Optimization for Derivatives, Derivatives
for Optimization

13th INFORMS Computing Society Conference
January 6-8, 2013, Santa Fe, New Mexico

Paul D. Hovland, Todd S. Munson, Jean Utke
Argonne National Laboratory

Jiegiu Chen
Dow AgroSciences

Robert Luce
TU Berlin

The Automatic Differentiation Team @ Argonne

= Paul Hovland

= Boyana Norris

= Jean Utke

= Sri Hari Krishna Narayanan
= Azamat Mametjanov

= Alumni: J. Abate, C. Bischof, S. Bhowmick,
H. Cole-Mullen, A. Griewank, P. Khademi,
J. Kim, P. Malusare, U. Naumann, L. Roh,
I. Safro, J. Shin, M. Strout, B. Winnicka

= Collaborators: P. Heimbach, L. Hascoét
= Funding: US DOE, NSF, NASA

Argonne National Laboratory ---- Mathematics and Computer Science Division

Primary Messages

= Automatic differentiation is a good way to compute derivatives
— Very efficient for gradients and directional derivatives
— Very efficient for sparse and/or low-rank derivatives
— Can be challenging to implement for general-purpose languages
= Efficient derivative computation relies on (approximate) solution to
combinatorial optimization problems
— Several heuristics exist
— Heuristics are optimal or nearly so for certain special cases
— In general, we do not know how good the heuristics are
— Interested in IP formulations to evaluate effectiveness of heuristics, provide optimal
solutions for important (sub-) problems

= Very interested in collaborations and/or hosting students/visitors

Outline

QlIntroduction to automatic differentiation (AD)
0Some (optimization) applications of AD

0 Derivative computation as a graph problem (vertex
elimination)

QlInteger programming formulation of the vertex elimination
problem

AD in a Nutshell

0 Technique for computing analytic derivatives of programs

0 Derivatives used in optimization, nonlinear PDEs, sensitivity
analysis, inverse problems, uncertainty quantification, etc.

0 AD = analytic differentiation of elementary functions + propagation
by chain rule

— Every programming language provides a limited number of elementary math functions

— Thus, every function computed by a program may be viewed as the composition of
these so-called intrinsic functions

— Derivatives for the intrinsic functions are known and can be combined using the chain
rule of differential calculus

0 Less work than hand coding, more accurate than finite diffs

0 Chain rule associativity leads to two main modes: forward and
reverse

0 Implemented using source transformation or operator overloading

Example: a simple function

#include <math.h>
#include <stream.h>

void func (double *f, double x, double vy) {
double a,b;

if (x > y) |

a = cos(x);

b = sin(y)*y*y;
} else {

a = x*sin(x)/y;

b = exp(y);

Example: AD via operator overloading

#include <math.h>
#include <stream.h>
#include "adouble.hxx"

void func(a double *f, a double x, a double y) {
a_double a,b;

if (x > y) |

a = cos(x);

b = sin(y)*y*y;
} else {

a = x*sin(x)/y:

b = exp(y):

*f = exp(a*b);

Example: ADIC output

#include "ad deriv.h"
#include <math.h>
#include "adintrinsics.h"

void

ad_func (DERIV_TYPE *f,DERIV _TYPE x,DERIV _TYPE)

DERIV _TYPE a, b, ad var 0, ad var 1, ad var 2;

double

if (DERIV val(x) > DERIV val(y)) {

DERIV val(a) = cos(DERIV val(x)); /*cos*/
ad adji 0 = -sin(DERIV val(x));
{
ad grad axpy 1(&(a), ad adji 0, &(x));
}
DERIV val(ad var 0) = sin(DERIV val(y)); /*sin*/
ad adji 0 = cos(DERIV val(y));
{

ad grad axpy 1l(&(ad var 0), ad adji 0, &(y)):

ad loc 0 = DERIV val(ad var 0) * DERIV val (y);
ad loc 1 = ad loc 0 * DERIV val(y):;
ad adj 0 = DERIV val(ad var 0) * DERIV val (y);
ad adj 1 = DERIV val(y) * DERIV val(y);
ad grad axpy 3(&(b), ad adj 1, &(ad var 0), ad adj 0,
DERIV val(b) = ad loc 1;
}
}
else {

//

{

ad adji 0,ad loc 0,ad loc 1l,ad adj 0,ad adj 1,ad adj 2,ad adj 3;

&(y), ad loc O,

&(y));

Capabilities

0 Fast (O(1) function evaluation) computation of
— gradient (reverse)
— Jacobian-vector product Jv (forward)
— transposed-Jacobian-vector product J'w (reverse)
— Hessian-vector product (F+R, R+F, R+R)

Q Efficient computation of full Jacobians and Hessians, when able
to exploit (approximate) sparsity and/or low-rank structure

Q Efficient high-order (directional) derivatives for modest number
of independent variables / directions

Challenges

Q Full Jacobian or Hessian with no underlying structure (rare) can
be expensive to compute

0 Reverse mode requires storage of intermediate states
— Worst case storage proportional to # flops in function evaluation

— In practice, use combination of storage/recomputation to reduce storage

0 Implementation of source transformation tools requires robust
compiler infrastructure and compiler analyses

0 Computes (chain-rule) derivatives of code

Application: mesh quality optimization

0 Optimization used to move mesh vertices to create elements
as close to equilateral triangles/tetrahedrons as possible

0 Semi-automatic differentiation is 10-25% faster than hand-
coding for gradient and 5-10% faster than hand-coding for
Hessian

aAutomatic differentiation is a factor 2-5 times faster than
finite differences

Before After

- W,
. \%\g\ QM“ W)
04 S\%&é‘l\\‘\ Ny

\NkE772
‘»g\«\»;a\hyi!’!}g%‘f%///

IR

JAV,

AR

&
X
K
B

T - - - - a4 L L L L L L
1 0® 08 04 02 0 02 04 08 08 1 -1 -08 -06 -04 -02 0 0.2 04 0.6 0.8 1

Application: Sensitivity analysis in simplified
climate model
0 Sensitivity of flow through Drake Passage to ocean bottom

topography
— Finite difference approximations: 23 days
— Naive automatic differentiation: 2 hours 23 minutes

— Smart automatic differentiation: 22 minutes

es_penad_.addepth 00000.bin.0000000095.2x2.lev min/max=0.0010
T T

Lafitude

Application: Sensitivities for State Estimation

= Facilitated through the use of reverse mode automatic differentiation tools
= Provide the full gradient vector: first derivatives with respect to potentially millions or
billions of independent variables

= Moderate cost : a small multiple of the forward model alone), independent of the number
of independent variables

= Example: MITgcm
— One simulation run (20 yrs at 42): 52 cpu-hours
— Gradient using AD: 204 hrs (8.5 cpu-days)
— Finite-difference gradient approximation: 1.1 million cpu-years
— Goal: 0(10)-0(100) gradient evaluations at 1/2°

&
-
i

Parameter estimation: sea ice model

= Simulated (yellow) and observed (green) March ice thickness (m)

Tuned parameters Standard parameters

0.05
4 I5 s

Greenland Greenland

Canada

Siberia

v Alaska

Ice Sheet Grounding Line Analysis

Q0 grounding line = ice sheet

starts to float
0 question of interest:

sensitivities of ice mass flux
at the grounding line

0 has impact on sea level rise

5

x10° thickness

~ N PR
S 0.02 g S, 0.04

& 4 : .'51, !
i ' 0 -1t 4 . 0.02
e ’ : T e e A

P SR 2 G 0

..-E. ..’a:“‘ S -.o.:-:" ,3-\ _002 _3 ";. - off:' "‘:‘.;:-' "-1 2

' .. L/‘,q';,.-.: X vf\\ Kk - Y v ?'-;'h\.{lé{;‘ e :,i\._. .

-16 14 -2 -16 -14 -2

x106

-1

_p.02 3

!

Pine Island Glacier

.{ g \ . :
v’, A Y,

'\"\i} \J ,f\\ LN

-16 -14 -2

>(106

0.02

-0.02

-0.04

16

Optimal Derivative Accumulation

QRepresent function using a directed acyclic graph (DAG)
0 Computational graph

— Vertices are intermediate variables, annotated with function/operator
— Edges are unweighted

QLinearized computational graph
— Edge weights are partial derivatives
— Vertex labels are not needed

0 Compute sum of weights over all paths from independent to
dependent variable(s), where the path weight is the product
of the weights of all edges along the path [Baur & Strassen]

QFind an order in which to compute path weights that
minimizes cost (flops): identify common subpaths (=common
subexpressions in Jacobian)

A simple example

b = sin(y)*y / @*
a = exp(x)
c=a*b
f=a%*c

¢ 4k

%k
A b
sin exp u

.x

A simple example

t0 = sin(y)
d0 = cos(y)
b =t0*y

a = exp(x)
c=a*b

f=a%*c

Sin

f,*
¢ L
exp

‘x

do

.x

Brute force

0 Compute products of edge weights along all
paths

0 Sum all paths from same source to same
target

0 Hope the compiler does a good job
recognizing common subexpressions

dfdy = d0*y*a*a + t0*a*a
dfdx = a*b*a + a*c

8 mults 2 adds

Vertex elimination

O Multiply each in edge by each out edge, add
the product to the edge from the
predecessor to the successor

0 Conserves path weights

QO This procedure always terminates

O The terminal form is a bipartite graph

0 Costis the in degree times the out degree

Vertex elimination

/ o O Multiply each in edge by each out edge, add
the product to the edge from the
predecessor to the successor

+a*b 0 Conserves path weights
QO This procedure always terminates
O The terminal form is a bipartite graph
0 Costis the in degree times the out degree

Forward mode: eliminate vertices in topological
order

t0 = sin(y)
/ @ d0 = cos(y)
1 b = t0*y
a a = exp(x)
c=a%*b
V4 f=a*c

V3

do a

‘x

Forward mode: eliminate vertices in topological
order

t0 = sin(y)
/ @ d0 = cos(y)
1 b = t0*y
a a = exp(x)
c=a%*b
V4 f=a%*c
a dl =10 + d0*y

dl

Forward mode: eliminate vertices in topological
order

t0 = sin(y)
/ @ d0 = cos(y)
1 b = t0*y
a a = exp(x)
c=a%*b
V4 f=a%*c
dl = t0 + d0*y
b d2 =dl*a

a2 Vs

‘x

Forward mode: eliminate vertices in topological
order

t0 = sin(y)
/ @ d0 = cos(y)
‘ b = t0*y
a a = exp(x)
c=a%*b
V4 f=a%*c
4 dl = t0 + d0*y
d2 =dl*a
d3 =a*b

d4 = a*c

d2 d3

Forward mode: eliminate vertices in topological
order

t0 = sin(y)

A d0 = cos(y)
b = t0*y
a = exp(x)
c=a%*b
f=a%*c
dl = t0 + d0*y
d2 =dl*a
d3 =a*b
d4 = a*c
dfdy = d2*a
dfdx = d4 + d3*a

dfdy Ifdx

6 mults 2 adds

Reverse mode: eliminate in reverse topological
order

/ ® t0 = sin(y)

d0 = cos(y)

a b = t0*y

a = exp(x)
2 c=a%*b

a f=a%*c

, e

do a

.x

Reverse mode: eliminate in reverse topological
order

t0 = sin(y)
d0 = cos(y)
b = t0*y

) a = exp(x)
c=a%*b
f=a%*c
dl = a*a
d2 =c+ b*a

Reverse mode: eliminate in reverse topological
order

/ t0 = sin(y)
d0 = cos(y)
b = t0*y
d4 a = exp(x)
c=a%*b
f=a%*c
dl = a*a
’ d2 =c+ b*a
v, d3 = t0*d1
2V d4 = y*dl

do a

Reverse mode: eliminate in reverse topological
order

/ t0 = sin(y)
d0 = cos(y)
b = t0*y
) a = exp(x)
c=a%*b
f=a%*c
dl = a*a
o d2 =c+ b*a
d3 =t0*dl
Vs d4 = y*dl
dfdy = d3 + d0*d4

'X

Reverse mode: eliminate in reverse topological
order

/ t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c=a%*b
f=a%*c
dl = a*a
d2 =c+ b*a
d3 =t0*dl
d4 = y*dlI
dfdy = d3 + d0*d4
dfdx = a*d2

dfdy Ifdx

6 mults 2 adds

“Cross-country” mode

t0 = sin(y)
/ ® d0 = cos(y)
b =1t0%
a = exp(x)
c=a*b
V4 f=a%*c

“Cross-country” mode

t0 = sin(y)
/ ® d0 = cos(y)

b =1t0%
a = exp(x)
c=a*b
V4 f=a%*c
¢ dl = t0 + d0*y

dl

“Cross-country” mode

7 t0 = sin(y)

d0 = cos(y)
b =1t0%

d2 d3 a = exp(x)
c=a*b
f=a%*c
dl =10+ d0*y
d2 =a*a

®v: d3 =c+ b*a
N v3

dl

“Cross-country” mode

dfdy

.x

t0 = sin(y)

d0 = cos(y)

b =1t0%

a = exp(x)
c=a*b
f=a%*c

dl =10+ d0*y
d2 =a%*a
d3=c+ b*a
dfdy = d1*d2

“Cross-country” mode

r t0 = sin(y)

d0 = cos(y)
b =1t0%
a = exp(x)
c=a*b
f=a*c
dl =10+ d0*y

dfidy Ifix d2 = a*a
d3 =c+ b*a
dfdy = dl1*d2
dfdx = a*d3

5 mults 2 adds

Optimal vertex elimination order

0 Goal: use integer programming to find the optimal vertex
elimination order

Q Primary motivation: evaluate effectiveness of heuristics

0 Secondary motivation: find optimal elimination order for key
computational kernels

43

Approach

0 Model graph at each elimination step as a matrix
0 Require consistency between steps k and k+1 (but do not
enforce sequence)
— flops_k+1 = flops_k + in(x_k)*out(x_k)
— Matrix C_k+1 = C_k with row/col x_k removed, appropriate edges added
Q Provide problem-specific lower bounds to assist IP solver

— Current lower bound is:

flops = flops, + l(xv) + E o(x)

CXp XEX,

where |(x_v) is the cost of eliminating vertex x_v last and p(x) is the size of
the minimal vertex separator between the independents and x times the
size of the minimal vertex separator between x and the dependents

— Requires solving auxiliary problems to determine sizes of vertex separators

45

Integer Programming Formulation

minimize

subject to

DY fige

(i.j)eB tel
Z Ty = 1 —)
1eN
szt =1 —
teT

€ijt = Lit + Cije — 1

€ijt = Tjt + Cijt — 1 — |

€ijt < Tit + X jt
e’th < ngt

fijt > €ikt +epjr — 1 —

Cij(t+1) > fzgt
Cij(t+1) <1- €ijt

Cijt+1) < Cijt + (fiji W

Minimize total # multiplications

Remove one vertex a time

Each vertex must be
removed

Edges to be eliminated

Edges generated

aVa

Update adjacency matrix

Cijt+1) = Cijt — (fije + €ije) |

50

Symmetry-breaking Constraints

®
caurd
ol &

£Ljt + Li(t4+1) —|—

P B gD

Observation:

If i and j are NOT adjacent, then
sequence (...%,7,...) and
(...,4,%,...) have same cost.

COST(3,5,4) = COST(5,3,4)

ngt

Sequence (...,7,1,..

.) is not allowed!

Experimental Results

Problem Vertices Number mults W ES LP bounds of M1
IX] |Y| For Rev Mark Opt MO M1 M2

Fig 10.4 4 22 18 22 0.04 0.02 0.11
Ex 10.8 4 3 5 28 24 26 22 0.26 0.37 0.77 16
Fig 10.1 4 2 5 20 18 1A 15§ N71 N3 n29 13

Zj:::::d Largest problem solved: 100
intermediate vertices, 131 total vertices,
took CPLEX 6+ hours.

30—

Other things we tried

Qlow_bnd 0: flops2>v

Qlow _bnd 1: flops = flops fwd/2 (if #indeps = 1)
Olow_bnd_1: flops > flops_rev/2 (if #deps = 1)
Qlow_bnd _2: flops 2 flops_k + (v-k)

Qlow_bnd_2p: flops = flops_k + %v—k-l) + last(x_v)
last(x_v) is the cost of eliminating x_v

0 We initially enforced a sequence, so that x_k+1 could not be
chosen unless x_1 ... x_k were also chosen.. This was a bad
idea.

56

Practical Matters: constructing computational
graphs

0 At compile time (source transformation)

— Structure of graph is known, but edge weights are not: in effect,
implement inspector (symbolic) phase at compile time (offline),
executor (numeric) phase at run time (online)

— In order to assemble graph from individual statements, must be able to
resolve aliases, be able to match variable definitions and uses

— Scope of computational graph construction is usually limited to
statements or basic blocks

— Computational graph usually has O(10)—0(100) vertices

QAt run time (operator overloading)
— Structure and weights both discovered at runtime

— Completely online—cannot afford polynomial time algorithms to
analyze graph

— Computational graph may have 0(10,000) vertices

Minimal graph of a Jacobian (scarcity)

Original DAG Bipartite DAG Minimal DAG

Reduce graph to one with minimal number of edges (or smallest number of DOF)

How to find the minimal graph? Relationship to matrix properties?
Avoid “catastrophic fill in” (empirical evidence that this happens in practice)

In essence, represent Jacobian as sum/product of sparse/low-rank matrices

Y

Conclusions & Future Work

Q AD can provide derivatives for optimization
0 IP model for Jacobian accumulation by vertex elimination
0 Some success in computationally solving the IP

Q Future directions
— New applications, especially for directional derivatives
— Develop IP models for other AD problems, e.g., scarcity
— Integrate IP model into tools (primarily for validation)
— Develop SDP/alternative relaxation
— Benchmark for AD heuristics algorithms

0 Students (and postdocs?) wanted: hovland@anl.gov or
http://www.mcs.anl.gov/about/education.php

59

For More Information

0aJ Chen, P Hovland, T Munson, J Utke, “An Integer Programming
Approach to Optimal Derivative Accumulation” in Recent
Advances in Algorithmic Differentiation, Springer, 2012.

O Andreas Griewank, Evaluating Derivatives, SIAM, 2000.

aGriewank, “On Automatic Differentiation”; this and other
technical reports available online at:
http://www.mcs.anl.gov/autodiff/tech reports.html

QAD in general: http://www.mcs.anl.gov/autodiff/,
http://www.autodiff.org/

QADIC: http://www.mcs.anl.gov/adic/

0 OpenAD: http://www.mcs.anl.gov/openad/

aE-mail: hovland@mcs.anl.gov

