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Abstract

In this paper, we consider mixed integer linear programming (MIP) formulations for piecewise linear functions

(PLFs) that are evaluated when an indicator variable is turned on. We describe modifications to standard

MIP formulations for PLFs with desirable theoretical properties and superior computational performance in

this context.

1. Introduction

Optimization problems involving piecewise linear functions (PLFs) appear in a wide range of applications.

PLFs are frequently used to approximate nonlinear functions and to model cost functions involving economies

of scale and fixed charges. Problems involving non-convex PLFs are commonly formulated as mixed integer

programming (MIP) problems [1, 2, 3, 4, 5].

Consider a univariate PLF f : [B0, Bn]→ R with its domain [B0, Bn] divided into an increasing sequence

of breakpoints {B0, B1, . . . , Bn}. For simplicity, we assume that f(·) is continuous, B0 = 0 and f(0) = 0.

Our results can be extended to the case when f(·) is lower semi-continuous, B0 6= 0, and f(B0) 6= 0. The

function f(·) can be written as

f(x) := mix+ ci, x ∈ [Bi−1, Bi] ∀i ∈ {1, . . . , n} (1)

where mi ∈ R, ci ∈ R and B0 < B1 < · · · < Bn.

In this paper, we present MIP formulations for PLFs where setting a binary indicator variable to zero

forces the argument of the function of f(·) to zero which in turn forces the function to take a zero value. In

other words,

z = 0⇒ x = 0, f(x) = 0. (2)

The goal of this work is to present a theoretical and computational comparison of MIP formulations that

enforce the logical conditions in (2). Specifically, we examine properties of different formulations of the three

variable set

X :=

n⋃
i=1

{
(x, y, z) : x ∈ [Bi−1, Bi], y = mix+ ci, z = 1

}⋃{
(0, 0, 0)

}
. (3)

IThis work is supported through a contract from Argonne, a U.S. Department of Energy Office of Science laboratory. This
work was supported by the Applied Mathematics activity, Advance Scientific Computing Research program within the DOE
Office of Science.

Preprint April 12, 2013



In some applications, notably those where the PLF appears in a minimization objective, the relevant set to

study has the variable y constrained to lie in the epigraph of a convex function. We denote X≥ as the set

where the equality relationship in (3) is replaced with y ≥ mix+ ci.

Methods for modeling PLFs include specially ordered sets of type II (SOS2) [1], the incremental model,

or delta method (Delta) [2], the multiple choice model (MCM) [6], the convex combination (CC) model [3],

the disaggregated convex combination model (DCC) [7], and approaches that require only logarithmically

many binary variables [8]. Table 1 lists several applications in the literature that have modeled PLFs using

these well-known methods in conjunction with variable upper bound constraints of the form

x ≤ Bnz (4)

to enforce the logical on-off condition (2).

Table 1: Applications Using PLFs with Indicator Variables

Ref. Application Model
[9] Gas network optimization SOS2
[10] Transmissions expansion planning Delta
[11] Oil field development CC
[12] Thermal unit commitment Delta
[13] Sales resource allocation MCM

In this work, we propose a simple modeling artifice for PLFs that also enforces the logical condition (2),

and we demonstrate its desirable theoretical and computational properties. We start by describing the idea

using SOS2 to model a PLF as

x =

n∑
i=0

λiBi, y =

n∑
i=0

λiFi 1 =

n∑
i=0

λi, λ :=
{
λi ∈ R+ : ∀i ∈ {0, . . . , n}

}
is SOS2. (5)

In this formulation, the function f(·) and its argument x are expressed as convex combinations of breakpoints

B := {B0 . . . Bn} and their corresponding function evaluations {F0 . . . Fn} where Fi := f(Bi) = miBi + ci.

The formulation introduces a non-negative set of variables λ ∈ Rn+1 that satisfy the SOS2 property—at

most two of the variables can be positive, and if two variables are positive then they must be consecutive in

the ordered set. Most modern general purpose MIP solvers enforce the SOS2 condition algorithmically by

branching [1].

Using variable upper bound constraints (4) to enforce the logical condition (2) has two problems. First,

the use of “bigM” constraints may considerably weaken the LP relaxation of the MIP formulation. Second,

the model introduces an additional constraint x ≤ Bnz.

We propose the following simple strengthening that replaces x ≤ Bnz and
∑n

i=0 λi = 1 with

n∑
i=0

λi = z. (6)

Setting the binary variable z = 0 in (6) forces λi = 0 ∀i ∈ {0, . . . , n}, which in turn forces forces the function

to take a zero value. If the binary variable z = 1, then
∑n

i=0 λi = 1, which reduces to (5). We show in

Section 2.1 that a formulation using (6) has the desirable property of being locally ideal, while one that uses

x ≤ Bnz does not.

In Section 2, we also show how to strengthen MIP formulations of X that use the incremental model,

the multiple choice model, the convex combination model, the disaggregated convex combination model, and
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logarithmic models to model the PLF. Therefore, this formulation strengthening technique could be directly

applied to all of the applications listed in Table 1. In all cases, we show that our model retains the desirable

theoretical property of the underlying PLF modeling method, either idealness or sharpness, but using a

variable upper bound constraint x ≤ Bnz destroys the property. Borghetti et al. [14] created a formulation

of X that employed the strengthening techniques we describe. They used the convex combination method

to model the PLFs which does not have the locally ideal property [5]. In the case that the PLFs are convex,

we describe a connection between the formulation strengthening techniques we describe and the perspective

reformulation [15].

We conclude with a computational study on a practical application to illustrate the benefits of the new

formulations. In our experiments, we observed that our formulation computes optimal solutions on average

40 times faster.

2. Properties of MIP formulations

Padberg and Rijal [16] define a locally ideal MIP formulation as one where the vertices of its corresponding

LP relaxation satisfy all required integrality conditions. Extending this definition, Croxton et al. [17] and

Keha et al. [18] define a locally ideal SOS2 formulation as one whose LP relaxation has extreme points that

all satisfying the SOS2 property. As shown by Vielma et al. [5], all commonly used MIP formulations of

PLFs, except for the original convex combination (CC) model, are known to be locally ideal. In this section,

we demonstrate the theoretical strength of proposed formulations for X that include the logical condition

(2).

2.1. SOS2 Model

We consider the following two SOS2-based formulations for X:

S1 :=
{

(x, y,λ, z) ∈ R× R× Rn+1
+ × {0, 1} : x =

n∑
i=0

Biλi, y =

n∑
i=0

Fiλi, 1 =

n∑
i=0

λi, x ≤ Bnz, λ is SOS2
}

S2 :=
{

(x, y,λ, z) ∈ R× R× Rn+1
+ × {0, 1} : x =

n∑
i=0

Biλi, y =

n∑
i=0

Fiλi, z =

n∑
i=0

λi, λ is SOS2
}

where S1 is a standard SOS2 model for PLFs that uses the constraint (4), while formulation S2 uses the

constraint (6) to model the logical condition (2). One can easily show that both S1 and S2 are valid

formulations of X. In other words, for either T = S1 or T = S2,

X =
{

(x, y, z) : ∃λ ∈ [0, 1]n+1 s.t (x, y, z,λ) ∈ T
}
.

We use the standard definition of the linear programming (LP) relaxation of a model as the relaxation

obtained by replacing integrality restrictions on variables with simple bound restrictions and by removing

adjacency requirements for SOS2 variables. We now that prove that the formulation S2 is locally ideal while

S1 is not.

Theorem 1. Formulation S2 is locally ideal.

Proof. The LP relaxation of S2 has n+ 4 variables, three equality constraints

x =

n∑
i=0

Biλi, y =

n∑
i=0

Fiλi, z =

n∑
i=0

λi,

3



and n + 2 inequality constraints, z ≤ 1 and λi ≥ 0 ∀i = 0, 1, . . . , n. Extreme points of the LP relxation of
S2 have n + 4 binding constraints, which forces at least n variables from λ ∈ Rn+1

+ to be exactly equal to
zero. Thus, the extreme points of the LP relaxation of S2 are

{(x = Bi, y = Fi, λ = Bi~ei, z = 1) ∀i ∈ {1, . . . , n}}
⋃

(x = 0, y = 0,λ = ~0, z = 0), (7)

where ~ei are the n dimensional unit vectors. All points in (7) have z ∈ {0, 1} and satisfy the SOS2 properties
for the λ variables. Hence, S2 is locally ideal.

A point (x, y,λ, z) can only be an extreme point of the set

P≥2 :=
{

(x, y,λ, z) ∈ R× R× Rn+1
+ × [0, 1] : x =

n∑
i=0

Biλi, y ≥
n∑

i=0

Fiλi, z =

n∑
i=0

λi

}
if y =

∑n
i=0 Fiλi. Therefore, the proof of Theorem 1 also establishes that expressing logical condition (2)

using (6) also results in a locally ideal formulation of X≥. Similar logic applies in our subsequent proofs of

the local idealness of other formulations of X (Theorems 4 and 6). In each case, our proposed modeling of

the logical condition (2) also yields a locally ideal formulation of X≥.

Theorem 2. Formulation S1 is not locally ideal.

Proof. Consider an instance with n = 3, B = {0, 13 ,
2
3 , 1}, and F = {0, 4, 2, 3}. The point {x = 1

3 , y = 4,λ =
(0, 1, 0, 0), z = 1

3} is feasible to the LP relaxation of S1 but not feasible for the LP relaxation of S2. Since
the LP relaxation of S2 is a subset of the LP relaxation of S1, S1 cannot be locally ideal.

An interesting consequence of Theorem 1 is that when the PLF is convex, the application of the reformu-

lation technique we suggest to the set X≥ is equivalent to the perspective reformulation [15], a preprocessing

technique for (convex) mixed integer nonlinear programs that have the logical indicator structure (2). If

f(·) is convex, then m1 > m2 > . . . > mn, and the perspective reformulation of X≥ is

P = {(x, y, z) ∈ R2 × [0, 1] : y ≥ mix+ ciz ∀i ∈ {1, . . . , n}, 0 ≤ x ≤ Bnz},

where mi := (Fi−Fi−1)/(Bi−Bi−1) and ci := (Fi−1−Bi−1(Fi−Fi−1)/(Bi−Bi−1)). Günlük and Linderoth

[19] show that if f(·) is convex, then P = conv(X≥). The formulation S2 is locally ideal, so P≥2 must also

be a formulation that is similarly strong.

Corollary 3. Projxyz(P≥2 ) = P = conv(X≥)

2.2. Incremental Model

The incremental model introduces a set of non-negative variables δ := {δ1, . . . , δn} to model the portion

of each interval “filled” by the variable x. The interval i+ 1 can be filled (δi+1 > 0) only if the interval i is

already filled (δi = 1). Unlike the SOS2 model, the incremental model specifically requires the introduction

of binary variables b ∈ {0, 1}n−1 to enforce the necessary ordering conditions. To model the on-off logical

condition (2), the incremental model can be augmented with a variable upper bound constraint x ≤ Bnz,

resulting in a formulation

∆1 :=
{

(x, y, δ, z, b) ∈ R×R×Rn×{0, 1}×{0, 1}n−1 : x =

n∑
i=1

[Bi−Bi−1]δi, y =

n∑
i=1

[Fi−Fi−1]δi, x ≤ Bnz,

δ1 ≤ 1, 0 ≤ δn, δi+1 ≤ bi ≤ δi ∀i ∈ {1, . . . , n− 1}
}
.
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Alternatively, the on-off condition can be enforced by replacing the constraint δ1 ≤ 1 with δ1 ≤ z, yielding

the formulation

∆2 :=
{

(x, y, δ, z, b) ∈ R× R× Rn × {0, 1} × {0, 1}n−1 : x =

n∑
i=1

[Bi −Bi−1]δi, y =

n∑
i=1

[Fi − Fi−1]δi,

δ1 ≤ z, 0 ≤ δn, δi+1 ≤ bi ≤ δi ∀i ∈ {1, . . . , n− 1}
}
.

Incremental models that use δ1 ≤ z are locally ideal, while those that use x ≤ Bnz are not.

Theorem 4. Formulation ∆2 is locally ideal.

Proof. The matrix for the constraint system in ∆2, ignoring the constraints defining x and y, is

−δ1 +z ≥ 0,

δi−bi ≥ 0 ∀i ∈ {1, . . . , n− 1},
−δi+1+bi ≥ 0 ∀i ∈ {1, . . . , n− 1},

δn ≥ 0,

which is a network matrix, and hence is totally unimodular. Thus all extreme points of the LP relaxation
of ∆2 naturally satisfy the requisite integrality properties.

Theorem 5. Formulation ∆1 is not locally ideal.

Proof. Consider an instance with n = 3, B = {0, 13 ,
2
3 , 1} and f(B) = {0, 4, 2, 3}. The fractional point

{x = 1
3 , y = 4, δ = (1, 0, 0), z = 1

3 , b = (0, 0)} is feasible to the LP relaxation of ∆1 but not feasible for the
LP relaxation of ∆2.

2.3. Multiple choice model

In the multiple choice model, a non-negative set of variables w := {w1, . . . wn} and an additional set of

binary variable b := {b1, . . . bn} are introduced, with the logical implication that wi = x if x is in the ith

interval, and wi = 0 otherwise. Using a variable upper bound constraint to enforce the logical condition (2)

with the multiple choice model gives the following formulation of X:

M1 :=
{

(x, y,w, z, b) ∈ R× R× Rn × {0, 1} × {0, 1}n :

n∑
i=1

wi = x, y =

n∑
i=1

(miwi + cibi), x ≤ Bnz,

n∑
i=1

bi = 1, Bi−1bi ≤ wi ≤ Bibi ∀i ∈ {1, . . . , n}
}
.

Instead, the on-off condition can be formulated by replacing the constraints
∑n

i=1 bi = 1 with
∑n

i=1 bi = z,

yielding a formulation

M2 :=
{

(x, y,w, z, b) ∈ R× R× Rn × {0, 1} × {0, 1}n :

n∑
i=1

wi = x, y =

n∑
i=1

(miwi + cibi),

n∑
i=1

bi = z, Bi−1bi ≤ wi ≤ Bibi ∀i ∈ {1, . . . , n}
}
.

Theorem 6. Formulation M2 is locally ideal.

Proof. Following Balas [20], we write an extended formulation for the convex hull of the union of the n+ 1
polytopes X0 = {(0, 0, 0)}, Xi = {(x, y, z) : Bi−1 ≤ x ≤ Bi, y = mix + ci, z = 1} ∀i ∈ {1, . . . , n} as those
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(x, y, z) for which there exist vectors w = [w0, . . . wn],v = [v0, . . . vn],u = [u0, . . . un], b = [b0, . . . bn] such
that the following inequality system is satisfied:

x =

n∑
i=0

wi, y =

n∑
i=0

vi, z =

n∑
i=0

ui, 1 =

n∑
i=0

bi, w0 = 0, v0 = 0, u0 = 0, bi ≥ 0 ∀i ∈ {0, . . . , n}

Bi−1bi ≤ wi ≤ Bibi ∀i ∈ {1, . . . , n},
vi = miwi + cibi ∀i ∈ {1, . . . , n},
ui = bi ∀i ∈ {1, . . . , n}.

We can eliminate b0,u, and v from this system to obtain

x =

n∑
i=1

wi, y =

n∑
i=1

(miwi + cibi), z =

n∑
i=1

bi, z ≤ 1, bi ≥ 0, Bi−1bi ≤ wi ≤ Bibi ∀i ∈ {1, . . . , n},

which is equivalent to the LP relaxation of M2.

Theorem 7. Formulation M1 is not locally ideal.

Proof. Consider an instance with n = 3, B = {0, 13 ,
2
3 , 1}, and f(B) = {0, 4, 2, 3}. The point {x = 1

3 , y =
4, w = (0, 13 , 0), z = 1

3 , b = (0, 1, 0)} is feasible to the linear programming relaxation of M1, but not feasible
for M2.

2.4. Convex Combination Model

Another popular formulation for PLFs is the convex combination model, also known as the lambda

method. The convex combination model uses continuous variables λ ∈ Rn+1 and binary variables b ∈ {0, 1}n.

The continuous variables are used to express x and y in terms of the breakpoints B and function values F .

The binary variables are used to enforce the adjacency condition that bi = 1⇒ λj = 0,∀j /∈ {i−1, i}. Using

a variable upper bound to model the logical on-off condition (2) in combination with the most commonly

used convex combination model gives the following formulation of X:

C1 :=
{

(x, y,λ, z, b) ∈ R×R×Rn+1
+ ×{0, 1}×{0, 1}n : x =

n∑
i=0

λiBi, y =

n∑
i=0

λiFi, x ≤ Bnz,

n∑
i=0

λi = 1,

n∑
i=1

bi = 1, λ0 ≤ b1, λn ≤ bn, λi ≤ bi + bi+1 ∀i ∈ {1 . . . n− 1}
}
.

Instead, the on-off condition can be directly imposed by replacing
∑n

i=1 bi = 1 and
∑n

i=0 λi = 1 with the

constraints
∑n

i=1 bi =
∑n

i=0 λi = z. This gives the following formulation of X:

C2 :=
{

(x, y,λ, z, b) ∈ R×R×Rn+1
+ ×{0, 1}×{0, 1}n : x =

n∑
i=0

λiBi, y =

n∑
i=0

λiFi,

n∑
i=0

λi = z,

n∑
i=1

bi = z,

λ0 ≤ b1, λn ≤ bn, λi ≤ bi + bi+1 ∀i ∈ {1 . . . n− 1}
}
.

It has been shown by Padberg [21] and Lee and Wilson [22] that the convex combination model that uses

the constraints

λ0 ≤ b1, λn ≤ bn, λi ≤ bi + bi+1 ∀i ∈ {1 . . . n− 1} (8)
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to model adjacency is not locally ideal. Padberg [21] gives the following improved formulation of the adjacency

conditions:
n∑

i=j

λi ≤
n∑

i=j

bi,

j−1∑
i=0

λi ≤
j∑

i=1

bi ∀j = 1, . . . , n,

which does result in a locally ideal formulation of PLFs. However, in most presentations of the convex

combination model in the literature [3, 14, 11, 23] the non-ideal formulation (8) is used.

The convex combination model with constraints (8) does not result in a formulation that is locally ideal,

however it does satisfy sharpness, a slightly weaker desirable property. An extended MIP formulation of a

convex set is sharp if the extreme points of the projection of the LP relaxation of the formulation to the

original space of variables (x, y, z in this case) satisfy integrality [6]. Vielma et al. [5] showed that the convex

combination model that uses adjacency constraint (8) is sharp. We now show that the formulation C2 is

sharp while C1 is not sharp.

Theorem 8. Formulation C2 is sharp.

Proof. Suppose that t = (x, y,λ, z, b) is an extreme point of the linear programming relaxation of C2 with
0 < z < 1. For ε > 0 define the points t+ = (x+, y+,λ+, z+, b+) and t− = (x−, y−,λ−, z−, b−) as

b+i = (1 + ε)bi, λ
+
i = (1 + ε)λi, ∀i ∈ {1, . . . , n}, z+ = (1 + ε)z, x+ =

n∑
i=0

λ+i Bi, y
+ =

n∑
i=0

λ+i Fi

b−i = (1 − ε)bi, λ
−
i = (1 − ε)λi, ∀i ∈ {1, . . . , n}, z− = (1 − ε)z, x− =

n∑
i=0

λ−i Bi, y
− =

n∑
i=0

λ−i Fi.

For some ε > 0, the points t+, t− are both feasible for the linear programming relaxation of C2, and
t = 0.5(t+ + t−), so t must not have been an extreme point.

Theorem 9. Formulation C1 is not sharp.

Proof. Consider an instance with n = 3, B = {0, 13 ,
2
3 , 1}, and f(B) = {0, 4, 2, 3}. One can verify that one of

extreme points of the projection of the linear programming relaxation of C1 is {x = 1
3 , y = 4, z = 1

3}, which
does not satisfy the required integrality constraint on z.

2.5. Other formulations

The disaggregated convex combination model for PLFs uses two sets of non-negative variables λ :=

{λi ∀i ∈ {1, . . . , n}} and µ := {µi ∀i ∈ {1, . . . , n}} and a set of binary variables b := {bi ∀i ∈ {1, . . . , n}}.
The disaggregated convex combination model for a PLF is

y =

n∑
i=1

(λiFi + µiFi−1), x =

n∑
i=1

(λiBi + µiBi−1)

n∑
i=1

bi = 1, bi = λi + µi ∀i ∈ {1, . . . , n}. (9)

This formulation can be extended to model X by replacing the constraints
∑n

i=1 bi = 1 with
∑n

i=1 bi = z.

Disaggregated convex combination models that use these constraints are a locally ideal formulation of X.

Vielma and Nemhauser [8] modify the disaggregated convex combination model to use a logarithmic

number of binary variables. Using notation defined in Vielma and Nemhauser [8], replacing
∑n

i=1 λi = 1

with
∑n

i=1 λi = z is a valid locally ideal reformulation of model X. For the sake of brevity, we have omitted

detailed discussions and proofs concerning disaggregated convex combination models.
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3. Computational Results

In this section, we illustrate with numerical experiments the impact of using a locally ideal formulation

(S2) instead of a weaker model (S1) that is not locally ideal.

3.1. Practical Application

To make the numerical comparison, we consider an advertising budget allocation problem introduced by

Zoltners and Sinha [24]. In this problem, a company is required to allocate an advertising budget D among a

set K of advertising strategies for a set of P products. Let xjk denote the amount of the advertising resource

allocated to strategy k ∈ K for product j ∈ J . The company incurs a fixed cost Gj for entering the market

with product j ∈ J as well as a variable cost cjk for each unit of the resource allocated to strategy k ∈ K
of product j ∈ J . The return on investment is evaluated by piecewise-linear functions yjk = fjk(xjk) which

have the typical form shown in Figure 2.

Investment x

R
e
tu

rn
 o

n
 i
n
v
e
st

m
e
n
t 
f(
x
)

Figure 1: Sample curves modeling return on investment for five different product/strategy pairs.

A MIP formulation for this problem is

max
∑
i∈J

∑
j∈K

yjk∑
i∈J

∑
j∈K

cjkxjk +
∑
i∈J

Gjzj ≤ D (AP )

(xjk, yjk, zj) ∈ Xjk ∀j ∈ J , k ∈ K,

where Xjk is meant to denote that each of the triplets of variables (xjk, yjk, zj) must lie in a set X (defined

in (3)) specific to the product/strategy pair. We denote by AP (S1) the MIP formulation of AP that uses

S1 to model (3) and AP (S2) as the MIP formulation of AP that uses the stronger formulation S2.

3.2. Numerical Results

We report tests conducted on 120 simulated instances of AP (X). We created 20 random instances for

each of the six problem sizes (|J |, |K|, n) ∈ {(50, 50, 10), (50, 100, 10),

(100, 100, 10), (50, 50, 20), (50, 100, 20), (100, 100, 20)}. All instances were solved to 0.1% optimality using

Gurobi 4.5.1 with default options on 2.66GHz Intel Core2 Quad CPU Q9400 processor with 8GB RAM.

For all instances, we compare the quality of the LP relaxation as the percentage gap between the root

LP relaxation value of the MIP formulations AP (S2) and AP (S1) relative to the optimal solution for each
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Table 2: Summary of performance of formulations AP (S2) and AP (S1) on 120 simulated instances. Arithmetic mean, standard
deviation, and geometric mean are shown.

Metric Model A.M St. Dev G.M

LP gap (%)
AP (S2) 0.05 0.05 0.03
AP (S1) 19.7 1.5 19.6

Time (s)
AP (S2) 16.8 12.0 12.3
AP (S1) 703.0 853.1 255.6

Nodes
AP (S2) 26.3 33.1 9.2
AP (S1) 402.9 312.4 314.5

instance. We also measure the CPU time taken (using a single thread) and number of nodes in the search

tree. Table 2 shows the summary statistics of our experiment.

The results convincingly demonstrate the advantage of using the locally ideal formulation AP (S2). The

average root gap for AP (S2) was 0.05%, while for AP (S1) the average root gap was 19.6%. In fact, the best

root gap for any instance of AP (S1) was 17.1%. In terms of MIP solve times, AP (S1) was solved on average

in 703 seconds, while AP (S2) was solved 41.8 times faster on average. In the worst case, Gurobi explored

1117 times more nodes on an instance modeled with AP (S1) than with AP (S2). Clearly, one should use the

locally ideal model AP (S2).

4. Concluding remarks

In this paper, we present a theoretical and computational comparison of MIP models for PLFs where

a binary indicator variable determines if the function is required to be evaluated. We propose strong for-

mulations for this general class of MIP models by extending standard textbook PLF models including the

incremental method, SOS2-based models, the multiple choice model, the convex combination model, and

others. We showed in all cases that our formulations are either locally ideal or sharp, while a standard

formulation that uses a variable upper bound constraint is not. Our numerical experiments demonstrate

that our proposed formulations have significant computational advantages.
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Data generation

The three components of the instances used are the return on investment functions fjk(·) ∀j ∈ J k ∈ K,

fixed costs Gj ∀j ∈ J for entering each product market and variable costs cjk ∀j ∈ J , k ∈ K per unit

of budget allocated for marketing strategy k ∈ K of product j ∈ J . We now describe how each of these

components were generated.

Return on investment functions

In our sample application, the return on investment is evaluated by piecewise-linear functions fjk(·) which

have the typical form shown in Figure 1.

Figure 2: Sample curves modeling return on investment for five different product/strategy pairs.
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Let R(a, b, i, n) denote a random variable that lies between a+ i(b−a)
n and a+ (i+1)(b−a)

n with a distribution

a+ b−a
n (i+ β(2, 2)) where β(2, 2) is the beta distribution with both parameters set to 2. For each product

j ∈ J , the domain of fjk(·) ∀k ∈ K was generated using

dj ∼ R(4, 8, j, |J |)

and the range was generated as

rj ∼ R(0.5, 1, j, |J |)

where the notation j overloads both the product j ∈ J and an unique index for the product between 1 and

J . The desired s-shaped functions were generated by dividing the domain [0, dj ] of fjk(·) ∀k ∈ K into three

parts such that fjk(·) is concave increasing in [0, a1jk], convex increasing in [a1jk, a
2
jk] and concave increasing

again in [a2jk, dj ]. The random variables a2jk and a2j,k were generated using

a1jk ∼ djR(0.1, 0.5, j, |J |)

a2jk ∼ djR(0.3, 0.7, j, |J |).
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The set of breakpoints Bjki ∀i ∈ {1 . . . n} were calculating by dividing each of the three domains into

approximately n
3 equal parts which can be written as

Bjki = 3i
a1jk
n

i = 1 . . .
⌊n

3

⌋
Bjki = a1jk + 3i

a2jk − a1jk
2n

i =
⌊n

3

⌋
+ 1 . . .

⌊2n

3

⌋
Bjki = a2jk + 3i

dj − a3jk
n

i =
⌊2n

3

⌋
+ 1 . . . n.

The corresponding function evaluations Fjki := fjk(Bjki) were generated as

Fjki = b1jk

√
Bjki

Bjkbn3 c
i = 1 . . .

⌊n
3

⌋
Fjki = Fjkbn3 c + b2jk

( Bjki −Bjkbn3 c

Bjkb 2n3 c
−Bjkbn3 c

)2
i =

⌊n
3

⌋
+ 1 . . .

⌊2n

3

⌋
Fjki = Fjkb 2n3 c

+ b3jk

√
Bjki −Bjkb 2n3 c

Bjkb 2n3 c
−Bjkbn3 c

i =
⌊2n

3

⌋
+ 1 . . . n

where b1jk, b2jk and b3jk are random variables distributed by

b1jk ∼ rjR(0.05, 0.1, j, |J |)

b2jk ∼ rjR(0.4, 0.7, j, |J |)

b3jk ∼ rjR(0.7, 1, j, |J |).

Costs and Budget

For each strategy k ∈ K and product j ∈ J , the per-unit operating costs were generated as

cjk ∼ β(2, 2) R(0.8, 1.2, j, |J |) R(0.8, 1.2, k, |K|) ∀j ∈ J , k ∈ K

and the fixed costs were generated as

Gj ∼ EG R(0.5, 1, j, |J |) U(0.8, 1.2) ∀j ∈ J .

where EG = 0.105|J | |K|. This procedure ensured that the total fixed costs are of the same order as the

total variable costs. The overall budget D was set to 6EG.
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