy function itself, AND its associated 
stable equilibrium and lowest saddle exit would need 
to be parameterized in candidate line additions. 

•  Seek line addition(s) to maximize                           . 

 

Φ(xu ) –Φ(x s )
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Optimization Problems in Power 
System Stability Characterization 
•  As new classes of control technologies added to 

transmission grid to enhance its performance (e.g., 
new types of High Voltage DC transmission, other 
power electronics), dynamic behavior farther from 
basic physics, more determined by controllers. 

•  Analytic impact: accurate models yield vector fields 
that do not lend themselves to closed form 
identification of an associated          .  Direct fix would 
seek numerical solution to Hamilton-Jacobi-Bellman 
eqns – but probably not too promising for n=80,000. 

Φ(x)
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Optimization Problems in Power 
System Stability Characterization 
•  Might consider approach akin to recent SDP methods 

for “automatic” Lyapunov function generation. 

•  Given model                , seek fit of full rank negative 
semidefinite A, and (from suitable family of functions) 
a potential          , to minimize over some volume: 

 

 

Φ(x)

x = f (x)

 f (x) – A∇Φ(x)   
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Conclusions 

•  U.S. appears poised for period of grid infrastructure 
expansion in coming decades, with potentially 100’s of 
billion $’s of investments at stake. 

•  Many pieces in this expansion will be decided by role 
of new transmission lines in maintaining grid stability. 

•  Industry’s state of the art for examining stability impact 
today is rather ad hoc, with time domain simulation 
performed over a very modest number of future 
scenarios, selected based on engineering judgment. 
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Conclusions 

•  Suggests opportunity for modern decision and 
optimization tools to greatly improve the transmission 
expansion process. 

•  However, even where first steps in this direction are 
being taken in research literature, few offer means for 
optimizing on contribution of transmission 
reinforcement to grid stability. 

•  Work here intended to suggest a path forward.  
Treat the stability enhancement objective in a 
computationally tractable fashion, by exploiting the 
nearly Hamiltonian structure in grid dynamics. 

 


