Random Walks, Monte Carlo
and Errors

What is a simulation?

Monte Carlo, random walks and Markov Chains
Metropolis rejection method

Error estimates



Quantum Monte Carlo

We need to use simulation techniques to “solve” many-body quantum
problems just as you need them classically.

Both the wavefunction and expectation values are determined by the
simulations. Correlation built in from the start.

Based on Feynman’s imaginary time path integrals.
QMC gives most accurate method for general quantum many-body systems.

QMC determined electronic energy is the standard for approximate LDA
calculations. (but fermion sign problem!)

Path Integral Methods provide a exact way to include effects of ionic zero
point motion (include all anharmonic effects)

A variety of stochastic QMC methods:
— Variational Monte Carlo VMC (T=0)
— Projector Monte Carlo (T=0)
* Diffusion MC (DMC)
* Reptation MC (RQMC)
— Path Integral Monte Carlo (PIMC) ( T>0)
— Coupled Electron-Ion Monte Carlo (CEIMC)
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A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

I. INTRODUCTION

HE purpose of this paper is to describe a general
method, suitable for fast electronic computing
machines, of calculating the properties of any substance
which may be considered as composed of interacting
individual molecules. Classical statistics is assumed,
only two-body forces are considered, and the potential
field of a molecule is assumed spherically symmetric.
These are the usual assumptions made in theories of
liquids. Subject to the above assumptions, the method
is not restricted to any range of temperature or density.
This paper will also present results of a preliminary two-
dimensional calculation for the rigid-sphere system.
Work on the two-dimensional case with a Lennard-
Jones potential is in progress and will be reported in a
later paper. Also, the problem in three dimensions is
being investigated.
* Now at the Radiation Laboratory of the University of Cali-
fornia, Livermore, California.

II. THE GENERAL METHOD FOR AN ARBITRARY
POTENTIAL BETWEEN THE PARTICLES

In order to reduce the problem to a feasible size for
numerical work, we can, of course, consider only a finite
number of particles. This number N may be as high as
several hundred. Our system consists of a squaret con-
taining N particles. In order to minimize the surface
effects we suppose the complete substance to be periodic,
consisting of many such squares, each square contain-
ing N particles in the same configuration. Thus we
define d 45, the minimum distance between particles 4
and B, as the shortest distance between 4 and any of
the particles B, of which there is one in each of the
squares which comprise the complete substance. If we
have a potential which falls off rapidly with distance,
there will be at most one of the distances AB which
can make a substantial contribution; hence we need
consider only the minimum distance d 5.

t We will use the two-dimensional nomenclature here since it
is easier to visualize, The extension to three dimensions is obvious.



Markov chain MC or Random Walk

Markov chain is a random walk through phase space:
S; P8, PS; S, ...
Here “s” is the state of the system.
ALL QMC 1s some type of Markov process. VMC is the simplest.

The transition probability is P(s, s, ;) a stochastic matrix

P(s —=s")=0 EP(S%S')=1

In a Markov chain, the distribution of s ., depends only on s, (by
definition). 4 drunkard has no memory/

Let f (s) be the probablhty after “n” steps. It evolves according to a
“master equation.

f ") =2 1f()PisDs’)
fr1+1 =P fn

The stationary states are eigenfunctions of P: P f=ef



Ergodicity

» Typically simulations are assumed to be ergodic:

— after a certain time the system loses memory of its initial state, S,
except possibly for certain conserved quantities such as the energy,
momentum.

— The correlation time x(which we will define soon) is the number of
iterations 1t takes to forget.

— If you look at (non-conserved) properties for times much longer «,
they are unpredictable as if randomly sampled from some
distribution.

—Ergodicity is often easy to prove for the random transition but usually
difficult for the deterministic simulation.

The assumption of egodicity 1s used for:
« Warm up period at the beginning (or equilibration)

* To get independent samples for computing errors.



Metropolis algorithm

Three key concepts:

1. Sample by using an ergodic random walk.
2. Determine equilibrium state by using detailed balance.
3. Achieve detailed balance by using rejections.

Detailed balance nnt(s) P(s s’ ) =n(s )P (s’ =Ds).

Put 7 (s) into the master equation. (Or sum above Eq. on s.)
X w(s)P(s DPs’) =a(s )X, P(s" Ds)=n(s)
 Hence, 7(s) is an eigenfunction.

« IfP(s 2s’)is ergodic, 7 (s) is unique steady state solution.



Rejection Method

Metropolis achieves detailed balance by rejecting moves.
General Approach:
1. Choose distribution to sample, e.g., n(s) = exp[-BH(s)]/Z
2. Impose detailed balance on transition: K(s=2s’ ) = K(s’ =s)
where K(s=2s’ ) = n(s) P(s=2s’)
(probability of being at s) * (probability of going to s’).
3. Break up transition probability into sampling and acceptance:
P(s=s’) = T(s=2>s’) A(s=2>s’)
(probability of generating s’ from s) * (probability of accepting move)

The optimal acceptance probability that gives detailed balance is:

A(s > s)= min[l,T (S‘%S)n(s‘)] =min[], E(S')]
T (s—s) 7 (s) T (s)
\

Normalization of n(s) 1s not needed or used! If T is constant!



The “Classic” Metropolis method

Metropolis-Rosenbluth? -Teller’ (1953) method is:

« Move fromstos with probability T(s=»s’ )= constant
» Accept with move with probability:

A(s>s’)=min [1, exp (- (E(s’)-E(s))/kzT) |

« Repeat many times
* Given ergodicity, the distribution of s will be the canonical

distribution: n(s) = exp(-E(s)/kgT)/Z

 Convergence is guaranteed but the rate is not!



Picture of Metropolis Rejection
e-PAE

.................... N

Always
Accept

Accept

AE

 If AE <0, it lowers the system energy => accept.

Otherwise

* Generate UDRN u, on (0,1)

« Compare u, to e PAE: If u_ < ePAE accept.
If u, > e PAE reject.



How to sample

S new =S old+ A (sprng - 0.5)

Uniform distribution in a cube of side “A”.

Note: It is more efficient to move one particle at a time because only the energy
of that particle comes in and the acceptance ratio will be larger.

A(s = s') =exp[-B(V(s) =V (s))]
=exp[=f 2 (v(r;'=rj) = v(r; = 1j))]

#1
/ For V with cut-off range, difference is local.



MONTE CARLO CODE

call initstate(s_old) '

E old = action(s old)

LOOP/{
call sample(s_old,s new,T new,l)
E new = action(s_new) -
call sample(s_new,s_old,T_old_Q) "
A=exp(-E new+E old) T old/T |new
1f(A.gt.sprng()) { > —

s old=s new
— — /
E old=E new /

naccept=naccept+1}

call averages(s old) }




o Always measure acceptance ratio. Adjust ratio to roughly
0.5 by varying the “step size”. RULE: 0.1<a.r.<0.9

e A 20% acceptance ratio actually achieves better diffusion
than a 50% acceptance ratio /n this example.
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Estimated Errors

In what sense do we calculate exact properties? Answer: 1f we average long
enough the error goes to zero, the errors of the simulation are controlled.

Next, how accurate 1s the estimate of the exact value?
— Simulation results without error bars are only suggestive.
« Without error bars one has no idea of its significance.

* You should understand formulas and be able to make an “eye-
ball” estimate.

Error bar: the estimated error in the estimated mean.
— Error estimates based on Gauss’ Central Limit Theorem.
— Average of statistical processes has normal (Gaussian) distribution.

— Error bars: square root of the variance of the distribution divided by
the number of uncorrelated steps.

Trace of MD_PE
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Central Limit Theorem (Gauss)

Sample N independent values from F*(x)dx, i.e. (X, X,, X5 ... ,Xy).

Calculate mean as y =(I/N). x,.

What is the pdf of mean? Solve by fourier transforms

o > * ikx N
L . c(k)=<é >=f dx F (x)e™ c (k)y=c (k/N
Characteristic function. (k) —o0 (x) y( )=c.( )
- ik ~k*1c, | 2N =ik 163 /6N ..
lm, ., c/(k)=e"""" ’
Cumulants: Mean = k; Variance= k, Skewness = k; Kurtosis= k,

The n=1 moment remains invariant but the rest get reduced by higher powers of N.

Given enough averaging almost anything becomes a Gaussian
distribution.

standard error(y)=o0= %

N(y - K1)2
2K,

P(y) = (N/2JZ'K2)1/2 exp [—




Annroach to normalitv
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Figure 1. Distributions of sums of uniform random numbers, each compared with the
normal distribution. (@) Ri, the uniform distribution. (b) R3, the sum of twe
uniformly distributed numbers. (c) Rs, the sum of three uniformly distributed
numbers. (d) Ris, the sum of twelve uniformly distributed numbers.



Conditions on Central Limit Theorem
[ =<X" >=f_oo dx F (x)x"

*  We need the first three moments to exist.
— If, is not defined =» not a pdf
— IfI; does not exist =» not mathematically well-posed.
— If'I, does not exist =¥ infinite variance.
— Important to know if variance is finite for simulations.

 Divergence could happen because of tails of distribution

I, =<x’ >=f_oo dx F (x)x°

weneed gim . XF'(x) =0

X—>+00

« OR Divergence because of singular behavior of F* at finite x:

We need: lim xF" (x)—0

x—0



Estimating Errors
{at} O<t=N

Uncorrelated data
~1/2

[ E da’

N(N -1)
oa, =a, -a
D) 1/2
Correlated data o N I(Z(at -a)
error(a)=((@-(a))') " - T

K=1+ 22 5<a 5a>0 = correlation time

Problem: how to cut off the summation for «.

Blocking method: average together data in blocks longer than the
correlation time until it is uncorrelated.



Correlated data
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Estimate ofl erTors
,\1/2 KE(at—c_l)z — |
(@-(a))') z< NV a=ﬁ2at

K=1+2 C(t) = correlation time = Zf% C(t)
0

error (C_l )

<(5a oa > . .
C (‘t — 1 ) =autocorrelation function




Statistical vs. Systematic Errors

What are statistical errors?
— Statistical error measures the distribution of the averages about their avg.
— Statistical error can be reduced by extending or repeating runs, increase N.

K
standard error(y)=0= WQ
The efficiency is how we measure the rate of convergence of the

statistical errors. 1

C =
To
— It depends on the computer, the algorithm, the property etc. But not on the
length of the run.

What are systematic errors ?

— Systematic error measures the other errors. Even if you sample forever the
systematic errors remain constant.

— Systematic error i1s caused by round-off error, non-linearities, bugs, non-
equilibrium, etc.



Statistical Vocabulary

- Trace of A(t):

- Equilibration time.

- Histogram of values of A ( P(A)).
- Mean of A (a).

- Variance of A (v).

- estimate of the mean:

- estimate of the variance

- Autocorrelation of A (C(t)).

- Correlation time k .

- The (estimated) error of the (estimated) mean (s ).

- Efficiency [= 1/(CPU time * error ?)]




Statistical thinking is slippery: be careful

“Shouldn’ t the energy settle down to a constant”
— NO. It fluctuates forever. It is the overall mean which converges.

Because data is correlated, the central limit theorem 1s invalid

“The cumulative energy has converged”.

— BEWARE. Even pathological cases have smooth cumulative energy
curves.

“Data set A differs from B by 2 error bars. Therefore it must be
different” .

— This is normal in 1 out of 10 cases. [f things agree too well, something is
wrong!
“My procedure is too complicated to compute errors’

— NO! Run your whole code 10 times and compute the mean and variance
from the different runs. If a quantity 1s important, you MUST estimate its
errors.



Recap: problems with estimating errors

Any good simulation quotes systematic and statistical errors for
anything important.

The error and mean are simultaneously determined from the same
data. HOW?

Central limit theorem: the distribution of an average approaches a
normal distribution (if the variance is finite).

— One standard deviation means ~2/3 of the time the correct answer is
within ¢ of the sample average.

Problem in simulations is that data is correlated in time.
— It takes a “correlation” time x to be “ergodic”
— Correction errors for autocorrelation.
— throw away the initial transient.

We need about 25 independent data points to estimate errors. (so that
the error of the error is only 1/sqrt(N)= 20%)



