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VMC Review

VMC: Calculate matrix elements with a given wave-function using MC integration
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Wave-function Optimization

Wave-function optimization used to be a complicated and time
consuming task. Recent developments led to robust and
efficient methods, e.g. linear method.

QMC can use complicated wave-functions!

— Include terms which depend on inter-electron distances, three-body
terms, etc.

* Very hard in deterministic methods, leads to high-dimensional integrals!

Typical strategy:

— Add variational freedom to the trial wave-function.
— Optimize with VMC.

— If result is not accurate enough, increase flexibility of your trial wave-function.



Type of variational parameters

Standard wave-function form: WT(?) — A(?)eJ(F)
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Anti-symmetric term Multi-Particle Correlation
* Typically a linear combination of Slater * Best known as the Jastrow
Determinants of single particle orbitals * Symmetric under particle exchange
* Anti-symmetric under particle * Does not affect the nodes!
exchange * In principle, only affects efficiency in
* Variational parameters can include: DMC! (Very important nonetheless)
* Linear coefficients
* Parameters in the single particle J(7) = Eue—l (F) + Eue_e(?;”?j) .
orbitals ; .y
* Parameters in the basis set
* gaussian exponents * Many forms of variational parameters!

More on trial wave-functions tomorrow!



Cost Functions — What to optimize?

* 2 main alternatives: Energy and variance minimization

— For a given wave-function form, both conditions can lead to different
wave-functions.

e Parameters that lead to energy minimum do not lead to variance minimum.
— Energy minimization is typically preferred, but it is more challenging.
— Variance minimization is usually faster and more stable.

— Other conditions can be used, e.g. maximize overlap with exact wave-
function, minimize mean absolute difference of local energy, etc.

* Most codes (including QMCPACK) can optimize a mixture of
energy and variance.

Cost = aE + o’



Optimization Methods

Gradient and hessian of the cost function Derivatives of the wave-function
JC(a 20(G .. [d¥(a) oW
g = @) h.(d,) = o Cla) ¥ (a) =(— W (a) = (@)
da; ). ’ dada; | oa; ). dagda; |
—f+] —t —t
Steepest Descents a =a —-Yg

* Will converge to the minimum, but slowly.

* Different type of parameters vary on very different length scales
® linear parameters in the determinant expansion vs parameters in the exponent

* Small values of ¥ are typically required for smooth

convergence.

* No need for hessians!



Optimization Methods

Newton’s Method

1 -
C(a) =C(ﬁo)+§t . AZHEA&'h' Aa

* Efficient method, typically requires less iterations than SD.
* Needs second derivatives!

® These can be hard to implement, many potential cross terms!



Linear Method

1. Expand the wave-function to first order around the current set of parameters
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2. Minimization of the linear energy leads to a generalized eigenvalue problem:
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J. Toulouse and C. Umrigar, “Optimization of quantum Monte Carlo wave functions by energy minimization “,). Chem. Phys. 126, 084102 (2007).



Gradients and Hessian of the VMC Energy
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Gradient of the
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Notice that <EL’i(I§)> =0

E, (R)= JE, (R) All quantities necessary to construct the hessian
b and gradients can be easily calculated from a
standard VMC calculation.

i

J. Toulouse and C. Umrigar, “Optimization of quantum Monte Carlo wave functions by energy minimization “,). Chem. Phys. 126, 084102 (2007).



Hamiltonian and Overlap Matrices
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Non-symmetric H matrix leads to lower variance!

J. Toulouse and C. Umrigar, “Optimization of quantum Monte Carlo wave functions by energy minimization “,). Chem. Phys. 126, 084102 (2007).



Solving 1-D Minimization Problem

* Due to the strong non-linearity of many parameter types, it is usually necessary to
perform a 1-D minimization along the direction produced by the previous
methods. Some options:

— Use a fixed (and small) time-step.
* Leads to very slow convergence.

— Evaluate the cost function at various points along the chosen direction and fit a
polynomial

* Cost function can be evaluated with a short VMC calculation, with correlated sampling or using
reweighting.

— Perform a direct line-minimization using reweighting.
* Careful with wave-function overlap (reweighting efficiency) when parameters get far.
* C. Umrigar, et al. suggest various rescaling procedures to obtain reasonable step
lengths, thus avoiding the line minimization step.

— C.Umrigar, et al., “Alleviation of the Fermion-Sign Problem by Optimization of Many-Body Wave
Functions” PRL 98, 110201 (2007).



Reweighting

Monte Carlo Integration

é

The points in the set {x,} are distributed according to g(x).

1
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What happens when we want to perform the integral with respect to a different
distribution g’(x), but we already have a set of points sampled from g(x).
Can we estimate the new integral using the old set? YES, use reweighting!!!
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The efficiency of the procedure will depend on how close g and g’ are.
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QMCPACK Specifics - |

The linear method is the recommended optimization algorithm in QMCPACK.
— Robust: Can handle all type of parameters efficiently.

— Fast and simple: Only first derivatives of the wave-function and local energy are needed.

Generate new sample No

Outer — >

VMC Calculation Loop Finish
» Generates sample of configurations

I*

Optimization Step Yes
* Calculate direction of vector with
linear method \eEen
* Calculate magnitude of change Loop
— rescaling No
— quartic fit with reweighting
—line minimization with reweighting

Repeat optimization with same sample



QMCPACK Specifics — Sample XML Block

/r Outer loop: Redo optimization with new sample
<loop max="1@"
<gmc method="1linear" move="pbyp" checkpoint="-1" gpu="no">

parameter name="blocks"> 10 </parameter>

parameter name="warmupsteps"'"> 25 </parameter>

parameter name="steps"> 1 </parameter> - VMC parameters
parameter name="substeps"> 20 </parameter>

parameter name="timestep"> 0.5 </parameter>

parameter name= ”famples“> 10240 </paramete -

cost nam energy" 5 </cost

i

- )
<cost name=' unrewelghtecvarlance > 0.
<cost name=' rewelghtecvarlance 0. :
ter useDrift"> vyes </parameter>

ame= “blgchange >10.0</parameter>

. é </ USL~> .
@ </cost> — Cost function
95 </ .

|
pare N
<estimator name= 'LocalEnergy“ hdf5="no" />
-ameter name="usebuffer"> yes </parameter>
- name= nonlocalpp > yes </parameters ()pthrﬂzatk)n

parameter name="MinMethod">quartic</parameter=

— A e parameters
parameter na*P=”allow8001fference”> 1.0e-5 </parameter>

parameter name="stepsize"> .15 </parameter>

i

i

d
rameter name="exp@">-6</parameter>

i

i

i

meter name='"nstabilizers"> 1 </parameter>



QMCPACK Specifics

* Important parameters:
— bigchange: (default 50.0) largest parameter change allowed
— usebuffer: (default “no”) Save useful information during VMC
— nonlocalpp: (default “no”) Include non-local energy on 1-D min
— MinMethod: (default “quartic”) Method to calculate magnitude of
parameter change
—quartic: fit quartic polynomial to 4 values of the cost function
obtained using reweighting along chosen direction
—linemin: direct line minimization using reweighting
— rescale: no 1-D minimization. Uses Umrigar’s suggestions.
— stepsize: (default 0.25) step size in either quartic or linemin methods.
— alloweddifference: (default 1e-4) Allowed increased in energy
— exp0: (default -16.0) Initial value for stabilizer (shift to diagonal of H)
—Actual value of stabilizer is 10”exp0
—nstabilizers: (default 3) Number of stabilizers to try
— stabilizaterScale: (default 2.0) Increase in value of exp0 between
iterations.
— max_its: (default 1) number of inner loops with same sample



QMCPACK Specifics

* Important parameters:
— minwalkers: (default 0.3) minimum value allowed for the ratio of effective
samples to actual number of walkers in a reweighting step. The optimization
will stop if the effective number of walkers in any reweighting calculation
drops below this value. Last set of acceptable parameters are kept.
—maxWeight: (defaul 1e6) Maximum weight allowed in reweighting. Any
weight above this value will be reset to this value.

* Recommendations:
— Set samples to equal to (#threads)*blocks.
— Set steps to 1. Use substeps to control correlation between samples.
— For cases where equilibration is slow, increase both substeps and
warmupsteps.
—For hard cases (e.g. simultaneous optimization of long MSD and 3-Body J),
set exp0 to 0 and do a single inner iteration (max_its=1) per sample of
configurations.



Examples from literature

Simultaneous optimization of
Jastrow, CSF and orbital
parameters.

* Robust and automatic

e Little need for human
intervention

i | | | | T T
-11.06 —
207 7Y C2 . ' ' '
é 07 F I
~ 108 _-?_’
[3) —
E 23 -11.08
« - :{
E 109} = TE - =
2 -11.09F
E.Q 1 1 1 1 1 1
& 2 3 4 5 6 7
a ok EN Iteration
e
1.1 -
| L 1 | | I 1
0 1 2 3 4 5 6
Iteration

* Convergence to mHa accuracy with
less than 10 iterations

e Can recover energy in large MSD
expansions!
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C.Umrigar, et al., “Alleviation of the Fermion-Sign Problem by Optimization of Many-Body Wave Functions” PRL 98, 110201 (2007).
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