
Lab 2: QMC Basics

1. Overview

This lab is generally focused on the basics of performing quality quantum Monte Carlo
(QMC) calculations. Practical topics covered in this lab include wavefunction optimization
with variational Monte Carlo (VMC), diffusion Monte Carlo (DMC) timestep extrapola-
tion, DMC population control bias, and automation of DMC workflows in the context of
pseudopotential testing. Similar tests are an essential part of most QMC studies and the
other QMC topics covered here are completely transferrable to larger, production calcula-
tions of more complicated material systems. In this lab, participants will test the quality of
the Burkatzki-Filippi-Dolg oxygen pseudopotential by calculating the ionization potential
of atomic oxygen and the binding properties of the oxygen dimer with DMC.

1.1 Getting the most out of this lab

The outline below shows the overall structure of the lab. Those who are new to QMC or
QMCPACK should probably work through the contents in order. If you have a specific
application/target system you would like to explore with QMCPACK, be sure to leave
enough time for the optional material in section 4. Feel free to discuss your answers/results
to the questions/exercises at the end of each section with a lab instructor.

1. Overview
Overview of lab content.

1.1 Getting the most out of this lab
This section.

1.2 Lab directories and files
Description of directories and files used in the lab.

1.3 The QMCPACK input file and XML
XML as used by QMCPACK. Reduced example of input file structure.

2. Testing PP atomic properties: optimization, diffusion Monte Carlo
Calculate ionization potential of oxygen using pre-generated QMCPACK input
files.

2.1 Getting and converting a pseudopotential
Download PP from BFD database. Convert to QMCPACK format with
ppconvert.

2.2 Optimization walkthrough: neutral O atom
Theoretical background on trial wavefunction & optimization. QMCPACK
optimization walkthrough. Fully annotated input file (O.q0.opt.in.xml)
and explanation of Jastrow & optimization inputs.

2.3 DMC timestep extrapolation I: neutral O atom
Theoretical background on timestep & population control biases. DMC

1

CHAPTER 1. OVERVIEW 2

timestep extrapolation walkthrough w/ QMCPACK and explanation of DMC
inputs.

2.4 DMC timestep extrapolation II: IP of oxygen
Optimization and timestep extrapolation of charged oxygen atom. Timestep
extrapolation of DMC ionization potential & comparison w/ experimental
data.

3. Testing PP dimer properties: DMC workflow automation
Calculate oxygen dimer binding curve w/ the Project Suite workflow automation
system.

3.1 Example Project Suite input
Explanation of Project Suite inputs for simple VMC workflow (Python).

3.2 Automated binding curve of the oxygen dimer
Explanation of optimization & DMC inputs. Workflow w/ single optimiza-
tion at eqm. bond length and several DMC runs for stretched/compressed
dimer. Comparison of fitted eqm. bond length and dissociation energy w/
experimental data.

4. (Optional) Running your system with QMCPACK
Generate input files for (and optionally run) PWSCF and QMCPACK for your
own physical system with the Project Suite. The 8-atom cubic unit cell of
diamond is provided as a runnable example.

A. Basic Python constructs
Appendix with brief overview of Python syntax: intrinsics, container types,
conditional statements, iteration, functions w/ keyword arguments. Possibly
useful for those new to Python in working with the Project Suite (consult as
needed).

1.2 Lab directories and files

Lab_2_QMC_Basics/

docs - documentation

Lab_2_QMC_Basics.pdf - this document

Lab_2_Slides.pdf - slides presented during the lab

Project_Suite.pdf - slides on QMCPACK automation (supplementary)

oxygen_atom - oxygen atom calculations

ip_conv.py - tool to fit oxygen IP vs timestep

O.q0.dmc.in.xml - neutral O DMC input file

O.q0.dmc.qsub.in - " " " submission file

O.q0.opt.in.xml - " " optimization input file

O.q0.opt.qsub.in - " " " submission file

O.q0.pwscf.h5 - " " orbitals file

CHAPTER 1. OVERVIEW 3

O.q1.dmc.in.xml - charged O DMC input file

O.q1.dmc.qsub.i - " " " submission file n

O.q1.opt.in.xml - " " optimization input file

O.q1.opt.qsub.i - " " " submission file n

O.q1.pwscf.h5 - " " orbitals file

reference - directory w/ completed runs

submit_O_q0_dmc - executable to submit neutral DMC

submit_O_q0_opt - " " " " optimization

submit_O_q1_dmc - " " " charged DMC

submit_O_q1_opt - " " " " optimization

oxygen_dimer - oxygen dimer calculations

dimer_fit.py - tool to fit dimer binding curve

O_dimer.py - automation script for dimer calculations

pseudopotentials - directory for pseudopotentials

reference - directory w/ completed runs

your_system - calculations with your own physical system

example.py - generates input files for your system

pseudopotentials - directory for pseudopotentials

reference - directory w/ completed runs

1.3 The QMCPACK input file and XML

This section introduces XML as it is used in QMCPACK’s input file. The focus is on the
XML file format itself and the general structure of the input file rather than an exhaustive
discussion of all keywords and structure elements. Specific keywords and the relevant XML
elements are discussed in context as they are encountered in the lab. Participants will
work with a complete, annotated input file for the oxygen atom during the wavefunction
optimization walkthrough in section 2.2.

QMCPACK uses XML to represent structured data in its input file. Instead of text
blocks like

begin project

id = vmc

series = 0

end project

begin vmc

move = pbyp

blocks = 200

steps = 10

CHAPTER 1. OVERVIEW 4

timestep = 0.4

end vmc

QMCPACK input looks like

<project id="vmc" series="0">

</project>

<qmc method="vmc" move="pbyp">

<parameter name="blocks" > 200 </parameter>

<parameter name="steps" > 10 </parameter>

<parameter name="timestep"> 0.4 </parameter>

</qmc>

XML elements start with <element name>, end with </element name>, and can be
nested within each other to denote substructure (the trial wavefunction is composed of a
Slater determinant and a Jastrow factor, which are each further composed of . . .). id and
series are attributes of the <project/> element. XML attributes are generally used to
represent simple values, like names, integers, or real values. Similar functionality is also
commonly provided by <parameter/> elements like those shown above.

The overall structure of the input file reflects different aspects of the QMC simulation:
the simulation cell, particles, trial wavefunction, Hamiltonian, and QMC run parameters.
A condensed version of the actual input file is shown below:

<?xml version="1.0"?>

<simulation>

<project id="vmc" series="0">

...

</project>

<qmcsystem>

<simulationcell>

...

</simulationcell>

<particleset name="e">

...

CHAPTER 1. OVERVIEW 5

</particleset>

<particleset name="ion0">

...

</particleset>

<wavefunction name="psi0" ... >

...

<determinantset>

<slaterdeterminant>

..

</slaterdeterminant>

</determinantset>

<jastrow type="One-Body" ... >

...

</jastrow>

<jastrow type="Two-Body" ... >

...

</jastrow>

</wavefunction>

<hamiltonian name="h0" ... >

<pairpot type="coulomb" name="ElecElec" ... />

<pairpot type="coulomb" name="IonIon" ... />

<pairpot type="pseudo" name="PseudoPot" ... >

...

</pairpot>

</hamiltonian>

</qmcsystem>

<qmc method="vmc" move="pbyp">

<parameter name="warmupSteps"> 20 </parameter>

<parameter name="blocks" > 200 </parameter>

<parameter name="steps" > 10 </parameter>

<parameter name="timestep" > 0.4 </parameter>

</qmc>

</simulation>

The omitted portions (...) are more fine-grained inputs such as the axes of the simula-
tion cell, the number of up and down electrons, positions of atomic species, external orbital
files, starting Jastrow parameters, and external pseudopotential files. Relevant portions
will be explained in more detail throughout the lab.

2. Testing PP atomic properties:
optimization, diffusion Monte Carlo

2.1 Getting and converting a pseudopotential

The Burkatzki-Filippi-Dolg (BFD) pseudopotential (PP) database is a respected source
of pre-tested PP’s for use in QMC calculations. The pseudopotentials are represented
in gaussian basis sets and are naturally suited for the study of molecular systems (e.g.
using GAMESS to obtain orbitals). The PP’s can also be used in solid state calculations
(e.g. using Quantum Espresso to obtain orbitals), but the planewave cutoff required for
converged results may become prohibitive for heavier elements. In this case, DFT-based
pseudopotentials may be generated with the OPIUM package (beyond the scope of this lab).
In either case, testing pseudopotentials in relevant environments should be performed. To
illustrate a subset of possible tests while gaining familiarity with QMCPACK we will work
with an oxygen pseudopotential from the BFD database.

To obtain the pseudopotential, go to http://www.burkatzki.com/pseudos/index.2.html
and click on the “Select Pseudopotential” button. Next click on oxygen in the periodic
table. Click on the empty circle next to “V5Z” (a large gaussian basis set) and click on
“Next”. Select the Gamess format and click on “Retrive Potential”. Helpful information
about the pseudopotential will be displayed. The desired portion is at the bottom (the last
7 lines). Copy this text into the editor of your choice and save it as O.BFD.gamess (be
sure to include a newline at the end of the file). To transform the pseudopotential into the
fsatom xml format used by QMCPACK, use the ppconvert tool:

ppconvert --gamess_pot O.BFD.gamess --s_ref "1s(2)2p(4)" \

--p_ref "1s(2)2p(4)" --d_ref "1s(2)2p(4)" --xml O.BFD.xml

Observe the notation used to describe the reference valence configuration for this helium-
core PP: 1s(2)2p(4). The ppconvert tool uses the following convention for the valence
states: the first s state is labeled 1s (1s, 2s, 3s, . . .), the first p state is labeled 2p (2p,
3p, . . .), the first d state is labeled 3d (3d, 4d, . . .). Copy the resulting xml file into the
oxygen atom directory.

Note: the command to convert the PP into QM Espresso’s UPF format is similar:

ppconvert --gamess_pot O.BFD.gamess --s_ref "1s(2)2p(4)" \

--p_ref "1s(2)2p(4)" --d_ref "1s(2)2p(4)" --log_grid --upf O.BFD.upf

6

http://www.burkatzki.com/pseudos/index.2.html

CHAPTER 2. TESTING PP ATOMIC PROPERTIES:
OPTIMIZATION, DIFFUSION MONTE CARLO 7

For reference, the text of O.BFD.gamess should be:

O-QMC GEN 2 1

3

6.00000000 1 9.29793903

55.78763416 3 8.86492204

-38.81978498 2 8.62925665

1

38.41914135 2 8.71924452

The full QMCPACK pseudopotential is also included in oxygen atom/reference/O.BFD.xml.

2.2 Optimization walkthrough: neutral O atom

The aim of this section is to obtain a trial wavefunction of reasonable quality for the neutral
oxygen atom. The first subsection provides background regarding the wavefunction for this
system, including the specific form of the Jastrow factors used in QMCPACK. A brief
discussion of wavefunction optimization is also given. The second subsection contains the
actual walkthrough to follow for the lab.

Background on trial wavefunction and optimization

The trial wavefunction used to describe the neutral oxygen atom is of the standard Slater-
Jastrow form:

ΨT = e−(J1+J2)D↑({φ↑u}N
↑

u=1)D
↓({φ↓d}

N↑
d=1) (2.2.1)

The orbitals forming the spin-restricted Slater determinants (D↑/D↓) are obtained from
DFT or Hartree-Fock (e.g. via Quantum Espresso) and are fixed. The ground state of the
(pseudo) oxygen atom is spin polarized with N↑ = 4 and N↓ = 2.

The part of the wavefunction we will be optimizing is the Jastrow factor (e−(J1+J2)),
which in this case includes one- (electron-ion) and two- (electron-electron) body correlation
functions. The Jastrow factor is symmetric under same-spin electron exchange and does not
affect the DMC fixed node approximation. Optimization of the Jastrow factor does, how-
ever, improve the efficiency of the DMC calculation and reduces additional approximations
due to non-local pseudopotentials (locality approximation, T-moves).

The explicit form of the one-body Jastrow factor we will be using is

J1 =

N↑+N↓∑
e=1

U
↑/↓
1 (|re − rO|) (2.2.2)

where re refers to the electron positions and rO is the position of the oxygen ion. The

U
↑/↓
1 term is a one-dimensional radial function represented with piecewise continuous cubic

CHAPTER 2. TESTING PP ATOMIC PROPERTIES:
OPTIMIZATION, DIFFUSION MONTE CARLO 8

Figure 2.1: Optimized U1 function for 1-body Jastrow factor of an oxygen atom.

polynomials (B-splines). The adjustable parameters to be optimized are the “knots” of the
B-splines which are simply the values of the U1 function at uniformly spaced grid points
(See fig. 2.1 for an example of a U1 spline function with 8 knots).

The two-body Jastrow factor is spin resolved (r↑/r↓ are up/down electron positions):

J2 =
∑
u<u′

U
↑↑/↓↓
2 (|r↑u − r

↑
u′ |) +

∑
d<d′

U
↑↑/↓↓
2 (|r↓d − r

↓
d′ |) +

∑
u,d

U↑↓2 (|r↑u − r
↓
d|) (2.2.3)

For an atom, Padé functions are appropriate for U
↑↑/↓↓
2 and U↑↓2 :

U2(r) =
Ar

1 +Br
(2.2.4)

Only B↑↑/↓↓ and B↑↓ are adjustable since the A parameters are fixed by the electron-electron
cusp conditions.

Wavefunction optimization essentially relies on two inequalities regarding energy and
variance:

ET (P) =
〈ΨT (P)|Ĥ|ΨT (P)〉
〈ΨT (P)|ΨT (P)〉

≥ E0 (2.2.5)

VT (P) =
〈ΨT (P)|Ĥ2|ΨT (P)〉
〈ΨT (P)|ΨT (P)〉

−

(
〈ΨT (P)|Ĥ|ΨT (P)〉
〈ΨT (P)|ΨT (P)〉

)2

≥ 0 (2.2.6)

Here E0 is the ground state energy, ET (P) is the trial energy, VT (P) is the trial variance, and
P denotes the set of adjustable parameters in the trial wavefunction. Equality is reached

CHAPTER 2. TESTING PP ATOMIC PROPERTIES:
OPTIMIZATION, DIFFUSION MONTE CARLO 9

only for the true ground state wavefunction and so the trial wavefunction can be improved
by attempting to minimize a chosen cost function:

C(P) = αET (P) + (1− α)VT (P). (2.2.7)

Iterative varational Monte Carlo methods have been developed to handle the non-linear
optimization problem min

P
C(P). We will be using the linearized optimization method of

Umrigar, et al. (PRL 98 110201 (2007)). Let us try this now with QMCPACK.

Optimization walkthrough with QMCPACK

Enter the oxygen atom directory and copy over the oxygen pseudopotential (O.BFD.xml)
you downloaded and converted (section 2.1). Alternatively, the already converted pseudopo-
tential is located in the oxygen atom/reference directory. All files prefixed with “O.q0”
relate to the neutral oxygen atom.

Open O.q0.opt.in.xml with your favorite text editor. This is a QMCPACK input
file configured for wavefunction optimization with the linear method. Take a minute to
familiarize yourself with the general format and contents of the input file. The major
sections are the simulation cell, description of particle species (electrons & ions/atoms), the
trial wavefunction (orbitals, Slater determinants, and Jastrow factors), the Hamiltonian,
and finally inputs describing the quantum Monte Carlo process (linear optimization in this
case). Portions marked with “<!-- ... -->” are comments describing these sections.
XML is not the easiest to read, but this can be helped by using an editor with color
highlighting such as emacs or vi.

The most important parts to focus on for the purposes of this exercise are the Jastrow
factors and the inputs to the linear optimization method. Input specifying the one-body
electron-ion Jastrow factor corresponding to eq. 2.2.2 is

<jastrow type="One-Body" name="J1" function="bspline" source="ion0" print="yes">

<correlation elementType="O" size="8" rcut="4.5" cusp="0.0">

<coefficients id="eO" type="Array">

0 0 0 0 0 0 0 0

</coefficients>

</correlation>

</jastrow>

The XML describes U
↑/↓
1 (r) as a B-spline with 8 knots, no cusp at the origin (the oxygen

pseudopotential is finite at r = 0), and vanishing beyond 4.5 Bohr. The initial guess of zero

for each of the 8 knot parameters corresponds to U
↑/↓
1 (r) = 0. The input for the two-body

electron-electron Jastrow is similar:

CHAPTER 2. TESTING PP ATOMIC PROPERTIES:
OPTIMIZATION, DIFFUSION MONTE CARLO 10

<jastrow type="Two-Body" name="J2" function="pade" print="yes">

<correlation speciesA="u" speciesB="u">

<var id="uu_b" name="B"> 0.6 </var>

</correlation>

<correlation speciesA="u" speciesB="d">

<var id="ud_b" name="B"> 1.0 </var>

</correlation>

</jastrow>

The XML describes U
↑↑/↓↓
2 (r) and U↑↓2 (r) from eq. 2.2.3 as Padé functions with initial

guesses of B↑↑ = 0.6 Bohr−1 and B↑↓ = 1.0 Bohr−1 for the adjustable parameters.
The relevant portion of the input describing the linear optimization process is

<loop max="MAX">

<qmc method="linear" move="pbyp" checkpoint="-1">

<cost name="energy" > ECOST </cost>

<cost name="unreweightedvariance"> UVCOST </cost>

<cost name="reweightedvariance" > RVCOST </cost>

<parameter name="timestep" > TS </parameter>

<parameter name="samples" > SAMPLES </parameter>

<parameter name="warmupSteps" > 300 </parameter>

<parameter name="blocks" > 800 </parameter>

<parameter name="subSteps" > 10 </parameter>

<parameter name="nonlocalpp" > yes </parameter>

<parameter name="useBuffer" > yes </parameter>

...

</qmc>

</loop>

An explanation of each input variable can be found below. The remaining variables control
specialized internal details of the linear optimization algorithm. The meaning of these
inputs is beyond the scope of this lab and reasonable results are often obtained keeping
these values fixed.

energy Fraction of trial energy in the cost function.

unreweightedvariance Fraction of unreweighted trial variance in the cost function. Ne-
glecting the weights can be more robust.

reweightedvariance Fraction of trial variance (including the full weights) in the cost
function.

CHAPTER 2. TESTING PP ATOMIC PROPERTIES:
OPTIMIZATION, DIFFUSION MONTE CARLO 11

timestep Timestep of the VMC random walk, determines spatial distance moved by each
electron during MC steps. Should be chosen such that the acceptance ratio of MC
moves is around 50% (30-70% is often acceptable). Reasonable values are often be-
tween 0.2 and 0.6 Ha−1.

samples Total number of MC samples collected for optimization, determines statistical
error bar of cost function. Often efficient to start with a small number of samples (5-
20k) and then increase (20-100k). More samples may be required if the wavefunction
contains a large number of variational parameters. MUST be be a multiple of the
number of threads/cores (use multiples of 512 on Vesta).

warmupSteps Number of MC steps discarded as a warmup or equilibration period of the
random walk. If this is too small, it will bias the optimization procedure.

blocks Number of average energy values written to output files. Should be greater than
200 for meaningful statistical analysis of output data (e.g. via qmca).

subSteps Number of MC steps in between energy evaluations. Each energy evaluation is
expensive so taking a few steps to decorrelate between measurements can be more
efficient. Will be less efficient with many substeps.

nonlocalpp,useBuffer If no, evaluate non-local pseudopotential derivatives approximately
during optimization. This saves time and often does not affect optimization results
unless the non-local contribution to the energy is large.

loop max Number of times to repeat the optimization. Using the resulting wavefunction
from the previous optimization in the next one improves the results. Typical choices
range between 4 and 20.

The three components of the cost function, energy, unreweighted variance, and reweighted
variance should sum to one. Dedicating 100% of the cost function to unreweighted variance
is often a good choice. Another common choice is to try 90/10 or 80/20 mixtures of
reweighted variance and energy.

Replace MAX, EVCOST, UVCOST, RVCOST, TS, and SAMPLES in the two loop’s with appro-
priate starting values in the O.q0.opt.in.xml input file. Submit the optimization job to
Vesta’s queue by typing ./submit O q0 opt. The job should only take a few minutes for
reasonable values of loop max and samples.

Log file output will appear in O q0 opt.output. The beginning of each linear optimiza-
tion will be marked with text similar to

===

Start QMCFixedSampleLinearOptimize

File Root O_q0_opt.s011 append = no

===

At the end of each optimization section the change in cost function, new values for the
Jastrow parameters, and elapsed wallclock time are reported:

CHAPTER 2. TESTING PP ATOMIC PROPERTIES:
OPTIMIZATION, DIFFUSION MONTE CARLO 12

OldCost: 7.4701713964e-01 NewCost: 7.4681622535e-01 Delta Cost:-2.0091428584e-04

...

<optVariables href="O_q0_opt.s011.opt.xml">

eO_0 -9.5623201640e-01 1 1 ON 0

eO_1 -8.4728730387e-01 1 1 ON 1

eO_2 -6.8954452383e-01 1 1 ON 2

eO_3 -4.9327199567e-01 1 1 ON 3

eO_4 -3.2560096773e-01 1 1 ON 4

eO_5 -1.9567566480e-01 1 1 ON 5

eO_6 -1.2940405487e-01 1 1 ON 6

eO_7 -9.5221474839e-02 1 1 ON 7

uu_b 4.2002038228e-01 0 1 ON 8

ud_b 6.3472757070e-01 0 1 ON 9

</optVariables>

...

QMC Execution time = 7.0060820112e+00 secs

The cost function should decrease during each linear optimization (Delta cost < 0). Try
“grep OldCost *.output”. You should see something like this:

OldCost: 1.3644746067e+00 NewCost: 1.1049104640e+00 Delta Cost:-2.5956414268e-01

OldCost: 1.0690085060e+00 NewCost: 8.3206148222e-01 Delta Cost:-2.3694702381e-01

OldCost: 7.8558402137e-01 NewCost: 7.2478477600e-01 Delta Cost:-6.0799245374e-02

OldCost: 7.3070322298e-01 NewCost: 7.1655770805e-01 Delta Cost:-1.4145514926e-02

OldCost: 1.2184771084e+00 NewCost: 1.1923197177e+00 Delta Cost:-2.6157390699e-02

OldCost: 6.8740347812e-01 NewCost: 6.8733036689e-01 Delta Cost:-7.3111228164e-05

OldCost: 6.9683928634e-01 NewCost: 6.9681780340e-01 Delta Cost:-2.1482934426e-05

OldCost: 6.7982953532e-01 NewCost: 6.7982948866e-01 Delta Cost:-4.6667065545e-08

OldCost: 6.8674328187e-01 NewCost: 6.8674327833e-01 Delta Cost:-3.5391565234e-09

OldCost: 7.5998537866e-01 NewCost: 7.5965629336e-01 Delta Cost:-3.2908530361e-04

OldCost: 7.0771416413e-01 NewCost: 7.0765392787e-01 Delta Cost:-6.0236255172e-05

OldCost: 7.4701713964e-01 NewCost: 7.4681622535e-01 Delta Cost:-2.0091428584e-04

Blocked averages of energy data, including the kinetic energy and components of the po-
tential energy, are written to scalar.dat files. The first is named “O q0 opt.s000.scalar.dat”,
with a series number of zero (s000). In the end there will be MAX1+MAX2 of them, one for
each series.

When the job has finished, use the qmca tool to assess the effectiveness of the opti-
mization process. To look at just the total energy and the variance, type “qmca -q ev

O q0 opt*scalar*”. This will print the energy, variance, and the variance/energy ratio in
Hartree units:

CHAPTER 2. TESTING PP ATOMIC PROPERTIES:
OPTIMIZATION, DIFFUSION MONTE CARLO 13

LocalEnergy Variance ratio

O_q0_opt series 0 -15.568764 +/- 0.003421 1.382681 +/- 0.056604 0.0888

O_q0_opt series 1 -15.638500 +/- 0.005014 1.067662 +/- 0.019865 0.0683

O_q0_opt series 2 -15.802163 +/- 0.002680 0.834521 +/- 0.007037 0.0528

O_q0_opt series 3 -15.840982 +/- 0.001791 0.752242 +/- 0.009477 0.0475

O_q0_opt series 4 -15.841584 +/- 0.003301 1.097355 +/- 0.252991 0.0693

O_q0_opt series 5 -15.848602 +/- 0.003280 0.728377 +/- 0.019288 0.0460

O_q0_opt series 6 -15.850839 +/- 0.001870 0.723159 +/- 0.008173 0.0456

O_q0_opt series 7 -15.848411 +/- 0.002449 0.708589 +/- 0.007225 0.0447

...

Plots of the data can also be obtained with the “-p” option (“qmca -p -q ev O q0 opt*scalar*”).
Identify which optimization series is the “best” according to your cost function. It is

likely that multiple series are similar in quality. Note the opt.xml file corresponding to this
series. This file contains the final value of the optimized Jastrow parameters to be used in
the DMC calculations of the next section of the lab.

Questions and Exercises

1. What is the acceptance ratio of your optimization runs? (use “qmca --help” if nec-
essary) Do you expect the Monte Carlo sampling to be efficient?

2. How do you know when the optimization process has converged?

3. Why is the mean and the error of the variance sometimes large? Consider using “qmca
-t ...” to investigate.

4. Optimization is sometimes sensitive to initial guesses of the parameters. If you have
time, try varying the initial parameters, including the cutoff radius (rcut) of the one-
body Jastrow factor (remember to change id in the <project/> element). Do you
arrive at a similar set of final Jastrow parameters? What is the lowest variance you
are able to achieve?

2.3 DMC timestep extrapolation I: neutral O atom

The diffusion Monte Carlo (DMC) algorithm contains two biases in addition to the fixed
node and pseudopotential approximations that are important to control: timestep and
population control bias. The following subsection briefly discusses the origin of timestep
and population control biases in DMC and how they can be minimized or extrapolated
away. As before, the second subsection contains the lab walkthrough with QMCPACK. By
the end of the section, we will have a solid DMC estimate of the ground state energy of
oxygen.

CHAPTER 2. TESTING PP ATOMIC PROPERTIES:
OPTIMIZATION, DIFFUSION MONTE CARLO 14

Background on timestep and population control bias

DMC improves over the VMC algorithm by projecting toward the true many-body electronic
ground state of the system. The projection operator is the (importance sampled) imaginary
time propagator, which is also known as the thermodynamic density matrix:

ρ̂ = e−tĤ (2.3.1)

The direct action of the projection operator on a trial wavefunction in position space

〈R|e−tĤ |ΨT 〉 =

∫
dR′ρ(R,R′; t)ΨT (R′) (2.3.2)

cannot be calculated in a straightforward fashion since the analytic form of ρ(R,R′; t) =
〈R|ρ̂|R′〉 is unknown. In order to make the algorithm computationally tractable, the finite
time projection operator is expanded as a product of short-time projection operators

〈R|e−tH |ΨT 〉 = 〈R|e−τĤe−τĤ · · · e−τĤ |ΨT 〉 (2.3.3)

=

∫
dR1dR2 · · · dRMρ(R,R1; τ)ρ(R1, R2; τ) · · · ρ(RM−1, RM ; τ)ΨT (RM)

(2.3.4)

The advantage here is that reasonable approximations of the short time propagators are
known. Common approximations have the form

ρ(R,R′; τ) = eD(R,R′;τ)eB(R,R′;τ) +O(τ2) (2.3.5)

where D(R,R′; τ) and B(R,R′; τ) represent drift and branching terms, respectively. DMC
results are biased for any finite timestep (τ). The bias can be eliminated by extrapolating
to zero timestep. In practice this is done by performing a series of runs with decreasing
timesteps and then fitting the results.

The drift term can be sampled with standard Monte Carlo methods, while the branching
term is incorporated as a weight assigned to each random walker. Instead of accumulating
the weight, it is more efficient to “branch” each walker according to the weight, resulting
in some walkers being deleted and others copied multiple times. If left uncontrolled, the
walker population (P) may vanish or diverge. A stable algorithm is obtained by adjusting
the branching weight to preserve the overall number of walkers on average. Population
control also biases the results, but usually to a lesser extent than timestep error (the bias
is proportional to 1/P). A common rule of thumb is to use at least a couple thousand
walkers. This bias should be checked occasionally by performing runs with varying numbers
of walkers.

Timestep extrapolation with QMCPACK

In the same directory you used to perform wavefunction optimization (oxygen atom) you
will find a sample DMC input file for the neutral oxygen atom named O.q0.dmc.in.xml.
Open this file in a text editor and note the differences from the optimization case. The
XML describing the wavefunction is no longer present. In its place is the line

CHAPTER 2. TESTING PP ATOMIC PROPERTIES:
OPTIMIZATION, DIFFUSION MONTE CARLO 15

<include href="OPT_XML"/>

Replace “OPT XML” with the opt.xml file corresponding to the best Jastrow parameters you
found in the last section. The include element essentially amounts to an in-place copy and
paste of the contents of the opt.xml file.

The QMC calculation section at the bottom is also different. The linear optimization
blocks have been replaced with XML describing a VMC run followed by DMC. The input
keywords are described below.

timestep Timestep of the VMC/DMC random walk. In VMC choose a timestep corre-
sponding to an acceptance ratio of about 50%. In DMC the acceptance ratio is often
above 99%.

warmupSteps Number of MC steps discarded as a warmup or equilibration period of the
random walk.

steps Number of MC steps per block. Physical quantities, such as the total energy, are
averaged over walkers and steps.

blocks Number of blocks. This is also the number of average energy values written to out-
put files. Should be greater than 200 for meaningful statistical analysis of output data
(e.g. via qmca). The total number of MC steps each walker takes is blocks×steps.

samples VMC only. This is the number of walkers used in subsequent DMC runs. Each
DMC walker is initialized with electron positions sampled from the VMC random
walk.

nonlocalmoves DMC only. If yes/no, use the locality approximation/T-moves for non-
local pseudopotentials. T-moves generally improve the stability of the algorithm and
restore the variational principle for small systems (T-moves version 1).

The purpose of the VMC run is to provide initial electron positions for each DMC
walker. Setting walkers = 1 in the VMC block ensures there will be only one VMC
walker per execution thread. There will be a total of 512 VMC walkers in this case (see
O.q0.dmc.qsub.in). We want the electron positions used to initialize the DMC walkers to
be decorrelated from one another. A VMC walker will often decorrelate from its current
position after propagating for a few Ha−1 in imaginary time (in general this is system
dependent). This leads to a rough rule of thumb for choosing blocks and steps for the
VMC run (VWALKERS = 512 here):

VBLOCKS× VSTEPS ≥ DWALKERS

VWALKERS

5 Ha−1

VTIMESTEP
(2.3.6)

Fill in the VMC XML block with appropriate values for these parameters. There should
be more than one DMC walker per thread and enough walkers in total to avoid population
control bias (see previous subsection).

CHAPTER 2. TESTING PP ATOMIC PROPERTIES:
OPTIMIZATION, DIFFUSION MONTE CARLO 16

To study timestep bias, we will perform a sequence of DMC runs over a range of
timesteps (0.1 Ha−1 is too large and timesteps below 0.002 Ha−1 are probably too small).
A common approach is to select a fairly large timestep to begin with and then decrease the
timestep by a factor of two in each subsequent DMC run. The total amount of imaginary
time the walker population propagates should be the same for each run. A simple way to
accomplish this is to choose input parameters in the following way

timestepn = timestepn−1/2

warmupStepsn = warmupStepsn−1 × 2

blocksn = blocksn−1

stepsn = stepsn−1 × 2 (2.3.7)

Each DMC run will require about twice as much computer time as the one preceeding it.
Note that the number of blocks is kept fixed for uniform statistical analysis. blocks ×
steps× timestep ∼ 60 Ha−1 is sufficient for this system.

Choose an initial DMC timestep and create a sequence of N timesteps according to
2.3.7. Make N copies of the DMC XML block in the input file

<qmc method="dmc" move="pbyp">

<parameter name="warmupSteps" > DWARMUP </parameter>

<parameter name="blocks" > DBLOCKS </parameter>

<parameter name="steps" > DSTEPS </parameter>

<parameter name="timestep" > DTIMESTEP </parameter>

<parameter name="nonlocalmoves" > yes </parameter>

</qmc>

Fill in DWARMUP, DBLOCKS, DSTEPS, and DTIMESTEP for each DMC run according to 2.3.7.
Submit the DMC timestep extrapolation run to the queue with submit O q0 dmc. The run
should take only a few minutes to complete.

QMCPACK will create files prefixed with O q0 dmc. The log file is O q0 dmc.output. As
before, block averaged data is written to scalar.dat files. In addition, DMC runs produce
dmc.dat files which contain energy data averaged only over the walker population (one line
per DMC step). The dmc.dat files also provide a record of the walker population at each
step.

Use the PlotTstepConv.pl to obtain a linear fit to the timestep data (type “PlotTstepConv.pl
O.q0.dmc.in.xml 40”). You should see a plot similar to fig. 2.2. The tail end of the text
output displays the parameters for the linear fit. The “a” parameter is the total energy
extrapolated to zero timestep in Hartree units.

...

Final set of parameters Asymptotic Standard Error

======================= ==========================

CHAPTER 2. TESTING PP ATOMIC PROPERTIES:
OPTIMIZATION, DIFFUSION MONTE CARLO 17

-15.902

-15.9

-15.898

-15.896

-15.894

-15.892

-15.89

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

e
n
e
rg

y
 (

H
a
)

timestep

timestep convergence of DMC

Figure 2.2: Linear fit to DMC timestep data from PlotTstepConv.pl.

a = -15.8911 +/- 0.000756 (0.004757%)

b = -0.221687 +/- 0.03757 (16.95%)

...

Questions and Exercises

1. What is the τ → 0 extrapolated value for the total energy?

2. What is the maximum timestep you should use if you want to calculate the total
energy to an accuracy of 0.05 eV? For convenience, 1 Ha = 27.2113846 eV.

3. What is the acceptance ratio for this (bias< 0.05 eV) run? Does it follow the rule of
thumb for sensible DMC (acceptance ratio > 99%) ?

4. Check the fluctuations in the walker population (qmca -t -q nw O q0 dmc*dmc.dat

--noac). Does the population seem to be stable?

5. (Optional) Study population control bias for the oxygen atom. Select a few popu-
lation sizes (use multiples of 512 to fit cleanly on a single Vesta partition). Copy
O.q0.dmc.in.xml to a new file and remove all but one DMC run (select a single
timestep). Make one copy of the new file for each population, set “samples”, and

CHAPTER 2. TESTING PP ATOMIC PROPERTIES:
OPTIMIZATION, DIFFUSION MONTE CARLO 18

choose a unique id in <project/>. Make submission files similar to submit O q0 dmc

and O.q0.dmc.qsub.in and run one job at a time to avoid crowding the lab allocation.
Use qmca to study the dependence of the DMC total energy on the walker popula-
tion. How large is the bias compared to timestep error? What bias is incurred by
following the “rule of thumb” of a couple thousand walkers? Will population control
bias generally be an issue for production runs on modern parallel machines?

2.4 DMC timestep extrapolation II: IP of oxygen

In this section, we will repeat the calculations of the prior two sections (optimization,
timestep extrapolation) for the +1 charge state of the oxygen atom. Comparing the result-
ing 1st ionization potential (IP) with experimental data will complete our first test of the
BFD oxygen pseudopotential. In actual practice, higher IP’s could also be tested prior to
performing production runs.

Obtaining the timestep extrapolated DMC total energy for ionized oxygen should take
much less (human) time than for the neutral case. For convenience, the necessary steps are
briefly summarized below.

1. Copy the linear optimization blocks you used in O.q0.opt.in.xml to O.q0.opt.in.xml.

2. Submit the optimization job to Vesta’s queue with submit O q1 opt.

3. Identify the optimal set of parameters with qmca.

4. Replace OPT XML in submit O q1 dmc with the opt.xml file containing the optimal
parameters.

5. Copy the VMC and DMC blocks you used in O.q0.dmc.in.xml to O.q1.dmc.in.xml.

6. Submit the DMC timestep job to Vesta’s queue with submit O q1 dmc.

7. Obtain the DMC total energy extrapolated to zero timestep with PlotTstepConv.pl.

The process listed above, which excludes additional steps for orbital generation and con-
version, can become tedious to perform by hand in production settings where many calcu-
lations are often required. For this reason automation tools are introduced for calculations
involving the oxygen dimer in section 3 of the lab.

Questions and Exercises

1. What is the τ → 0 extrapolated DMC value for the 1st ionization potential of oxygen?

2. How does the extrapolated value compare to the experimental IP? Go to
http://physics.nist.gov/PhysRefData/ASD/ionEnergy.html and enter “O I” in the
box labeled “Spectra” and click on the “Retrieve Data” button. For comparison
the LDA value is 12.25 eV.

http://physics.nist.gov/PhysRefData/ASD/ionEnergy.html

CHAPTER 2. TESTING PP ATOMIC PROPERTIES:
OPTIMIZATION, DIFFUSION MONTE CARLO 19

3. What can we conclude about the accuracy of the pseudopotential? What factors
complicate this assessment?

4. Explore the sensitivity of the IP to the choice of timestep. Type “ip conv.py” to
view three timestep extrapolation plots: two for the q = 0, 1 total energies and one for
the IP. Is the IP more, less, or similarly sensitive to timestep than the total energy?

5. What is the maximum timestep you should use if you want to calculate the ionization
potential to an accuracy of 0.05 eV? What factor of cpu time is saved by assessing
timestep convergence on the IP (a total energy difference) vs. a single total energy?

6. Are the acceptance ratio and population fluctuations reasonable for the q = 1 calcu-
lations?

3. Testing PP dimer properties:
DMC workflow automation

In this section we will use automation tools to calculate the DMC total energy of the oxygen
dimer over a series of bond lengths. The equilibrium bond length and binding energy of
the dimer will be determined by performing a polynomial fit to the data (Morse potential
fits should be preferred in production tests). Comparing these values with correponding
experimental data provides a second test of the BFD pseudopotential for oxygen.

Production QMC projects are often composed of many similar workflows. The simplest
of these is a single DMC calculation involving four different compute jobs:

1. Orbital generation via Quantum Espresso or GAMESS.

2. Conversion of orbital data via pw2qmcpack.x or convert4qmc.

3. Optimization of Jastrow factors via QMCPACK.

4. DMC calculation via QMCPACK.

Simulation workflows quickly become more complex with increasing costs in terms of human
time for the researcher. Automation tools can decrease both human time and error if used
well.

The set of automation tools we will be using is known as the Project Suite (PS), which
is distributed with QMCPACK. The PS is capable of generating input files, submitting and
monitoring compute jobs, passing data between simulations (such as relaxed structures, or-
bital files, optimized Jastrow parameters, etc.), and data analysis. The user interface to the
PS is through a set of functions defined in the Python programming language. User scripts
which execute simple workflows resemble input files and do not require programming expe-
rience. More complex workflows require only basic programming constructs (e.g. for loops
and if statements). PS input files/scripts should be easier to navigate than QMCPACK
input files and more efficient than submitting all the jobs by hand.

3.1 Example Project Suite input

The Project Suite (PS) is driven by simple user-defined scripts that resemble keyword-
driven input files. An example PS input file that performs a single VMC calculation is
shown below. Take a moment to read it over and especially note the comments (prefixed
with “#”) explaining most of the contents. If the input syntax is unclear you may want to
consult portions of appendix A, which gives a condensed summary of Python constructs.
For more information about the functionality and effective use of the Project Suite, consult
docs/Project Suite.pdf first. More information can be found in the user guide distributed
with QMCPACK, although examples in this lab series and Project Suite.pdf are more

20

CHAPTER 3. TESTING PP DIMER PROPERTIES:
DMC WORKFLOW AUTOMATION 21

up to date (if qmcpack is the location of your QMCPACK distribution, the user guide can
be found at qmcpack/project suite/documentation/project suite user guide.pdf).

#! /usr/bin/env python

import project suite functions

from project import settings,Job,get_machine,run_project

from project import generate_physical_system

from project import generate_qmcpack,vmc

settings(# project suite settings

pseudo_dir = ’./pseudopotentials’, # location of PP files

runs = ’’, # root directory for simulations

results = ’’, # root directory for simulation results

status_only = 0, # show simulation status, then exit

generate_only = 0, # generate input files, then exit

sleep = 3, # seconds between checks on sim. progress

machine = ’vesta’, # name of local machine

account = ’QMC_2014_training’ # charge account for cpu time

)

vesta = get_machine(’vesta’) # allow max of one job at a time (lab only)

vesta.queue_size = 1

qmcjob = Job(# specify job parameters

nodes = 32, # use 32 Vesta nodes

threads = 16, # 16 OpenMP threads per node (32 MPI tasks)

hours = 1, # wallclock limit of 1 hour

use QMCPACK executable

app = ’/soft/applications/qmcpack/build_XL_real/bin/qmcapp’

)

qmc_calcs = [# list QMC calculation methods

vmc(# VMC

walkers = 1, # 1 walker

warmupsteps = 50, # 50 MC steps for warmup

blocks = 200, # 200 blocks

steps = 10, # 10 steps per block

timestep = .4 # 0.4 1/Ha timestep

)]

dimer = generate_physical_system(# make a dimer system

type = ’dimer’, # system type is dimer

dimer = (’O’,’O’), # dimer is two oxygen atoms

CHAPTER 3. TESTING PP DIMER PROPERTIES:
DMC WORKFLOW AUTOMATION 22

separation = 1.2074, # separated by 1.2074 Angstrom

Lbox = 15.0, # simulation box is 15 Angstrom

units = ’A’, # Angstrom is dist. unit

net_spin = 2, # nup-ndown is 2

O = 6 # pseudo-oxygen has 6 valence el.

)

qmc = generate_qmcpack(# make a qmcpack simulation

identifier = ’example’, # prefix files with ’example’

path = ’scale_1.0’, # run in ./scale_1.0 directory

system = dimer, # run the dimer system

job = qmcjob, # set job parameters

input_type = ’basic’, # basic qmcpack inputs given below

pseudos = [’O.BFD.xml’], # list of PP’s to use

orbitals_h5 = ’O2.pwscf.h5’, # file with orbitals from DFT

bconds = ’nnn’, # open boundary conditions

jastrows = [], # no jastrow factors

calculations = qmc_calcs # QMC calculations to perform

)

run_project(qmc) # write input file and submit job

3.2 Automated binding curve of the oxygen dimer

Enter the oxygen dimer directory. Copy your BFD pseudopotential from the atom runs
into oxygen dimer/pseudopotentials. Open O dimer.py with a text editor. The overall
format is similar to the example file shown in the last section. The header material, including
PS imports, settings, and the job parameters for QMC are identical. The main difference
is that optimization and DMC runs are being performed rather than a single VMC run.

Following the job parameters, inputs for the optimization method are given. The key-
words should all be familiar from the QMCPACK XML input files you used previously:

linopt1 = linear(

energy = 0.0,

unreweightedvariance = 1.0,

reweightedvariance = 0.0,

timestep = 0.4,

samples = 5000,

warmupsteps = 50,

blocks = 200,

substeps = 1,

nonlocalpp = True,

CHAPTER 3. TESTING PP DIMER PROPERTIES:
DMC WORKFLOW AUTOMATION 23

usebuffer = True,

walkers = 1,

minwalkers = 0.5,

maxweight = 1e9,

usedrift = True,

minmethod = ’quartic’,

beta = 0.025,

exp0 = -16,

bigchange = 15.0,

alloweddifference = 1e-4,

stepsize = 0.2,

stabilizerscale = 1.0,

nstabilizers = 3

)

Requesting multiple loop’s with different numbers of samples is more compact than in XML:

linopt1 = ...

linopt2 = linopt1.copy()

linopt2.samples = 20000 # opt w/ 20000 samples

linopt3 = linopt1.copy()

linopt3.samples = 40000 # opt w/ 40000 samples

opt_calcs = [loop(max=8,qmc=linopt1), # loops over opt’s

loop(max=6,qmc=linopt2),

loop(max=4,qmc=linopt3)]

The VMC/DMC method inputs should also look familiar:

qmc_calcs = [

vmc(

walkers = 1,

warmupsteps = 30,

blocks = 20,

steps = 10,

substeps = 2,

timestep = .4,

CHAPTER 3. TESTING PP DIMER PROPERTIES:
DMC WORKFLOW AUTOMATION 24

samples = 2048

),

dmc(

warmupsteps = 100,

blocks = 400,

steps = 32,

timestep = 0.01,

nonlocalmoves = True

)

]

As in the example in the last section, the oxygen dimer is generated with the generate physical system

function:

dimer = generate_physical_system(

type = ’dimer’,

dimer = (’O’,’O’),

separation = 1.2074*scale,

Lbox = 15.0,

units = ’A’,

net_spin = 2,

O = 6

)

Similar syntax can be used to generate crystal structures or to specify systems with arbi-
trary atomic configurations and simulation cells. Notice that a “scale” variable has been
introduced to stretch or compress the dimer.

Next, objects representing QMCPACK simulations are constructed with the generate qmcpack

function:

opt = generate_qmcpack(

identifier = ’opt’,

...

jastrows = [(’J1’,’bspline’,8,4.5),

(’J2’,’pade’,0.5,0.5)],

calculations = opt_calcs

)

sims.append(opt)

CHAPTER 3. TESTING PP DIMER PROPERTIES:
DMC WORKFLOW AUTOMATION 25

qmc = generate_qmcpack(

identifier = ’qmc’,

...

jastrows = [],

calculations = qmc_calcs,

dependencies = (opt,’jastrow’)

)

sims.append(qmc)

Shared details such as the run directory, job, pseudopotentials, and orbital file have been
omitted (...). The “opt” run will optimize a 1-body B-spline Jastrow with 8 knots having
a cutoff of 4.5 Bohr and a 2-body Padé Jastrow with up-up and up-down “B” parameters set
to 0.5 1/Bohr. The Jastrow list for the DMC run is empty and a new keyword is present:
dependencies. The usage of dependencies above indicates that the DMC run depends
on the optimization run for the Jastrow factor. The PS will submit the “opt” run first
and upon completion it will scan the output, select the optimal set of parameters, pass
the Jastrow information to the “qmc” run and then submit the DMC job. Independent job
workflows are submitted in parallel when permitted (we have explicitly prevented this for
this lab by setting queue size=1 for Vesta). No input files are written or job submissions
made until the “run project” function is reached.

As written, O dimer.py will only perform calculations at the equilibrium separation
distance of 1.2074 Angstrom. Modify the file now to perform DMC calculations across a
range of separation distances with each DMC run using the Jastrow factor optimized at
the equilibrium separation distance. The necessary Python for loop syntax should look
something like this:

sims = []

for scale in [1.00,0.90,0.95,1.05,1.10]:

...

dimer = ...

if scale==1.00:

opt = ...

...

#end if

qmc = ...

...

#end for

run_project(sims)

Note that the text inside the for loop and the if block must be indented by precisely four
spaces. If you use Emacs, changes in indentation can be performed easily with Cntrl-C >

CHAPTER 3. TESTING PP DIMER PROPERTIES:
DMC WORKFLOW AUTOMATION 26

and Cntrl-C < after highlighting a block of text (other editors should have similar func-
tionality). If you see something like “SyntaxError: invalid syntax” print to the screen
when you run O dimer.py later on, consult the completed file in oxygen dimer/reference.

The values of “scale” in the loop must be a subset of
[0.90,0.925,0.95,0.975,1.00,1.025,1.05,1.075,1.10] since orbital files have been
pre-generated with PWSCF for only these values. If other values are selected, the job will
be submitted but QMCPACK will fail when it attempts to read the non-existent O2.pwscf.h5
file (in later labs we will run PWSCF to generate the orbital files directly with the PS). Begin
with the reduced set of scale values shown above.

Change the “status only” parameter in the “settings” function to 1 and type “./O dimer.py”
at the command line. This will print the status of all simulations:

Project starting

checking for file collisions

loading cascade images

cascade 0 checking in

checking cascade dependencies

all simulation dependencies satisfied

cascade status

setup, sent_files, submitted, finished, got_output, analyzed

000000 opt ./scale_1.0

000000 qmc ./scale_1.0

000000 qmc ./scale_0.9

000000 qmc ./scale_0.95

000000 qmc ./scale_1.05

000000 qmc ./scale_1.1

setup, sent_files, submitted, finished, got_output, analyzed

In this case, a single independent simulation “cascade” (workflow) has been identified, con-
taining one “opt” and five dependent “qmc” runs. The six status flags (setup, sent files,
submitted, finished, got output, analyzed) each show 0, indicating that no work has
been done yet.

Now change “status only” back to 0, set “generate only” to 1, and run O dimer.py

again. This will perform a dry-run of all simulations. The dry-run should finish in about
20 seconds:

Project starting

checking for file collisions

loading cascade images

cascade 0 checking in

checking cascade dependencies

CHAPTER 3. TESTING PP DIMER PROPERTIES:
DMC WORKFLOW AUTOMATION 27

all simulation dependencies satisfied

starting runs:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

poll 0 memory 88.54 MB

Entering ./scale_1.0 0

writing input files 0 opt

Entering ./scale_1.0 0

sending required files 0 opt

submitting job 0 opt

Entering ./scale_1.0 1

Would have executed: qsub --mode script --env BG_SHAREDMEMSIZE=32 opt.qsub.in

poll 1 memory 88.54 MB

Entering ./scale_1.0 0

copying results 0 opt

Entering ./scale_1.0 0

analyzing 0 opt

poll 2 memory 88.87 MB

Entering ./scale_1.0 1

writing input files 1 qmc

Entering ./scale_1.0 1

sending required files 1 qmc

submitting job 1 qmc

...

Entering ./scale_1.0 2

Would have executed: qsub --mode script --env BG_SHAREDMEMSIZE=32 qmc.qsub.in

...

Project finished

The PS polls the simulation status every 3 seconds and sleeps in between. The “scale *”
directories should now contain several files:

scale_1.0

O2.pwscf.h5

O.BFD.xml

opt.in.xml

opt.qsub.in

qmc.in.xml

qmc.qsub.in



CHAPTER 3. TESTING PP DIMER PROPERTIES:
DMC WORKFLOW AUTOMATION 28

sim_opt

analyzer.p

input.p

sim.p

sim_qmc

analyzer.p

input.p

sim.p

Take a minute to inspect the generated input (opt.in.xml, qmc.in.xml) and submission
(opt.qsub.in, qmc.qsub.in) files. The pseudopotential file O.BFD.xml has been copied
into each local directory. Two additional directories have been created: sim opt and
sim qmc. The sim.p files in each directory contain the current status of each simulation. If
you run O dimer.py again, it should not attempt to rerun any of the simulations:

Project starting

checking for file collisions

loading cascade images

cascade 0 checking in

cascade 8 checking in

cascade 2 checking in

cascade 4 checking in

cascade 6 checking in

checking cascade dependencies

all simulation dependencies satisfied

starting runs:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

poll 0 memory 60.10 MB

Project finished

This way one can continue to add to the O dimer.py file (e.g. adding more separation
distances) without worrying about duplicate job submissions.

Let’s actually submit the optimization and DMC jobs now. Reset the state of the sim-
ulations by removing the sim.p files (“rm ./scale*/sim*/sim.p”), set “generate only”
to 0, and rerun O dimer.py. It should take about 15 minutes for all the jobs to complete.
You may wish to open another terminal to monitor the progress of the individual jobs while
the current terminal runs O dimer.py in the foreground. You can begin the first exercise
below once the optimization job completes.

CHAPTER 3. TESTING PP DIMER PROPERTIES:
DMC WORKFLOW AUTOMATION 29

Questions and Exercises

1. Evaluate the quality of the optimization at scale=1.0 using the qmca tool. Did the
optimization succeed? How does the variance compare with the neutral oxygen atom?
Is the wavefunction of similar quality to the atomic case?

2. Evaluate the traces of the local energy and the DMC walker population for each
separation distance with the qmca tool. Are there any anomalies in the runs? Is
the acceptance ratio reasonable? Is the wavefunction of similar quality across all
separation distances?

3. Use the dimer fit.py tool located in oxygen dimer to fit the oxygen dimer binding
curve. To get the binding energy of the dimer, we will need the DMC energy of
the atom. Before performing the fit, answer: What DMC timestep should be used
for the oxygen atom results? The tool accepts three arguments (“O dimer.py P N E

Eerr”), P is the prefix of the DMC input files (should be “qmc” at this point), N is the
order of the fit (use 2 to start), E and Eerr are your DMC total energy and error bar,
respectively for the oxygen atom (in eV). A plot of the dimer data will be displayed
and text output will show the DMC equilibrium bond length and binding energy as
well as experimental values. How accurately does your fit to the DMC data reproduce
the experimental values? What factors affect the accuracy of your results?

4. Refit your data with a fourth-order polynomial. How do your predictions change with
a fourth-order fit? Is a fourth-order fit appropriate for the available data?

5. Add the four remaining “scale” values to the list in O dimer.py that interpolate
between the original set. Perform the DMC calculations and redo the fits. How
accurately does your fit to the DMC data reproduce the experimental values? Should
this pseudopotential be used in production calculations?

6. (Optional) Perform optimization runs at the extremal separation distances corre-
sponding to scale=[0.90,1.10]. Are the individually optimized wavefunctions of
significantly better quality than the one imported from scale=1.00? Why? What
form of Jastrow factor might give an even better improvement?

4. (Optional) Running your system with
QMCPACK

This section covers a fairly simple route to get started on QMC calculations of an arbi-
trary system of interest using the Project Suite (PS) automation system to setup input files
and optionally perform the runs. The example provided in this section uses QM Espresso
(PWSCF) to generate the orbitals forming the Slater determinant part of the trial wavefunc-
tion. PWSCF is a natural choice for solid state systems and it can be used for surface/slab
and molecular systems as well, albeit at the price of describing additional vacuum space
with plane waves.

To start out with, you will need pseudopotentials (PP’s) for each element in your system
in both the UPF (PWSCF) and FSATOM/XML (QMCPACK) formats. A good place to
start is the Burkatzki-Filippi-Dolg (BFD) pseudopotential database
(http://www.burkatzki.com/pseudos/index.2.html), which we have already used in our
study of the oxygen atom. The database does not contain PP’s for the 4th and 5th row
transition metals or any of the lanthanides or actinides. If you need a PP that is not in
the BFD database, you may need to generate and test one manually (e.g. with OPIUM,
http://opium.sourceforge.net/). Otherwise, use ppconvert as outlined in section 2.1 to
obtain PP’s in the formats used by PWSCF and QMCPACK. Enter the your system lab
directory and place the converted PP’s in your system/pseudopotentials.

Before performing production calculations (more than just the initial setup in this sec-
tion) be sure to converge the plane wave energy cutoff in PWSCF as these PP’s can be
rather hard, sometimes requiring cutoffs in excess of 300 Ry. Depending on the system
under study, the amount of memory required to represent the orbitals (QMCPACK uses
3D B-splines) becomes prohibitive and one may be forced to search for softer PP’s.

Beyond pseudopotentials, all that is required to get started are the atomic positions and
the dimensions/shape of the simulation cell. The PS file example.py illustrates how to setup
PWSCF and QMCPACK input files by providing minimal information regarding the physi-
cal system (an 8-atom cubic cell of diamond in the example). Most of the contents should be
familiar from your experience with the automated calculations of the oxygen dimer binding
curve in section 3 (if you’ve skipped ahead you may want to skim that section for relevant in-
formation). The most important change is the expanded description of the physical system:

details of your physical system (diamond conventional cell below)

my_project_name = ’diamond_vmc’ # directory to perform runs

my_dft_pps = [’C.BFD.upf’] # pwscf pseudopotentials

my_qmc_pps = [’C.BFD.xml’] # qmcpack pseudopotentials

30

http://www.burkatzki.com/pseudos/index.2.html
http://opium.sourceforge.net/

CHAPTER 4. (OPTIONAL) RUNNING YOUR SYSTEM WITH QMCPACK 31

generate your system

units : ’A’/’B’ for Angstrom/Bohr

axes : simulation cell axes in cartesian coordinates (a1,a2,a3)

elem : list of atoms in the system

pos : corresponding atomic positions in cartesian coordinates

kgrid : Monkhorst-Pack grid

kshift : Monkhorst-Pack shift (between 0 and 0.5)

net_charge : system charge in units of e

net_spin : # of up spins - # of down spins

C = 4 : (pseudo) carbon has 4 valence electrons

my_system = generate_physical_system(

units = ’A’,

axes = [[3.57000000e+00, 0.00000000e+00, 0.00000000e+00],

[0.00000000e+00, 3.57000000e+00, 0.00000000e+00],

[0.00000000e+00, 0.00000000e+00, 3.57000000e+00]],

elem = [’C’,’C’,’C’,’C’,’C’,’C’,’C’,’C’],

pos = [[0.00000000e+00, 0.00000000e+00, 0.00000000e+00],

[8.92500000e-01, 8.92500000e-01, 8.92500000e-01],

[0.00000000e+00, 1.78500000e+00, 1.78500000e+00],

[8.92500000e-01, 2.67750000e+00, 2.67750000e+00],

[1.78500000e+00, 0.00000000e+00, 1.78500000e+00],

[2.67750000e+00, 8.92500000e-01, 2.67750000e+00],

[1.78500000e+00, 1.78500000e+00, 0.00000000e+00],

[2.67750000e+00, 2.67750000e+00, 8.92500000e-01]],

kgrid = (1,1,1),

kshift = (0,0,0),

net_charge = 0,

net_spin = 0,

C = 4 # one line like this for each atomic species

)

my_bconds = ’ppp’ # ppp/nnn for periodic/open BC’s in QMC

if nnn, center atoms about (a1+a2+a3)/2

If you have a system you would like to try with QMC, make a copy of example.py and
fill in the relevant information about the pseudopotentials, simulation cell axes, and atomic
species/positions. Otherwise, you can proceed with example.py as it is.

The other new aspects are two additional compute jobs to generate the orbitals with
PWSCF and convert them into the ESHDF format with pw2qmcpack.x:

scf run to generate orbitals

scf = generate_pwscf(

identifier = ’scf’,

CHAPTER 4. (OPTIONAL) RUNNING YOUR SYSTEM WITH QMCPACK 32

path = my_project_name,

job = Job(nodes=32,hours=2,app=pwscf),

input_type = ’scf’,

system = my_system,

pseudos = my_dft_pps,

input_dft = ’lda’,

ecut = 200, # PW energy cutoff in Ry

conv_thr = 1e-8,

mixing_beta = .7,

nosym = True,

wf_collect = True

)

conversion step to create h5 file with orbitals

p2q = generate_pw2qmcpack(

identifier = ’p2q’,

path = my_project_name,

job = Job(cores=1,hours=2,app=pw2qmcpack),

write_psir = False,

dependencies = (scf,’orbitals’)

)

Set “generate only” to 1 and type “./example.py” or similar to generate the input
files. All files will be written to “./diamond vmc” (“./[my project name]” if you have
changed “my project name” in the file). The input files for PWSCF, pw2qmcpack, and
QMCPACK are scf.in, pw2qmcpack.in, and vmc.in.xml, repectively. Take some time to
inspect the generated input files. If you have questions about the file contents, or run into
issues with the generation process, feel free to consult with a lab instructor.

If desired, you can submit the runs directly with example.py. To do this, first reset
the PS simulation record by typing “rm ./diamond vmc/sim*/sim.p” or similar and set
“generate only” back to 0. Next rerun example.py (you may want to redirect the text
output).

Alternatively the runs can be submitted by hand:

qsub --mode script --env BG_SHAREDMEMSIZE=32 scf.qsub.in

(wait until JOB DONE appears in scf.output)

qsub --mode script --env BG_SHAREDMEMSIZE=32 p2q.qsub.in

Once the conversion process has finished the orbitals should be located in the file
diamond vmc/pwscf output/pwscf.pwscf.h5. Open diamond vmc/vmc.in.xml and re-

CHAPTER 4. (OPTIONAL) RUNNING YOUR SYSTEM WITH QMCPACK 33

place “MISSING.h5” with “./pwscf output/pwscf.pwscf.h5”. Next submit the VMC
run:

qsub --mode script --env BG_SHAREDMEMSIZE=32 vmc.qsub.in

Note: If your system is large, the above process may not complete within the time
frame of this lab. Working with a stripped down (but relevant) example is a good idea for
exploratory runs.

Once the runs have finished, you may want to begin exploring Jastrow optimization and
DMC for your system. Example calculations are provided at the end of example.py in the
commented out text).

A. Basic Python constructs

Basic Python data types (int, float, str, tuple, list, array, dict, obj) and program-
ming constructs (if statements, for loops, functions w/ keyword arguments) are briefly
overviewed below. All examples can be executed interactively in Python. To do this,
type “python” at the command line and paste any of the shaded text below at the “>>>”
prompt. For more information about effective use of Python, consult the detailed online
documentation: https://docs.python.org/2/.

Intrinsic types: int, float, str

#this is a comment

i=5 # integer

f=3.6 # float

s=’quantum/monte/carlo’ # string

n=None # represents "nothing"

f+=1.4 # add-assign (-,*,/ also): 5.0

2**3 # raise to a power: 8

str(i) # int to string: ’5’

s+’/simulations’ # joining strings: ’quantum/monte/carlo/simulations’

’i={0}’.format(i) # format string: ’i=5’

Container types: tuple, list, array, dict, obj

from numpy import array # get array from numpy module

from generic import obj # get obj from generic module

t=(’A’,42,56,123.0) # tuple

l=[’B’,3.14,196] # list

a=array([1,2,3]) # array

d={’a’:5,’b’:6} # dict

34

https://docs.python.org/2/

APPENDIX A. BASIC PYTHON CONSTRUCTS 35

o=obj(a=5,b=6) # obj

printing

print t # (’A’, 42, 56, 123.0)

print l # [’B’, 3.1400000000000001, 196]

print a # [1 2 3]

print d # {’a’: 5, ’b’: 6}

print o # a = 5

b = 6

len(t),len(l),len(a),len(d),len(o) #number of elements: (4, 3, 3, 2, 2)

t[0],l[0],a[0],d[’a’],o.a #element access: (’A’, ’B’, 1, 5, 5)

s = array([0,1,2,3,4]) # slices: works for tuple, list, array

s[:] # array([0, 1, 2, 3, 4])

s[2:] # array([2, 3, 4])

s[:2] # array([0, 1])

s[1:4] # array([1, 2, 3])

s[0:5:2] # array([0, 2, 4])

list operations

l2 = list(l) # make independent copy

l.append(4) # add new element: [’B’, 3.14, 196, 4]

l+[5,6,7] # addition: [’B’, 3.14, 196, 4, 5, 6, 7]

3*[0,1] # multiplication: [0, 1, 0, 1, 0, 1]

b=array([5,6,7]) # array operations

a2 = a.copy() # make independent copy

a+b # addition: array([6, 8, 10])

a+3 # addition: array([4, 5, 6])

a*b # multiplication: array([5, 12, 21])

3*a # multiplication: array([3, 6, 9])

dict/obj operations

d2 = d.copy() # make independent copy

d[’c’] = 7 # add/assign element

d.keys() # get element names: [’a’, ’c’, ’b’]

d.values() # get element values: [5, 7, 6]

obj-specific operations

o.c = 7 # add/assign element

o.set(c=7,d=8) # add/assign multiple elements

APPENDIX A. BASIC PYTHON CONSTRUCTS 36

An important feature of Python to be aware of is that assignment is most often by reference,
i.e. new values are not always created. This point is illustrated below with an obj instance,
but it also holds for list, array, dict, and others.

>>> o = obj(a=5,b=6)

>>>

>>> p=o

>>>

>>> p.a=7

>>>

>>> print o

a = 7

b = 6

>>> q=o.copy()

>>>

>>> q.a=9

>>>

>>> print o

a = 7

b = 6

Here p is just another name for o, while q is a fully independent copy of it.

Conditional Statements: if/elif/else

a = 5

if a is None:

print ’a is None’

elif a==4:

print ’a is 4’

elif a<=6 and a>2:

print ’a is in the range (2,6]’

elif a<-1 or a>26:

print ’a is not in the range [-1,26]’

elif a!=10:

print ’a is not 10’

else:

print ’a is 10’

APPENDIX A. BASIC PYTHON CONSTRUCTS 37

#end if

The “#end if” is not part of Python syntax, but you will see text like this throughout the
Project Suite for clear encapsulation.

Iteration: for

from generic import obj

l = [1,2,3]

m = [4,5,6]

s = 0

for i in range(len(l)): # loop over list indices

s += l[i] + m[i]

#end for

print s # s is 21

s = 0

for v in l: # loop over list elements

s += v

#end for

print s # s is 6

o = obj(a=5,b=6)

s = 0

for v in o: # loop over obj elements

s += v

#end for

print s # s is 11

d = {’a’:5,’b’:4}

for n,v in o.iteritems():# loop over name/value pairs in obj

d[n] += v

#end for

print d # d is {’a’: 10, ’b’: 10}

APPENDIX A. BASIC PYTHON CONSTRUCTS 38

Functions: def, argument syntax

def f(a,b,c=5): # basic function, c has a default value

print a,b,c

#end def f

f(1,b=2) # prints: 1 2 5

def f(*args,**kwargs): # general function, returns nothing

print args # args: tuple of positional arguments

print kwargs # kwargs: dict of keyword arguments

#end def f

f(’s’,(1,2),a=3,b=’t’) # 2 pos., 2 kw. args, prints:

(’s’, (1, 2))

{’a’: 3, ’b’: ’t’}

l = [0,1,2]

f(*l,a=6) # pos. args from list, 1 kw. arg, prints:

(0, 1, 2)

{’a’: 6}

o = obj(a=5,b=6)

f(*l,**o) # pos./kw. args from list/obj, prints:

(0, 1, 2)

{’a’: 5, ’b’: 6}

f(# indented kw. args, prints

blocks = 200, # ()

steps = 10, # {’steps’: 10, ’blocks’: 200, ’timestep’: 0.01}

timestep = 0.01

)

o = obj(# obj w/ indented kw. args

blocks = 100,

steps = 5,

timestep = 0.02

)

f(**o) # kw. args from obj, prints:

()

{’timestep’: 0.02, ’blocks’: 100, ’steps’: 5}

	Overview
	Getting the most out of this lab
	Lab directories and files
	The QMCPACK input file and XML

	Testing PP atomic properties:optimization, diffusion Monte Carlo
	Getting and converting a pseudopotential
	Optimization walkthrough: neutral O atom
	DMC timestep extrapolation I: neutral O atom
	DMC timestep extrapolation II: IP of oxygen

	Testing PP dimer properties:DMC workflow automation
	Example Project Suite input
	Automated binding curve of the oxygen dimer

	(Optional) Running your system with QMCPACK
	Basic Python constructs

