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Lensing Geometry & Lensing Equation
Narayan & Blandford 1996

β=ϑ-α  
A=∂β⁄∂ϑ=(          )1-κ-ϒ1, -ϒ2

-ϒ2,1-κ+ϒ1

βi=Aijϑj

βi=Aijϑj+(1/2)Dijkϑjϑk

Bacon et al 2006 



Weak Lensing Subclass

Cluster lensing in a deeper survey SUBARU, 
CFHTLens, HST...

Galaxy-galaxy lensing



Cluster Lensing

Oguri et al 2010

4 M. Oguri et al.

Figure 1. Left panel: An example of our weak lensing measurement for A2390. The size of Each panel is 12′×12′. The stick in each 1′×′1
pixel shows the distortion field estimated from background galaxy images contained within the pixel, where a background galaxy image
is deformed along the stick direction, and the length is proportional to the shear amplitude. The shear field in this panel is smoothed
with a Gaussian with the full width at half maximum of " 1.6′ for illustrative purpose. Overplotted is the surface mass density map
reconstructed from the weak lensing shear measurement (see Okabe et al. 2010). North is up and East is left. Right panel: The shear field
predicted by our best-fit elliptical NFW model (see also Figure 2 and Table 1), while the contours are the isodensity map. The best-fit
ellipticity of the projected mass density is e ≡ 1− b/a = 0.598.

we can construct an elliptical lens model simply by intro-
ducing an ellipticity in the isodensity contour. Specifically,
we adopt the following mass model in our analysis:

κ(x, y) = κsph(ζ), (4)

ζ2 =
x′2

1− e
+ (1− e)y′2, (5)

x′ = x cos θe + y sin θe, (6)

y′ = −x sin θe + y cos θe, (7)

where κsph(r) is the radial convergence profile for the spher-
ical NFW profile (e.g., Bartelmann 1996). Here the coordi-
nate origin is taken as the halo centre (xc, yc). The halo
ellipticity e is related with the major (a) and minor (b) axis
lengths of the isodensity contour as e = 1 − b/a. Through-
out the paper we adopt the coordinate system with the
x- and y-axes being aligned with West and North respec-
tively. With this coordinate system the position angle θe is
measured East of North. The lensing shear is computed by
solving the two-dimensional Poisson equation whose source
term is given by the convergence κ(x, y), as described in
Schramm (1990). We note that this elliptical model includes
a triaxial halo model which better describes haloes in N-
body simulations than the spherical model (Jing & Suto
2002; Kasun & Evrard 2005; Allgood et al. 2006), because
the convergence map of a triaxial halo has elliptical iso-
density contours when projected along arbitrary directions
(Oguri et al. 2003; Oguri & Keeton 2004).

In summary, the elliptical NFW model is specified by 6
model parameters:

p ≡ {Mvir, cvir, e, θe, xc, yc} . (8)

Unless otherwise specified, we adopt the virial overdensity
∆vir # 110 (with respect to the critical density of the uni-
verse) computed using the spherical collapse model to define
the mass Mvir and the concentration parameter cvir.

2.4 2D weak lensing fitting

The two-dimensional pixelised distortion field described in
§ 2.2 can be compared with the two-dimensional mass model
in § 2.3 in order to constrain properties of halo mass distri-
bution including the halo ellipticity. In this paper we employ
the χ2 fitting given as

χ2 =

2
∑

α,β=1

Npixel
∑

k,l=1

[gα(θk)− gmα (θk;p)]
[

C
−1
]

αβ,kl

×
[

gβ(θl)− gmβ (θl;p)
]

, (9)

where the indices α and β run over the two components
of distortion (α,β = 1, 2) and the indices k and l denote
the pixel position (k, l = 1, . . . , Npixel). The matrix C de-
notes the error covariance matrix and C−1 is the inverse
matrix (see below).The best-fit model parameters are found
by minimizing the χ2 value given the distortion data.

For the covariance matrix we include two contributions:
the intrinsic ellipticity noise, which is the primary source,
and the cosmic shear contamination arising from large-scale
structures at different redshifts, but along the same line of
sight. The covariance matrix is expressed as

c© RAS, MNRAS 000, 1–17
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Fig. 1.— Left: Weak lensing profiles ∆Σ(R) for 12 bins of optical richness, N200. Right: ∆Σ(R) for 16 i-band luminosity bins, L200.

TABLE 2
16 L200 bins

Bin number L200(1010h−2L") Number of clusters per bin

1 5 - 6.24 19618
2 6.24 - 7.8 18597
3 7.8 - 9.74 16042
4 9.74 - 12.2 12269
5 12.2- 15.2 9010
6 15.2 - 19.0 6152
7 19.0 - 23.7 4164
8 23.7 - 29.6 2666
9 29.6 - 36.9 1703
10 36.9 - 46.1 1042
11 46.1 - 57.6 638
12 57.6 - 71.9 344
13 71.9 - 89.8 210
14 89.8 - 112.1 108
15 112.1 - 140 49
16 140 - 450 46

Note. — The catalog is also divided into 16 L200 richness
bins. This table shows the boundaries of L200 values and the
number of clusters for each bin.

Sheldon et al. (2004) to obtain the galaxy-mass correla-
tion function from galaxy-galaxy lensing measurements.
Here, we provide a brief overview of the methods.

The mean excess 3D density profile ∆ρ(r) around a
set of clusters with a given observable O (e.g., rich-
ness or luminosity) is best thought of in terms of the
cluster–mass two-point correlation function, ξcm, since
∆ρ(r) = ρ̄ ξcm(r), where ρ̄ is the mean density of the Uni-
verse. By the assumptions of spatial homogeneity and
isotropy, ξcm depends only on the magnitude of the sep-
aration, r, not on direction. As a consequence, the mean
density profile ∆ρ(r) should be very nearly spherically
symmetric. Note that this is a purely statistical state-
ment: we do not assume that individual cluster density

profiles are spherically symmetric. The spherical sym-
metry of the average density profile enables the inversion
of the stacked lensing signal ∆Σ(R) to the 3D density
∆ρ(R) and the aperture mass M(R). By contrast, weak
lensing measurements of individual clusters can only be
used to reconstruct the projected 2D mass density, Σ(#x),
since lensing is produced by all of the mass projected
along the line of sight.

The mean 3D density profile is obtained as an integral
of the derivative of the shear profile ∆Σ(R) through a
purely geometric relation,

∆ρ(r) =
1

π

∫ ∞

r

dR
−Σ′(R)√
R2 − r2

, (1)

where a prime denotes a derivative with respect to R.
The lensing data ∆Σ enters here since it can be shown
that

− Σ′(R) = ∆Σ′(R) + 2∆Σ(R)/R . (2)

The 3D mass profile is given in terms of ∆Σ(R) and
∆ρ(R) as

M(R) = πR2∆Σ(R) + 2π

∫ ∞

R

dr r ∆ρ(r) ×
[

R2

√
r2 − R2

− 2
(
r −

√
r2 − R2

)]
. (3)

In practice, these integrals must be truncated at some
maximum radius, Rmax, the largest scale at which one
has lensing data (30h−1 Mpc for our data). The uncer-
tainty from this truncation is related to the mass-sheet
degeneracy. Due to the steepness of the cluster profiles
we infer in this paper, this truncation creates only a few
percent uncertainty in the last few radial bins of both
density or mass and virtually none in bins at smaller
radii. Complete details of the procedure are given in
Johnston et al. (2007).
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Fig. 2.— Left: Inverted mean density profiles, ∆ρ(r), for the 12 N200 richness bins shown in Fig. 1. Right: Inverted ∆ρ(r) profiles for
the 16 L200 richness bins shown in Fig. 1.
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Fig. 3.— Left: Inverted 3D aperture mass profiles, M(r), for the 12 N200 richness bins. The dotted blue diagonal line in each panel
denotes 200 ρc 4/3 π r3 (see Eqn. 4); this crosses the mass profile at r200 and M200, which are indicated with the dashed red vertical and
horizontal lines. Right: Inverted 3D aperture mass profiles, M(r), for the 16 L200 richness bins.

Johnston et al 2007



Ellipticity parameters
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How to measure & How weak
eobs=eint+2ϒTR, R~1-<e2>

Assuming an isotropic distribution of galaxy shape
<eobs>=2R<ϒT>



Poisson Noise
PN~<eobs>=0±0.14/√N

Num~1000,PN~0.0044
SN~1σ for a typical 

shear value

Num~6x105, 
PN~0.00018

Num~8600,
PN~0.0015

In the absence of other 
systematics !!,However... ...



Systematics

Mandelbaum et al 2005

Systematic errors in weak lensing 9

Table 3. Shear calibration biases and other parameters for the various source samples, at the 2σ level.

Sample r < 21 r > 21 LRG
fexp 0.59 0.58 0.33
erms(exp) 0.39 0.41 0.41
erms(deV) 0.38 0.42 0.37

Calibration bias (per cent)
PSF dilution [−2.2,+2.9] [−2.2,+4.0] [−2.8,+3.9]
PSF reconstruction ±2.1 ±2.4 ±2.5
Selection bias [0, 5.7] [0, 10.3] [0, 11.1]
Shear responsivity error [0.0, 1.7] [0.0, 1.7] [0.0, 1.7]
Noise rectification [−1.0, 0] [−3.8, 0] [−1.2, 0]

Total 2σ δγ/γ (per cent) [−5,+12] [−8,+18] [−6,+19]

correction process. As shown in H04, equation 26–27 and
Appendix C, the noise-rectification bias can be estimated as

δγ
γ

≈ KNν−2 = 4(1 − 3R−1
2 + R−2

2 + 2e2
rms)ν

−2 (20)

where ν is the signal to noise of the detection averaged over
bands:

ν−2 =
2

ν2
r + ν2

i

. (21)

For high-R2 galaxies, KN ≈ −2.7, decreasing to −3.7 for
R2 = 2/3 and then increasing to 5.3 at our R2,min = 1/3
(and rising rapidly at lower R2, as high as 21 for R2 = 1/4).
For each source sample, we compute the weighted average
value of KNν−2, to find noise-rectification bias of −0.005
(r < 21), −0.019 (r > 21), and −0.006 (LRG). To estimate
the 2σ error, we consider the allowed range of the noise-
rectification bias to be equal to the magnitude of the error
estimated above; results are shown in table 3.

Those five effects are the major sources of shear calibra-
tion bias; there are also several minor sources, at the 0.1 per
cent level. These include camera shear (for which we correct
using the astrometric solutions, as described in §2.2.1), er-
rors due to pixelization, and atmospheric refraction effects.
We do not attempt to estimate values for these subdominant
sources of error. The total shear calibration bias (at the 2σ
level) with the five main sources of error taken into account
is shown at the bottom of table 3 for the three source sam-
ples individually. These estimates are conservative in that
they do not assume any distribution for these errors, allow-
ing the actual values to add, rather than adding them in
quadrature (which assumes some possible cancellation).

2.3 Shear estimator

The weighting used for this work differs from that of H04 in
two ways. First, rather than the uniform weighting used in
that paper, we weight by measurement error:

ws =
1

σ2
SN + σ2

e
(22)

where σSN , the rms shape noise in one ellipticity compo-
nent, was determined as a function of r model magnitude
from Fig. 3 for the full source catalog and LRGs separately,
and σe is the error per component on the ellipticity from

equation 11. This weight is then multiplied by Σ−2
c , down-

weighting lower redshift lenses and lens-source pairs with
small redshift separation relative to those at large sepa-
ration. Consequently, the weight used for a given pair is
wl,s = wsΣ−2

c (zl, zs). The shear responsivity R appropri-
ate for this weighting scheme is then computed using equa-
tions (5-33) and (5-35) from Bernstein & Jarvis (2002), with
the average value for our source samples being 0.86 for the
r < 21 sources, 0.83 for the r > 21 sources, and 0.85 for
LRGs.

Using these weights, the shear estimator is then

∆Σ =

∑

l,s wl,set/Σ
−1
c

2R
∑

l,s wl,s
=

∑

l,s wsetΣ
−1
c (zl, zs)

2R
∑

l,s wl,s
(23)

While we also tried an ellipticity-dependent weight as
suggested in Bernstein & Jarvis (2002) to increase signal-to-
noise, we found it had minimal effect on the errorbars, so all
the work in this paper was done with the weighting scheme
described above.

2.4 Error determination

Several methods of determining the errors on ∆Σ were used,
each with its own advantages and shortcomings. We describe
them here, and in §6.2 we compare the results in order to
determine on which to rely.

2.4.1 Analytic computation

Analytic expressions for ∆Σ for a given weight function
may be derived from equation (5-27) in Bernstein & Jarvis
(2002). This method is the least computationally expensive
method of deriving errors, but suffers from several short-
comings. First, it gives incorrect results in the presence of
spurious shear power in the source catalog. Second, it does
not allow an easy way to include errors on the boost factors,
which may be significant. Finally, it does not account for
correlation of radial bins, which can be significant at large
radius, where the average lens-source separation is larger
than the average lens-lens separation, so a given source con-
tributes to the measurement in several radial bins.

2.4.2 Random catalogs

A more computationally expensive way of determining the
errors is using random lens catalogs. In the absence of sys-

c© 0000 RAS, MNRAS 000, 000–000



Point Spread Function
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Various Testing Data

STEP 2 Massey et al 2007

NASA Kaggle competition

SHERA Mandelbaum et al 2011



Shear TEsting Program 2
STEP2: High precision weak lensing analyses 3

• Complex galaxy morphology
• Galaxy size
• Galaxy magnitude
• Selection effects related to galaxy ellipticity
• Direction of the shear signal relative to the pixel grid
• PSF size
• PSF ellipticity

Sixteen different shear measurement codes have been run
on the simulated images. These can be categorised into four dis-
tinct categories. We provide a brief description of each algo-
rithm, and outline the relative successes of each method. The
STEP programme has dramatically sped the development of
new shear measurement methods (e.g. Refregier & Bacon 2003;
Bernstein & Jarvis 2002; Massey & Refregier 2005; Kuijken 2006;
Nakajima & Bernstein 2006, Bridle et al. in preparation), and we
particularly focus on these. However, these methods necessarily re-
main experimental, and development continues. The results from
such methods should therefore be taken as an indication of progress
rather than a judgement on their ultimate potential.

This paper is organised as follows. In §2, we describe the sim-
ulated images. In §3, we review the different shear measurement
methods used by each author, translating them into a common lan-
guage for ease of comparison, and categorising them into four dis-
tinct groups. In §4, we compare each author’s measured shear with
the input signal, and split the simulations in various ways to isolate
areas of potential difficulty in shear measurement. Because of the
number of different methods used, this is a rather daunting process.
In §5, we provide some perspective on the results, assessing the
relative performance of the different methods, and the categories
of methods. In §6, we derive some general conclusions and outline
suggestions for future development.

2 SIMULATED IMAGES

We have used theMassey et al. (2004a) simulation package to man-
ufacture artificial images that closely resemble deep r-band data
taken in good conditions with the Suprime-Cam camera on the
Subaru telescope. We specifically mimic the weak lensing survey
data of Miyazaki et al. (2002b). The Subaru telescope was built
with careful consideration of weak lensing requirements, and has
reliably obtained the highest quality weak lensing data to date
(Miyazaki et al. 2002a; Wittman 2005, Kasliwal et al. in prepara-
tion). It therefore represents the current state-of-the-art, and will
most closely match future dedicated survey instruments. The sim-
ulated images are publicly available for download from the STEP
website2.

To aid the interpretation of our results, the simulated images
incorporate several “unrealistic” simplifications: neither the noise
level, the input shear signal nor the PSF vary as a function of po-
sition. This does not adversely affect the validity of the results, as
any combination of PSF size, PSF ellipticity, and shear signal can
usually be found in one of the images. However, it does let us sim-
ply average the measured shear for the large number of galaxies in
each image, without explicitly keeping track of either the shear or
PSF applied to each object. As in STEP1, the main figure of merit
throughout our analysis will be the mean shear measured within
each image, 〈γ̃〉, and deviations of that from the known input shear
γinput. If the mean shear can be determined without bias for any

2 http://www.physics.ubc.ca/∼heymans/step.html

Image set PSF description Galaxy type
A Typical Subaru PSF (∼ 0.6′′) shapelets
B Typical Subaru PSF (∼ 0.6′′) pure exponential
C Enlarged Subaru PSF (∼ 0.8′′) shapelets
D Elliptical PSF aligned along x-axis shapelets
E Elliptical PSF aligned at 45◦ shapelets
F Circularly symmetric Subaru PSF shapelets

Table 1. The six different sets of images used in the STEP2 analysis are
carefully chosen to isolate and test particular aspects of weak shear mea-
surement. Either the PSF shape, or the form of galaxies’ intrinsic morpholo-
gies varies in a prescribed way between sets.

input shear (and for any PSF), all of the commonly-used statistics
typical in cosmic shear analysis should also be unbiased (but the
distribution of the shear estimates will affect their noise level).

To address the specific topics outlined in the introduction, we
manufactured six sets of simulated images. These span a range of
realistic observing conditions, in a carefully orchestrated way that
will isolate various effects. The differences between the images are
described in table 1. Each set contains 128 7′ × 7′ images, with
a pixel scale of 0.2′′ . In the first simulated image of each set, the
galaxies are not sheared. For the next 63 images, which all feature
the same patch of sky in order to maximise sensitivity to shear cali-
bration, the galaxies are sheared by a random amount. This amount
is chosen with a flat PDF within |γinput| < 6%. To concentrate
on cosmic shear measurement rather than cluster mass reconstruc-
tion, this limit is smaller than the maximum shears used in STEP1.
However, the shears are now crucially chosen from a continuous
distribution and are allowed to be in any direction relative to the
pixel grid. Note that we are really attempting to measure “reduced
shear” (Seitz & Schneider 1997) throughout this analysis, although
there is explicitly zero convergence in the simulations. The input
signals were not disclosed to any of the groups analysing the data.

We can predict the signal to noise ratio in the shear measure-
ment from these images. We first define a complex ellipticity for
each galaxy

e = e1 + ie2 ≡ a − b
a + b

(

cos (2θ) + i sin (2θ)
)

, (1)

where a and b are the major and minor axes, and θ is the orienta-
tion of the major axis from the x-axis. This definition is widely used
because it is more convenient than a two-component parametriza-
tion involving θ. Both the real and imaginary parts are well-defined
(zero) for a circular object or, on average, for an unsheared popu-
lation of objects. In the absence of PSF smearing and shear mea-
surement errors, the observed galaxy ellipticity eobs is related to its
intrinsic ellipticity eint by

eobs =
eint + γ

1 + γ∗eint
(2)

(Seitz & Schneider 1997), where γ ≡ γ1+iγ2 is the complex shear
applied to each image. With only a finite number N of galaxies, all
with nonzero intrinsic ellipticity, measurement of the mean shear
〈γ̃〉 = 〈eobs〉 is limited by an intrinsic shot noise

SN error ≈ 〈eint〉 = 0 ±
√

〈(eint
i )2〉
N

. (3)

In the STEP2 simulations,
√

〈e2
i 〉 ∼ 0.1, about an order of magni-

tude larger than the shear signal.
Since the morphologies of the simulated galaxies are uncorre-

lated, this noise can be slowly beaten down by increasing the size

4 Massey et al.

of the simulations. But to dramatically improve the efficiency of the
simulations, and circumvent the meagre 1/

√
N behaviour, we in-

troduce an innovation in the remaining 64 images. Following a sug-
gestion in Nakajima & Bernstein (2006), the entire sky, including
the galaxies, was artificially rotated by 90◦ before being sheared by
the same signals and being convolved with the same PSF as before.
This rotation flips the sign of galaxies’ intrinsic ellipticites. To mea-
sure biases in shear measurement methods, we can then consider
matched pairs of shear estimators from the unrotated and rotated
version of each galaxy. Averaging these estimators explicitly can-
cels the intrinsic shape noise, leaving only measurement noise and
any imperfections in shear measurement. We thus form a shear es-
timator for each galaxy pair

γ̃ = (eobs,unrot + eobs,rot)/2 . (4)

Since eint,unrot = eint = −eint,rot, we can use equation (2) to find

γ̃ =

(

eint + γ
1 + γ∗eint

+
−eint + γ
1 − γ∗eint

)

/2

=
γ − γ∗(eint)2

1 − (γ∗eint)2
. (5)

Averaging this shear estimator over N/2 galaxy pairs now gives a
shot noise error in 〈γ̃〉 of

SN error ≈ γ〈(eint
i )2〉 = 0 ± γ

√

〈(eint
i )4〉
2N

, (6)

which has been significantly reduced from equation (3). In the
STEP2 simulations

√

〈(eint
i )4〉 ∼ 0.05 and |γ| < 0.06. Nothing

is lost by this approach. All 128 images can still be analysed inde-
pendently – and we do pursue this approach in order to measure
the total shape measurement noise in an ordinary population of
galaxies.

The Massey et al. (2004a) image simulation pipeline required
extensive development from previously published versions to
mimic ground-based data. We shall therefore now describe its three
main ingredients: stars (i.e. PSF), galaxies and noise.

2.1 Stars

The simulated images are observed after convolution with a
various point-spread functions (PSFs). The PSF shapes are
modelled on real stars observed in Suprime-Cam images, and
are shown in figure 1. They are modelled using shapelets
(Refregier 2003; Refregier & Bacon 2003; Bernstein & Jarvis
2002; Massey & Refregier 2005), a (complete) set of orthogonal
basis functions that can be used to describe the shape any isolated
object. The decomposition of an image into shapelet space acts
rather like a localised Fourier transform, with images f(x) being
expressed in shapelet space as a set of indexed coefficients fn,m

that weight the corresponding basis function

f(x) =
∞

∑

n=0

n
∑

m=−n

fn,mχn,m(r, θ; β) , (7)

withm ! n, and where the Gauss-Laguerre basis functions are

χn,m(r, θ; β) =
Cn,m

β

(

r
β

)|m|

L|m|
n−|m|

2

(

r2

β2

)

e
−r2

2β2 e−imθ , (8)

Figure 1. The point spread functions (PSFs) used to generate the six dif-
ferent sets of simulated images. The colour scale is logarithmic, and the
contours, which are overlaid at the the same absolute value on each PSF,
are spaced logarithmically by factors of two. They are designed to target
specific aspects of weak lensing measurement that could potentially prove
difficult to control. See table 1 and the text for a description of each PSF.

with a normalising constant Cn,m and scale size β.
The PSFs can therefore take a complex form. They contain

substructure, skewness and chirality. In general, the ellipticity of
their isophotes varies as a function of radius. For computational
efficiency, the shapelet series is truncated at order nmax = 12. The
limited wings and the rapid convergence of the PSFs to zero at large
radii compared to those used in STEP1 is not a consequence of this
truncation, but a confirmation of the excellent optical qualities of
Suprime-Cam.

PSF A is modelled from a fairly typical star towards the centre
of a 40 minute long Suprime-Cam exposure (which, in practice is
likely to be assembled from four 10 minute exposures). It has a full-
width at half-max (FWHM) of 0.6′′ . PSF B is identical to PSF A.
PSF C is the same star, but enlarged to model slightly worse seeing,
and has a FWHM of 0.8′′ . This is the worst that might be expected
in future weak lensing surveys, with nights during poorer condi-
tions typically used to obtain data in additional colours. PSF D is
modelled on a star at the edge of the same Suprime-Cam exposure.
The phases of all of its m = 2 shapelet coefficients were adjusted
to the same value so that at all radii (and therefore with any radial
weight function), its ellipticity derived from quadrupole moments
points in exactly the same direction. Substructure and skewness ap-

4 Massey et al.

of the simulations. But to dramatically improve the efficiency of the
simulations, and circumvent the meagre 1/

√
N behaviour, we in-

troduce an innovation in the remaining 64 images. Following a sug-
gestion in Nakajima & Bernstein (2006), the entire sky, including
the galaxies, was artificially rotated by 90◦ before being sheared by
the same signals and being convolved with the same PSF as before.
This rotation flips the sign of galaxies’ intrinsic ellipticites. To mea-
sure biases in shear measurement methods, we can then consider
matched pairs of shear estimators from the unrotated and rotated
version of each galaxy. Averaging these estimators explicitly can-
cels the intrinsic shape noise, leaving only measurement noise and
any imperfections in shear measurement. We thus form a shear es-
timator for each galaxy pair

γ̃ = (eobs,unrot + eobs,rot)/2 . (4)

Since eint,unrot = eint = −eint,rot, we can use equation (2) to find

γ̃ =

(

eint + γ
1 + γ∗eint

+
−eint + γ
1 − γ∗eint

)

/2

=
γ − γ∗(eint)2

1 − (γ∗eint)2
. (5)

Averaging this shear estimator over N/2 galaxy pairs now gives a
shot noise error in 〈γ̃〉 of

SN error ≈ γ〈(eint
i )2〉 = 0 ± γ

√

〈(eint
i )4〉
2N

, (6)

which has been significantly reduced from equation (3). In the
STEP2 simulations

√

〈(eint
i )4〉 ∼ 0.05 and |γ| < 0.06. Nothing

is lost by this approach. All 128 images can still be analysed inde-
pendently – and we do pursue this approach in order to measure
the total shape measurement noise in an ordinary population of
galaxies.

The Massey et al. (2004a) image simulation pipeline required
extensive development from previously published versions to
mimic ground-based data. We shall therefore now describe its three
main ingredients: stars (i.e. PSF), galaxies and noise.

2.1 Stars

The simulated images are observed after convolution with a
various point-spread functions (PSFs). The PSF shapes are
modelled on real stars observed in Suprime-Cam images, and
are shown in figure 1. They are modelled using shapelets
(Refregier 2003; Refregier & Bacon 2003; Bernstein & Jarvis
2002; Massey & Refregier 2005), a (complete) set of orthogonal
basis functions that can be used to describe the shape any isolated
object. The decomposition of an image into shapelet space acts
rather like a localised Fourier transform, with images f(x) being
expressed in shapelet space as a set of indexed coefficients fn,m

that weight the corresponding basis function

f(x) =
∞

∑

n=0

n
∑

m=−n

fn,mχn,m(r, θ; β) , (7)

withm ! n, and where the Gauss-Laguerre basis functions are
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Figure 1. The point spread functions (PSFs) used to generate the six dif-
ferent sets of simulated images. The colour scale is logarithmic, and the
contours, which are overlaid at the the same absolute value on each PSF,
are spaced logarithmically by factors of two. They are designed to target
specific aspects of weak lensing measurement that could potentially prove
difficult to control. See table 1 and the text for a description of each PSF.

with a normalising constant Cn,m and scale size β.
The PSFs can therefore take a complex form. They contain

substructure, skewness and chirality. In general, the ellipticity of
their isophotes varies as a function of radius. For computational
efficiency, the shapelet series is truncated at order nmax = 12. The
limited wings and the rapid convergence of the PSFs to zero at large
radii compared to those used in STEP1 is not a consequence of this
truncation, but a confirmation of the excellent optical qualities of
Suprime-Cam.

PSF A is modelled from a fairly typical star towards the centre
of a 40 minute long Suprime-Cam exposure (which, in practice is
likely to be assembled from four 10 minute exposures). It has a full-
width at half-max (FWHM) of 0.6′′ . PSF B is identical to PSF A.
PSF C is the same star, but enlarged to model slightly worse seeing,
and has a FWHM of 0.8′′ . This is the worst that might be expected
in future weak lensing surveys, with nights during poorer condi-
tions typically used to obtain data in additional colours. PSF D is
modelled on a star at the edge of the same Suprime-Cam exposure.
The phases of all of its m = 2 shapelet coefficients were adjusted
to the same value so that at all radii (and therefore with any radial
weight function), its ellipticity derived from quadrupole moments
points in exactly the same direction. Substructure and skewness ap-
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Figure 2. A 1′ × 1′ section of a simulated image from set A, containing
shapelet galaxies with complex morphologies. The colour scale is logarith-
mic, and the same as that in figure 3.

parent in the real Subaru PSF is otherwise untouched. As PSF D,
the ellipticity is directed parallel to the x-axis of the pixel grid. The
star is rotated by 45◦ to make PSF E. It is an example of extreme el-
lipticity, which highlights ellipticity-dependent effects. However, it
might be possible to limit such ellipticity in weak lensing surveys
by improving the optical design of future telescopes or optimis-
ing survey tiling and scheduling strategies. PSF F is a circularised
version of that star, obtained by setting all of its m != 0 shapelet
coefficients to zero, which is equivalent to averaging the PSF over
all possible orientations.

2.2 Shapelet galaxies

Most of the simulated images contain galaxy shapes also con-
structed from weighted combinations of the shapelet basis func-
tions, using a version of the Massey et al. (2004a) image simula-
tion pipeline similar modified to imitate ground-based data. The
complex and irregular galaxy morphologies that are possible using
this method represent an important advance from the STEP1 anal-
ysis using the SkyMaker image simulation package (Erben et al.
2001). The measurement of weak lensing in STEP1 was consider-
ably simplified by the galaxies’ smooth and unperturbed isophotes.
Several shear measurement methods are based on the assumption
that galaxy shapes and the PSF are concentric, elliptical, and in
some cases Gaussian. In addition, the SkyMaker galaxies have
reflection symmetry about the centroid which could feasibly cause
any symmetrical errors to vanish. By contrast, PSF correction
and galaxy shape measurement are rendered more challenging in
STEP2 by the realistic morphologies that include spiral arms, dust
lanes and small-scale substructure. Our analysis is thus designed to
test the robustness of weak lensing measurement methods.

Figure 3. A 1′ × 1′ section of a simulated image from set B, containing
idealised galaxies with exponential radial profiles and simple morphologies.
The colour scale is logarithmic, and the same as that in figure 2.

The joint size-magnitude-morphology distribution of galaxies
was copied from the Hubble Space Telescope COSMOS survey
(Scoville et al. in preparation). This is a uniform, two square de-
gree set of images taken with the F814W filter on the Advanced
Camera for Surveys (ACS), to a depth of 28.7 for a point source
at 5σ. It is deeper than our intended simulations, and with a much
finer resolution, so provides an ideal source population. The ex-
tent of the COSMOS survey also provided sufficient real galaxies
to avoid duplication in the simulations without needing to perturb
shapelet coefficients, as in section 4 of Massey et al. (2004a). We
simply used the shapelet models of COSMOS galaxies, randomly
rotated, inverted and repositioned. The positions of galaxies in the
simulations were chosen at random, without attempting to repro-
duce higher-order clustering.

Since the galaxy models are inevitably truncated at some level
in shapelet space, and since we did not deconvolve the galaxies
from the ACS PSF, the smallest simulated galaxies are intrinsically
slightly rounder than those in real Subaru data. However, this con-
volution occurs before shearing and does not alter the necessary
steps for shear measurement. As in real data, the simulated galaxy
ellipticity and morphology distributions do vary with galaxy mag-
nitude and size. We adopt an alternative definition of ellipticity
(

ε1, ε2

)

≡ a2 − b2

a2 + b2

(

cos (2θ), sin (2θ)
)

, (9)

where a and b are the major and minor axes, and θ is the orien-
tation of the major axis from the x-axis. Note the difference from
equation (1); this version is closer to the notation used by most
shear estimators. Before PSF convolution, the width of this ellip-
ticity distribution

σint
ε ≡

(

(σint
ε1

)2 + (σint
ε2

)2
)1/2 (10)

as measured by SEXTRACTOR (Bertin & Arnouts 1996) is σint
ε =

0.35 ± 0.03 at r = 22 and σint
ε = 0.20 ± 0.02 at r = 26. Note

that this ε is a different quantity than the e used in equation (3).
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Figure 2. A 1′ × 1′ section of a simulated image from set A, containing
shapelet galaxies with complex morphologies. The colour scale is logarith-
mic, and the same as that in figure 3.

parent in the real Subaru PSF is otherwise untouched. As PSF D,
the ellipticity is directed parallel to the x-axis of the pixel grid. The
star is rotated by 45◦ to make PSF E. It is an example of extreme el-
lipticity, which highlights ellipticity-dependent effects. However, it
might be possible to limit such ellipticity in weak lensing surveys
by improving the optical design of future telescopes or optimis-
ing survey tiling and scheduling strategies. PSF F is a circularised
version of that star, obtained by setting all of its m != 0 shapelet
coefficients to zero, which is equivalent to averaging the PSF over
all possible orientations.

2.2 Shapelet galaxies

Most of the simulated images contain galaxy shapes also con-
structed from weighted combinations of the shapelet basis func-
tions, using a version of the Massey et al. (2004a) image simula-
tion pipeline similar modified to imitate ground-based data. The
complex and irregular galaxy morphologies that are possible using
this method represent an important advance from the STEP1 anal-
ysis using the SkyMaker image simulation package (Erben et al.
2001). The measurement of weak lensing in STEP1 was consider-
ably simplified by the galaxies’ smooth and unperturbed isophotes.
Several shear measurement methods are based on the assumption
that galaxy shapes and the PSF are concentric, elliptical, and in
some cases Gaussian. In addition, the SkyMaker galaxies have
reflection symmetry about the centroid which could feasibly cause
any symmetrical errors to vanish. By contrast, PSF correction
and galaxy shape measurement are rendered more challenging in
STEP2 by the realistic morphologies that include spiral arms, dust
lanes and small-scale substructure. Our analysis is thus designed to
test the robustness of weak lensing measurement methods.

Figure 3. A 1′ × 1′ section of a simulated image from set B, containing
idealised galaxies with exponential radial profiles and simple morphologies.
The colour scale is logarithmic, and the same as that in figure 2.

The joint size-magnitude-morphology distribution of galaxies
was copied from the Hubble Space Telescope COSMOS survey
(Scoville et al. in preparation). This is a uniform, two square de-
gree set of images taken with the F814W filter on the Advanced
Camera for Surveys (ACS), to a depth of 28.7 for a point source
at 5σ. It is deeper than our intended simulations, and with a much
finer resolution, so provides an ideal source population. The ex-
tent of the COSMOS survey also provided sufficient real galaxies
to avoid duplication in the simulations without needing to perturb
shapelet coefficients, as in section 4 of Massey et al. (2004a). We
simply used the shapelet models of COSMOS galaxies, randomly
rotated, inverted and repositioned. The positions of galaxies in the
simulations were chosen at random, without attempting to repro-
duce higher-order clustering.

Since the galaxy models are inevitably truncated at some level
in shapelet space, and since we did not deconvolve the galaxies
from the ACS PSF, the smallest simulated galaxies are intrinsically
slightly rounder than those in real Subaru data. However, this con-
volution occurs before shearing and does not alter the necessary
steps for shear measurement. As in real data, the simulated galaxy
ellipticity and morphology distributions do vary with galaxy mag-
nitude and size. We adopt an alternative definition of ellipticity
(

ε1, ε2

)

≡ a2 − b2

a2 + b2

(

cos (2θ), sin (2θ)
)

, (9)

where a and b are the major and minor axes, and θ is the orien-
tation of the major axis from the x-axis. Note the difference from
equation (1); this version is closer to the notation used by most
shear estimators. Before PSF convolution, the width of this ellip-
ticity distribution

σint
ε ≡

(

(σint
ε1

)2 + (σint
ε2

)2
)1/2 (10)

as measured by SEXTRACTOR (Bertin & Arnouts 1996) is σint
ε =

0.35 ± 0.03 at r = 22 and σint
ε = 0.20 ± 0.02 at r = 26. Note

that this ε is a different quantity than the e used in equation (3).
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of the simulations. But to dramatically improve the efficiency of the
simulations, and circumvent the meagre 1/

√
N behaviour, we in-

troduce an innovation in the remaining 64 images. Following a sug-
gestion in Nakajima & Bernstein (2006), the entire sky, including
the galaxies, was artificially rotated by 90◦ before being sheared by
the same signals and being convolved with the same PSF as before.
This rotation flips the sign of galaxies’ intrinsic ellipticites. To mea-
sure biases in shear measurement methods, we can then consider
matched pairs of shear estimators from the unrotated and rotated
version of each galaxy. Averaging these estimators explicitly can-
cels the intrinsic shape noise, leaving only measurement noise and
any imperfections in shear measurement. We thus form a shear es-
timator for each galaxy pair

γ̃ = (eobs,unrot + eobs,rot)/2 . (4)

Since eint,unrot = eint = −eint,rot, we can use equation (2) to find

γ̃ =

(

eint + γ
1 + γ∗eint

+
−eint + γ
1 − γ∗eint

)

/2

=
γ − γ∗(eint)2

1 − (γ∗eint)2
. (5)

Averaging this shear estimator over N/2 galaxy pairs now gives a
shot noise error in 〈γ̃〉 of

SN error ≈ γ〈(eint
i )2〉 = 0 ± γ

√

〈(eint
i )4〉
2N

, (6)

which has been significantly reduced from equation (3). In the
STEP2 simulations

√

〈(eint
i )4〉 ∼ 0.05 and |γ| < 0.06. Nothing

is lost by this approach. All 128 images can still be analysed inde-
pendently – and we do pursue this approach in order to measure
the total shape measurement noise in an ordinary population of
galaxies.

The Massey et al. (2004a) image simulation pipeline required
extensive development from previously published versions to
mimic ground-based data. We shall therefore now describe its three
main ingredients: stars (i.e. PSF), galaxies and noise.

2.1 Stars

The simulated images are observed after convolution with a
various point-spread functions (PSFs). The PSF shapes are
modelled on real stars observed in Suprime-Cam images, and
are shown in figure 1. They are modelled using shapelets
(Refregier 2003; Refregier & Bacon 2003; Bernstein & Jarvis
2002; Massey & Refregier 2005), a (complete) set of orthogonal
basis functions that can be used to describe the shape any isolated
object. The decomposition of an image into shapelet space acts
rather like a localised Fourier transform, with images f(x) being
expressed in shapelet space as a set of indexed coefficients fn,m

that weight the corresponding basis function

f(x) =
∞

∑

n=0

n
∑

m=−n

fn,mχn,m(r, θ; β) , (7)

withm ! n, and where the Gauss-Laguerre basis functions are

χn,m(r, θ; β) =
Cn,m

β

(

r
β

)|m|

L|m|
n−|m|

2

(

r2

β2

)

e
−r2

2β2 e−imθ , (8)

Figure 1. The point spread functions (PSFs) used to generate the six dif-
ferent sets of simulated images. The colour scale is logarithmic, and the
contours, which are overlaid at the the same absolute value on each PSF,
are spaced logarithmically by factors of two. They are designed to target
specific aspects of weak lensing measurement that could potentially prove
difficult to control. See table 1 and the text for a description of each PSF.

with a normalising constant Cn,m and scale size β.
The PSFs can therefore take a complex form. They contain

substructure, skewness and chirality. In general, the ellipticity of
their isophotes varies as a function of radius. For computational
efficiency, the shapelet series is truncated at order nmax = 12. The
limited wings and the rapid convergence of the PSFs to zero at large
radii compared to those used in STEP1 is not a consequence of this
truncation, but a confirmation of the excellent optical qualities of
Suprime-Cam.

PSF A is modelled from a fairly typical star towards the centre
of a 40 minute long Suprime-Cam exposure (which, in practice is
likely to be assembled from four 10 minute exposures). It has a full-
width at half-max (FWHM) of 0.6′′ . PSF B is identical to PSF A.
PSF C is the same star, but enlarged to model slightly worse seeing,
and has a FWHM of 0.8′′ . This is the worst that might be expected
in future weak lensing surveys, with nights during poorer condi-
tions typically used to obtain data in additional colours. PSF D is
modelled on a star at the edge of the same Suprime-Cam exposure.
The phases of all of its m = 2 shapelet coefficients were adjusted
to the same value so that at all radii (and therefore with any radial
weight function), its ellipticity derived from quadrupole moments
points in exactly the same direction. Substructure and skewness ap-
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Why flexion in future?

Complementary to shear analysis at smaller 
scales

Sensitive to substructure



Weak gravitational flexion 423

5.1 Two-dimensional mapping

For 2D mapping, we are able to generate maps of the projected
matter density (i.e. the convergence) from both F and G, following
the ideology of Kaiser & Squires (1993). Starting with F , we take
the Fourier transform of the relation Fi = ∂iκ to obtain

F̃1 = −ik1κ̃(k)

F̃2 = −ik2κ̃(k). (59)

We can invert both of these terms to obtain an estimate for κ̃ . We
add these two estimates in an optimal fashion, parametrized by the
variable a:

κ̃ = iaF̃1

k1
+ i(1 − a)F̃2

k2
. (60)

In order to optimize the estimate, we take the mean square of this
equation, which in the absence of a lensing signal will have a value
determined by constant noise from intrinsic flexion. We then mini-
mize with respect to a, in order to find a measurement of the κ field
with minimal noise. As a result we find the following inversion:

κ̃ = ik1

k2
1 + k2

2
F̃1 + ik2

k2
1 + k2

2
F̃2. (61)

This gives us a prescription for finding the surface density of matter:
we measure the flexion field, take the Fourier transform, calculate κ̃

according to this equation, and then take the inverse Fourier trans-
form to find κ .

We can perform the same calculation for the inversion from G to
κ . We note that the components of G can be written in terms of the
lensing potential, ψ (cf. equation 14) as

G1 =
(
∂3

1 − 3∂1∂
2
2

)
ψ

G2 =
(

3∂2
1 ∂2 − ∂3

2

)
ψ. (62)

Hence the Fourier transform

G̃1 = i
(

k3
1 − 3k1k2

2

)
ψ̃

G̃2 = i
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3k2
1k2 − k3
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)
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Again, we add these estimates of ψ̃ in some optimal fashion
parametrized by a:

ψ̃ = − iaG̃1
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− i(1 − a)G̃2
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1k2 − k3

2
. (64)

Calculating the mean square of this field and minimizing with re-
spect to a, we find that the optimal estimate of κ is given by

κ̃ = i
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2(

k2
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)2 G̃1 + i
k3

2 − 3k2
1k2(
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1 + k2
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)2 G̃2. (65)

This provides us with the mass-mapping equations we have been
seeking. We can now obtain mass maps with independent noise for
γ ,F and G, and combine these with minimum variance weighting
(with respect to noise) in order to obtain a best mass map.

These mapping relations can be efficiently expressed and trivially
derived in the complex notation of Section 2 using equation (2)

(κ + iB)F = ∂−2∂∗F ,

(κ + iB)G = ∂−4∂∗∂∗∂∗G (66)

where the complex part is again seen to give us the B-field compo-
nent, which can be used as a test of systematics. Comparing these
two derivations of the mapping equations, we see that equation (66)
gives the solution in the case of no noise, while equations (61) and

Figure 6. Shear (upper), flexion (middle) and second flexion (lower) for
simulated cluster; the cluster’s convergence map is shown underlying the
other weak lensing fields. Note that shear does not respond well to substruc-
ture, while the flexions strongly respond to these regions.

(65) show that this is still optimal in the presence of noise due to
intrinsic flexion.

The mapping process is illustrated in Figs 6 and 7. Here we have
simulated a projected surface density for a toy cluster of galaxies,
using a Gaussian cluster gravitational potential profile with width
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5.1 Two-dimensional mapping

For 2D mapping, we are able to generate maps of the projected
matter density (i.e. the convergence) from both F and G, following
the ideology of Kaiser & Squires (1993). Starting with F , we take
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add these two estimates in an optimal fashion, parametrized by the
variable a:

κ̃ = iaF̃1

k1
+ i(1 − a)F̃2

k2
. (60)

In order to optimize the estimate, we take the mean square of this
equation, which in the absence of a lensing signal will have a value
determined by constant noise from intrinsic flexion. We then mini-
mize with respect to a, in order to find a measurement of the κ field
with minimal noise. As a result we find the following inversion:
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F̃2. (61)

This gives us a prescription for finding the surface density of matter:
we measure the flexion field, take the Fourier transform, calculate κ̃

according to this equation, and then take the inverse Fourier trans-
form to find κ .

We can perform the same calculation for the inversion from G to
κ . We note that the components of G can be written in terms of the
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This provides us with the mass-mapping equations we have been
seeking. We can now obtain mass maps with independent noise for
γ ,F and G, and combine these with minimum variance weighting
(with respect to noise) in order to obtain a best mass map.

These mapping relations can be efficiently expressed and trivially
derived in the complex notation of Section 2 using equation (2)

(κ + iB)F = ∂−2∂∗F ,

(κ + iB)G = ∂−4∂∗∂∗∂∗G (66)

where the complex part is again seen to give us the B-field compo-
nent, which can be used as a test of systematics. Comparing these
two derivations of the mapping equations, we see that equation (66)
gives the solution in the case of no noise, while equations (61) and

Figure 6. Shear (upper), flexion (middle) and second flexion (lower) for
simulated cluster; the cluster’s convergence map is shown underlying the
other weak lensing fields. Note that shear does not respond well to substruc-
ture, while the flexions strongly respond to these regions.

(65) show that this is still optimal in the presence of noise due to
intrinsic flexion.

The mapping process is illustrated in Figs 6 and 7. Here we have
simulated a projected surface density for a toy cluster of galaxies,
using a Gaussian cluster gravitational potential profile with width
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5.1 Two-dimensional mapping

For 2D mapping, we are able to generate maps of the projected
matter density (i.e. the convergence) from both F and G, following
the ideology of Kaiser & Squires (1993). Starting with F , we take
the Fourier transform of the relation Fi = ∂iκ to obtain

F̃1 = −ik1κ̃(k)

F̃2 = −ik2κ̃(k). (59)

We can invert both of these terms to obtain an estimate for κ̃ . We
add these two estimates in an optimal fashion, parametrized by the
variable a:

κ̃ = iaF̃1

k1
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In order to optimize the estimate, we take the mean square of this
equation, which in the absence of a lensing signal will have a value
determined by constant noise from intrinsic flexion. We then mini-
mize with respect to a, in order to find a measurement of the κ field
with minimal noise. As a result we find the following inversion:
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This gives us a prescription for finding the surface density of matter:
we measure the flexion field, take the Fourier transform, calculate κ̃

according to this equation, and then take the inverse Fourier trans-
form to find κ .

We can perform the same calculation for the inversion from G to
κ . We note that the components of G can be written in terms of the
lensing potential, ψ (cf. equation 14) as
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parametrized by a:
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Calculating the mean square of this field and minimizing with re-
spect to a, we find that the optimal estimate of κ is given by
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This provides us with the mass-mapping equations we have been
seeking. We can now obtain mass maps with independent noise for
γ ,F and G, and combine these with minimum variance weighting
(with respect to noise) in order to obtain a best mass map.

These mapping relations can be efficiently expressed and trivially
derived in the complex notation of Section 2 using equation (2)

(κ + iB)F = ∂−2∂∗F ,

(κ + iB)G = ∂−4∂∗∂∗∂∗G (66)

where the complex part is again seen to give us the B-field compo-
nent, which can be used as a test of systematics. Comparing these
two derivations of the mapping equations, we see that equation (66)
gives the solution in the case of no noise, while equations (61) and

Figure 6. Shear (upper), flexion (middle) and second flexion (lower) for
simulated cluster; the cluster’s convergence map is shown underlying the
other weak lensing fields. Note that shear does not respond well to substruc-
ture, while the flexions strongly respond to these regions.

(65) show that this is still optimal in the presence of noise due to
intrinsic flexion.

The mapping process is illustrated in Figs 6 and 7. Here we have
simulated a projected surface density for a toy cluster of galaxies,
using a Gaussian cluster gravitational potential profile with width
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high-pass filter for projected density fluctuations, with one form of
flexion measuring local information about density, and the other
measuring non-local information. We also revise the process by
which flexion is measured using shapelets.

In Section 3 we examine flexion predictions for galaxy–galaxy
lensing, concentrating on averaged circular profiles; we discuss
how flexion can be used to provide more information about galaxy
profiles, and how combination of the flexion with shear improves
constraints on mass and concentration of galaxy dark matter pro-
files. In Section 4 we extend this analysis to elliptical density
profiles.

In Section 5 we show how flexion can be used for mass reconstruc-
tion, and we note the utility of flexion for measuring substructure
in clusters. In Section 6 we discuss the use of flexion for measure-
ments of large-scale structure; we find that the cosmic flexion signal
is measurable exclusively on non-linear scales, which are neverthe-
less of great interest. We conclude in Section 7.

2 F L E X I O N F O R M A L I S M

We begin by briefly reviewing the third-order lensing formalism
developed by Goldberg & Bacon (2005); we place this in the context
of a convenient complex notation for the four components of flexion,
and show how these can be measured using shapelets.

2.1 Third-order lensing

It is useful to begin by noting that the relationship in gravitational
lensing between unlensed coordinates and lensed, observed coordi-
nates is given by

Ai j (θ) ≡ ∂θ′
i

∂θ j
= [δi j − ∂i∂ jψ(θ)],

A =
(

1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

)
(1)

where ∂ i ≡ ∂/∂θ i and θ′ are the unlensed coordinates; the origins
of the measured, lensed coordinates and the unlensed source coordi-
nates are taken to be the centres of light for the lensed and unlensed
images, respectively. Here ψ is the lensing potential (i.e. a projected
gravitational potential along the line of sight), κ is the convergence
and γ is the shear of a galaxy.

If convergence and shear are effectively constant within a source
galaxy image, the galaxy’s transformation can simply be described
as

θ ′
i = Ai jθ j . (2)

Third-order lensing arises from the fact that the shear and conver-
gence are actually not constant within the image, and so we have to
expand to higher order:

θ ′
i $ Ai jθ j + 1

2
Di jkθ jθk, (3)

with

Di jk = ∂k Ai j . (4)

Using results from Kaiser (1995), we find that

Di j1 =
(

−2γ1,1 − γ2,2 −γ2,1

−γ2,1 −γ2,2

)
,

Di j2 =
(

−γ2,1 −γ2,2

−γ2,2 2γ1,2 − γ2,1

)
.

(5)

By expanding the surface brightness as a Taylor series and using the
relations above, we find that we can approximate the lensed surface
brightness of a galaxy in the weak lensing regime as

f (θ) $
{

1 +
[

(A − I )i jθ j + 1
2

Di jkθ jθk

]
∂i

}
f ′(θ). (6)

This shows that we can describe the third-order lensing effects in
terms of derivatives of the shear field.

2.2 Complex representation

We now develop a compact and straightforward complex formalism
for flexion, which is of much wider applicability to all weak gravita-
tional lensing. In addition, we show that weakly lensed arcs can be
uniquely decomposed into the spin-1 first flexion, and a new compo-
nent which has not previously been considered, the second flexion
which we show has spin-3 properties. Schramm & Kayser (1995)
suggested an alternative complex representation for lensing; we in-
troduce a complex gradient operator which simplifies the analysis
considerably.

We define the complex gradient operator

∂ = ∂1 + i∂2, (7)

which we can think of as a derivative with an amplitude and a
direction down the slope of a surface at any point. It transforms under
rotations as a vector, ∂ ′ = ∂eiφ , where φ is the angle of rotation. This
operator can be compared with the covariant derivative formalism of
Castro, Heavens & Kitching (2005) for weak lensing on the curved
sky. Applying the operator to the lensing scalar potential, ψ , we can
generate the spin-1 (i.e. vector) lensing displacement field:

α = α1 + iα2 = ∂ψ. (8)

This correspondence allows us to interpret the complex gradient, ∂ ,
as a spin-raising operator, raising the function it acts on by one spin
value. Similarly the spin of a quantity can be lowered by applying
the complex conjugate gradient, ∂∗. Applying one after the other
yields the spin-zero two-dimensional (2D) Laplacian,

∂∂∗ = ∂∗∂, (9)

where we have noted that ∂ and ∂∗ commute. Applying the complex
conjugate derivative to the displacement field, we find that the spin
is lowered to the spin-0 convergence field

κ = 1
2
∂∗α = 1

2
∂∗∂ψ. (10)

Applying the spin-raising operation to the displacement field raises
us to a spin-2 field, the complex shear:

γ = γ1 + iγ2 = 1
2
∂∂ψ. (11)

From these expressions it is easy to recover the general, complex
Kaiser & Squires (1993) relation between the shear and convergence
fields

κ + iB = ∂−2∂∗∂∗γ , (12)

where ∂−2 is the 2D inverse Laplacian, and the non-lensing,
curl/odd-parity B-field is automatically included as the complex
part of the recovered field. We can also see from this relation that a
B-field can be generated from a convergence field by a π/4 rotation
of the shear field, equivalent to multiplying the complex shear by i.
In equation (12) we have omitted an arbitrary constant, due to the
sheet-mass degeneracy.
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The complex formalism provides a neat way to generalize the
analysis of distortions to higher orders. Taking the third derivative
of the lensing potential, we have the unique combinations

F = |F |eiφ = 1
2
∂∂∗∂ψ = ∂κ = ∂∗γ ,

G = |G|e3iφ = 1
2
∂∂∂ψ = ∂γ , (13)

where the first flexion, F , is a spin-1 field and the new second
flexion, G, is seen to be a spin-3 field. Here φ represents the position
angle determining the direction of the vector or spin-3 component.
Expanding the flexions in terms of the gradients of the shear field,
we find

F = (∂1γ1 + ∂2γ2) + i(∂1γ2 − ∂2γ1)

G = (∂1γ1 − ∂2γ2) + i(∂1γ2 + ∂2γ1). (14)

These two independent fields specify the weak ‘arciness’ of the
lensed image.

The complex representation allows us to find a consistency rela-
tion between the two flexion fields

∂∗∂G = ∂∂F , (15)

which can be used as a check on measurements of F and G.
We are also able to obtain a direct description of the third-order

lensing tensor Dijk. Defining F = F1 + iF2 and G = G1 + iG2 we
can then re-express Dijk as the sum of two terms Di jk = Fi jk +Gi jk ,
where the first (spin-1) term is

Fi j1 = −1
2

(
3F1 F2

F2 F1

)

Fi j2 = −1
2

(F2 F1

F1 3F2

)

(16)

and the second (spin-3) term is

Gi j1 = −1
2

(G1 G2

G2 −G1

)

Gi j2 = −1
2

( G2 −G1

−G1 −G2

)
.

(17)

In order to obtain a visual understanding of the flexion quantities,
we have used these forms for the Dijk matrix in terms of F and G
in order to calculate how a Gaussian image is transformed by the
various operations of weak lensing, according to equation (6). The
results are shown in Fig. 1, which displays the lensing operations
in order of their spin properties. The Gaussian galaxy is given a
radius (standard deviation) of 1 arcsec; while the convergence and
shear imposed on the galaxy are realistic (10 per cent in each case),
the flexion is deliberately chosen to be extraordinarily large for
visualization purposes (0.28 arcsec−1, cf. 0.04 arcsec−1 intrinsic
rms flexion on galaxies). We immediately see the shapes induced
by flexion: the first flexion leads to a (vectorial, spin-1) skewness,
while the second flexion leads to a threefold (spin-3) shape.

While the first flexion probes the local density via the gradi-
ent of the shear field, the spin-3 second flexion probes the non-
local part of the gradient of the shear field. For example, consider
a Schwarzschild lens: the first flexion is by definition zero every-
where except at the origin, as the gradient of the convergence is
zero everywhere except at the origin. However, there is certainly
‘arciness’ generated by such a lens; this is described by the sec-
ond flexion. We provide explicit expressions for the first and second
flexion generated by simple mass distributions in Sections 3 and 4.

Figure 1. Weak lensing distortions with increasing spin values. Here an
unlensed Gaussian galaxy with radius 1 arcsec has been distorted with
10 per cent convergence/shear, and 0.28 arcsec−1 flexion. Convergence is a
spin-0 quantity, first flexion is spin-1, shear is spin-2 and second flexion is
spin-3.

The series of lensing distortions can clearly be continued to
arbitrary order by taking permutations of additional spin-raising
and lowering derivatives. For instance, the next order of distor-
tion can be decomposed into three fields; a spin-4 field, ∂∂∂∂ψ ,
a spin-2 field, ∂∗∂∂∂ψ , and a spin-0 field, ∂∗∂∗∂∂ψ . The nth or-
der term can be decomposed into Int(1 + n/2) independent spin
fields with spins s = n, n − 2, n − 4, . . . , 0 if n is even or . . . 1
if odd. Consistency relations similar to those for F and G can be
found for all the higher spin fields, which can also be used to es-
timate the convergence field via Kaiser–Squires-like relations (see
Section 5).

However, in this paper we restrict ourselves to exploring the pos-
sibilities given by the first and second flexion. We now proceed to
consider how to measure flexion.

2.3 Shapelet measurement

Since the flexion is in terms of derivatives of the shear field, we
therefore require a means of measuring these derivatives, γ i,j.

We have found (Goldberg & Bacon 2005) that we can measure the
shear derivatives using the shapelet formalism of Refregier (2003b)
and Bernstein & Jarvis (2002), as applied to lensing by Refregier &
Bacon (2003).

We decompose galaxy images into shapelet coefficients, corre-
sponding to pre-factors for reduced Hermite polynomials:

f (θ) =
∑

n,m

fnm Bnm(θ) (18)

where

Bnm(θ; β) = β−1φn

(
β−1θ1

)
φm

(
β−1θ2

)
. (19)

Here β is a scalefactor chosen for the galaxy, and φn are reduced
Hermite polynomials.

Since these functions are eigenfunctions for the quantum har-
monic oscillator, we can define ladder operators as in quantum
mechanics

â1 |φn m〉 =
√

n |φn−1 m〉

â†
1 |φn m〉 =

√
n + 1 |φn+1 m〉 (20)
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The complex formalism provides a neat way to generalize the
analysis of distortions to higher orders. Taking the third derivative
of the lensing potential, we have the unique combinations

F = |F |eiφ = 1
2
∂∂∗∂ψ = ∂κ = ∂∗γ ,

G = |G|e3iφ = 1
2
∂∂∂ψ = ∂γ , (13)

where the first flexion, F , is a spin-1 field and the new second
flexion, G, is seen to be a spin-3 field. Here φ represents the position
angle determining the direction of the vector or spin-3 component.
Expanding the flexions in terms of the gradients of the shear field,
we find

F = (∂1γ1 + ∂2γ2) + i(∂1γ2 − ∂2γ1)

G = (∂1γ1 − ∂2γ2) + i(∂1γ2 + ∂2γ1). (14)

These two independent fields specify the weak ‘arciness’ of the
lensed image.

The complex representation allows us to find a consistency rela-
tion between the two flexion fields

∂∗∂G = ∂∂F , (15)

which can be used as a check on measurements of F and G.
We are also able to obtain a direct description of the third-order

lensing tensor Dijk. Defining F = F1 + iF2 and G = G1 + iG2 we
can then re-express Dijk as the sum of two terms Di jk = Fi jk +Gi jk ,
where the first (spin-1) term is
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and the second (spin-3) term is
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(G1 G2

G2 −G1
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Gi j2 = −1
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( G2 −G1
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(17)

In order to obtain a visual understanding of the flexion quantities,
we have used these forms for the Dijk matrix in terms of F and G
in order to calculate how a Gaussian image is transformed by the
various operations of weak lensing, according to equation (6). The
results are shown in Fig. 1, which displays the lensing operations
in order of their spin properties. The Gaussian galaxy is given a
radius (standard deviation) of 1 arcsec; while the convergence and
shear imposed on the galaxy are realistic (10 per cent in each case),
the flexion is deliberately chosen to be extraordinarily large for
visualization purposes (0.28 arcsec−1, cf. 0.04 arcsec−1 intrinsic
rms flexion on galaxies). We immediately see the shapes induced
by flexion: the first flexion leads to a (vectorial, spin-1) skewness,
while the second flexion leads to a threefold (spin-3) shape.

While the first flexion probes the local density via the gradi-
ent of the shear field, the spin-3 second flexion probes the non-
local part of the gradient of the shear field. For example, consider
a Schwarzschild lens: the first flexion is by definition zero every-
where except at the origin, as the gradient of the convergence is
zero everywhere except at the origin. However, there is certainly
‘arciness’ generated by such a lens; this is described by the sec-
ond flexion. We provide explicit expressions for the first and second
flexion generated by simple mass distributions in Sections 3 and 4.

Figure 1. Weak lensing distortions with increasing spin values. Here an
unlensed Gaussian galaxy with radius 1 arcsec has been distorted with
10 per cent convergence/shear, and 0.28 arcsec−1 flexion. Convergence is a
spin-0 quantity, first flexion is spin-1, shear is spin-2 and second flexion is
spin-3.

The series of lensing distortions can clearly be continued to
arbitrary order by taking permutations of additional spin-raising
and lowering derivatives. For instance, the next order of distor-
tion can be decomposed into three fields; a spin-4 field, ∂∂∂∂ψ ,
a spin-2 field, ∂∗∂∂∂ψ , and a spin-0 field, ∂∗∂∗∂∂ψ . The nth or-
der term can be decomposed into Int(1 + n/2) independent spin
fields with spins s = n, n − 2, n − 4, . . . , 0 if n is even or . . . 1
if odd. Consistency relations similar to those for F and G can be
found for all the higher spin fields, which can also be used to es-
timate the convergence field via Kaiser–Squires-like relations (see
Section 5).

However, in this paper we restrict ourselves to exploring the pos-
sibilities given by the first and second flexion. We now proceed to
consider how to measure flexion.

2.3 Shapelet measurement

Since the flexion is in terms of derivatives of the shear field, we
therefore require a means of measuring these derivatives, γ i,j.

We have found (Goldberg & Bacon 2005) that we can measure the
shear derivatives using the shapelet formalism of Refregier (2003b)
and Bernstein & Jarvis (2002), as applied to lensing by Refregier &
Bacon (2003).

We decompose galaxy images into shapelet coefficients, corre-
sponding to pre-factors for reduced Hermite polynomials:

f (θ) =
∑

n,m

fnm Bnm(θ) (18)

where

Bnm(θ; β) = β−1φn

(
β−1θ1

)
φm

(
β−1θ2

)
. (19)

Here β is a scalefactor chosen for the galaxy, and φn are reduced
Hermite polynomials.

Since these functions are eigenfunctions for the quantum har-
monic oscillator, we can define ladder operators as in quantum
mechanics

â1 |φn m〉 =
√

n |φn−1 m〉

â†
1 |φn m〉 =

√
n + 1 |φn+1 m〉 (20)
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The complex formalism provides a neat way to generalize the
analysis of distortions to higher orders. Taking the third derivative
of the lensing potential, we have the unique combinations

F = |F |eiφ = 1
2
∂∂∗∂ψ = ∂κ = ∂∗γ ,

G = |G|e3iφ = 1
2
∂∂∂ψ = ∂γ , (13)

where the first flexion, F , is a spin-1 field and the new second
flexion, G, is seen to be a spin-3 field. Here φ represents the position
angle determining the direction of the vector or spin-3 component.
Expanding the flexions in terms of the gradients of the shear field,
we find

F = (∂1γ1 + ∂2γ2) + i(∂1γ2 − ∂2γ1)

G = (∂1γ1 − ∂2γ2) + i(∂1γ2 + ∂2γ1). (14)

These two independent fields specify the weak ‘arciness’ of the
lensed image.

The complex representation allows us to find a consistency rela-
tion between the two flexion fields

∂∗∂G = ∂∂F , (15)

which can be used as a check on measurements of F and G.
We are also able to obtain a direct description of the third-order

lensing tensor Dijk. Defining F = F1 + iF2 and G = G1 + iG2 we
can then re-express Dijk as the sum of two terms Di jk = Fi jk +Gi jk ,
where the first (spin-1) term is

Fi j1 = −1
2

(
3F1 F2

F2 F1

)

Fi j2 = −1
2

(F2 F1

F1 3F2

)

(16)

and the second (spin-3) term is

Gi j1 = −1
2

(G1 G2

G2 −G1

)

Gi j2 = −1
2

( G2 −G1

−G1 −G2

)
.

(17)

In order to obtain a visual understanding of the flexion quantities,
we have used these forms for the Dijk matrix in terms of F and G
in order to calculate how a Gaussian image is transformed by the
various operations of weak lensing, according to equation (6). The
results are shown in Fig. 1, which displays the lensing operations
in order of their spin properties. The Gaussian galaxy is given a
radius (standard deviation) of 1 arcsec; while the convergence and
shear imposed on the galaxy are realistic (10 per cent in each case),
the flexion is deliberately chosen to be extraordinarily large for
visualization purposes (0.28 arcsec−1, cf. 0.04 arcsec−1 intrinsic
rms flexion on galaxies). We immediately see the shapes induced
by flexion: the first flexion leads to a (vectorial, spin-1) skewness,
while the second flexion leads to a threefold (spin-3) shape.

While the first flexion probes the local density via the gradi-
ent of the shear field, the spin-3 second flexion probes the non-
local part of the gradient of the shear field. For example, consider
a Schwarzschild lens: the first flexion is by definition zero every-
where except at the origin, as the gradient of the convergence is
zero everywhere except at the origin. However, there is certainly
‘arciness’ generated by such a lens; this is described by the sec-
ond flexion. We provide explicit expressions for the first and second
flexion generated by simple mass distributions in Sections 3 and 4.

Figure 1. Weak lensing distortions with increasing spin values. Here an
unlensed Gaussian galaxy with radius 1 arcsec has been distorted with
10 per cent convergence/shear, and 0.28 arcsec−1 flexion. Convergence is a
spin-0 quantity, first flexion is spin-1, shear is spin-2 and second flexion is
spin-3.

The series of lensing distortions can clearly be continued to
arbitrary order by taking permutations of additional spin-raising
and lowering derivatives. For instance, the next order of distor-
tion can be decomposed into three fields; a spin-4 field, ∂∂∂∂ψ ,
a spin-2 field, ∂∗∂∂∂ψ , and a spin-0 field, ∂∗∂∗∂∂ψ . The nth or-
der term can be decomposed into Int(1 + n/2) independent spin
fields with spins s = n, n − 2, n − 4, . . . , 0 if n is even or . . . 1
if odd. Consistency relations similar to those for F and G can be
found for all the higher spin fields, which can also be used to es-
timate the convergence field via Kaiser–Squires-like relations (see
Section 5).

However, in this paper we restrict ourselves to exploring the pos-
sibilities given by the first and second flexion. We now proceed to
consider how to measure flexion.

2.3 Shapelet measurement

Since the flexion is in terms of derivatives of the shear field, we
therefore require a means of measuring these derivatives, γ i,j.

We have found (Goldberg & Bacon 2005) that we can measure the
shear derivatives using the shapelet formalism of Refregier (2003b)
and Bernstein & Jarvis (2002), as applied to lensing by Refregier &
Bacon (2003).

We decompose galaxy images into shapelet coefficients, corre-
sponding to pre-factors for reduced Hermite polynomials:

f (θ) =
∑

n,m

fnm Bnm(θ) (18)

where

Bnm(θ; β) = β−1φn

(
β−1θ1

)
φm

(
β−1θ2

)
. (19)

Here β is a scalefactor chosen for the galaxy, and φn are reduced
Hermite polynomials.

Since these functions are eigenfunctions for the quantum har-
monic oscillator, we can define ladder operators as in quantum
mechanics

â1 |φn m〉 =
√

n |φn−1 m〉

â†
1 |φn m〉 =

√
n + 1 |φn+1 m〉 (20)

C© 2005 The Authors. Journal compilation C© 2005 RAS, MNRAS 365, 414–428
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We now test the level of accuracy that may be achieved with this
method.

5.3 Testing shear and flexion raytracing

When performing real-space raytracing as described in Section 5.2,
we use the lens equation to map from the image pixel positions
back to a non-regular grid of positions in the source plane. At these
points we sample the surface brightness from the shapelet model
of the source galaxy I(s). Ignoring the overall deflection of galaxy
images (equivalent to setting θc = θ

′
c = 0), and using equation

(3), we may write

I(θ) = I(s)(θ′) = I(s)(Ai,jθj +Dijkθjθk/2). (20)

In practical terms the raytracing scheme is simple: we assign I(θ)
for each desired image pixel position θ by taking the shapelet
model value of I(s) at the position θ′ = θ

′(θ, γ,F ,G).
Square pixels in the image plane do not map to square pix-

els in the source plane, and when flexion is included with shear
the mapped pixel boundaries become curved in the source plane.
This means that it is no longer possible to use the results of
Massey & Refregier (2005) to perform the exact flux integral of
I(θ) across each pixel. In the simplest approximation one can
adopt the pixel-centre surface brightness to estimate flux but more
accurate results can be achieved by upsampling, i.e., by creating
a higher-resolution image and then summing values at the high-
resolution subpixel locations to estimate the true integral. This al-
lows approximation of the exact shear and flexion transformation
to an accuracy that depends on the degree of upsampling adopted.

We can only upsample by a finite, preferably integral, factor.
In order to understand what factor is necessary in our simulations
we now test its impact upon fundamental lensing measures (e.g.
image moments) for noise-free ACS galaxy models.

We first extracted a random sample of 1000 galaxies from the
HUDF starter set. For each galaxy, a control postage stamp image
was constructed by integrating across ACS imaging survey-size,
post-drizzling pixels (0.03 arcsec, as used in the HUDF, COSMOS,
GEMS and STAGES final science images; see Beckwith et al.
2006; Leauthaud et al. 2007; Caldwell et al. 2008; Gray et al.
2009) using the exact Massey & Refregier (2005) analytic results.
We refer to this ‘true’ pixelized control image as I(t). Simple, un-
weighted moments for such images may be defined as follows

S =

∫

d2θI(θ), (21)

qij =
1
S

∫

d2θ∆θi∆θjI(θ), (22)

qijk =
1
S

∫

d2θ∆θi∆θj∆θkI(θ), (23)

qijkl =
1
S

∫

d2θ∆θi∆θj∆θk∆θlI(θ), (24)

where ∆θ = θ − θc as before. In the noise-free case the un-
weighted moments can be used to construct complex polariza-
tion measures that provide estimators of shear and flexion (e.g.
Kaiser et al. 1995; Bartelmann & Schneider 2001; Okura et al.
2007).

We construct the unweighted polarization

e = e1 + ie2 =
q11 − q22 + 2iq12

q11 + q22
, (25)

Figure 4. Testing the impact of upsampling ratio for generating images
of lensed (by shear and flexion) galaxies using multiple ‘ray-traced’ im-
age samples. Plot of median fractional error in simple unweighted e (top
panel), f (centre panel) and g (bottom panel) estimators, for a sample of
1000 galaxies randomly selected from the starter set, with increasing up-
sampling ratios r as described in Section 5.3. Each δei, δfi etc. is cal-
culated by comparing the upsampling-derived value relative to the exact
(analytically integrated) value. The wide solid error bars on each point give
the standard error on the median (Lupton 1993), whereas the dashed error
bars illustrate the typical range of the effect as described by the normalized
median absolute deviation (NMAD) of the fractional error.

(see, e.g., Kaiser et al. 1995; Bartelmann & Schneider 2001) and,
following Okura et al. (2007), we define

f = f1 + if2 =
q111 + q122 + i(q112 + q222)

q1111 + 2q1122 + q2222
, (26)

g = g1 + ig2 =
q111 − 3q122 + i(3q112 − q222)

q1111 + 2q1122 + q2222
(27)

as equivalent measures for F and G respectively. We require that
any finite degree of upsampling must cause fractional errors in e,
f and g that are significantly smaller than those we expect due to
noise in the final simulation results.

The first step in the test is to calculate control values e(t), f (t)

and g(t) using the moments as defined in equations (21)-(27) for
each control image I(t) from the sample of HUDF starter galaxies.
We then make a series of raytraced estimates Ir of I(t) by perform-
ing a numerical integral of the flux across the upsampled pixels.
We define the upsampling ratio r as the ratio between the linear
scale of output pixels and that of the sub-pixels in the upsampled
image: r = 1 is equivalent to simply taking the central pixel value;
r = 2 is equivalent to four equally spaced sub-pixels; etc. For each

c© 0000 RAS, MNRAS 000, 000–000
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Figure 8. Lensing measurement calibration results from the full set of simu-
lated galaxies in matched, rotated pairs, for γ̃ (top panel), F̃ (central panel),
and G̃ (bottom panel).

shear estimation methods in the GREAT challenges (Bridle et al.
2010; Kitching et al. 2012), although there are a number of dif-
ferences between these simulations and those used in GREAT08
and GREAT10 (e.g. correlated noise; the distribution of galaxy
sizes and signal-to-noise; overlapping objects; a purely circular
PSF). For flexion we detect stronger multiplicative biases, finding
m = −0.340 ± 0.053 for the median of the F estimators, and
m = −0.45 ± 0.21 for the median of the G estimators. Such bi-
ases are comparable to those identified by Velander et al. (2011),
for galaxies based on analytic profiles and a different distribution
of sizes and SNR values. We now discuss the variation of our mea-
sured estimator biases as a function of these properties.

Figure 9.Variation of multiplicative biasm (triangular points) and additive
bias c (diamond points) in shear and flexion estimation versus ‘observed’
SNR for the simulation galaxies (see equation 32). SNR bins were chosen
to give equal numbers of galaxy in each bin: the increase in errors for low
SNR objects is due to the increasing scatter in individual estimates. Solid,
horizontal lines through points show the extent of each bin.

6.4 Dependence of bias on noise and apparent galaxy size

In Figure 9 we plot the dependence of the multiplicative bias m
and additive bias c (see equation 32) upon observed galaxy signal-
to-noise ratio (SNR) for pair-matched shear and flexion estimates
from the simulations. Here, SNR is defined in terms of the SEX-
TRACTOR output parameters FLUX AUTO and FLUXERR AUTO as

SNR =
FLUX AUTO

FLUXERR AUTO
× 1/

√
0.316, (33)

where the scaling factor 1/
√
0.316 is taken from Leauthaud et al.

(2007) and adjusts SNR in drizzled HST images to account for cor-
related noise, adding the assumption that excess Poisson variance
due to object flux above the background is negligible (it is not in-
cluded in our simulations). This is only an approximate correction,
based on a simplified model (Casertano et al. 2000) and an assump-
tion that the COSMOS drizzling approach closely resembles that
used in the GEMS noise mosaic (it does, although there is a small
difference in the kernel used for the Mk II GEMS reduction; see

c© 0000 RAS, MNRAS 000, 000–000
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Figure 4. The galaxy-galaxy lensing results for the COSMOS data, using a maximum Shapelets order of nmax = 10. Black solid points represent the
tangential signal and green circles represent the cross term. The pink circles represent the tangential signal if we apply the multiplicative bias correction
implied by FLASHES. Note that the SIS and NFW profiles have been fitted to the shear data and then translated into predictions for F and G curves.

Figure 5. Comparison between the galaxy-galaxy shear and flexion signals
with and without Bright Object Removal, showing the non-zero correction
to the innermost F flexion bin (corresponding to roughly 40 px in Figure 3).
Black solid points represent the difference between the signals before and
after correction, with the F flexion in units of kpc−1, whilst green circles
represent the cross term.

ing into account both source S/N and brightness profiles, requires
further investigation.

5.4 Removing Bright Objects

We now explore the tendency of the F flexion points to lie above
the predicted profiles. As shown in Section 4.3, the shape mea-
sured may be affected by bright objects nearby. We implement
BOR in our COSMOS analysis to see the effect on real data. For
very well resolved objects, prominent spiral arms and other com-
plications cause GALFIT to reject the single Sérsic profile fit. Re-
moving these objects, and the residual light from the wings of the
profile (Figure 3), requires a more sophisticated model. For now
we are only interested in a rough indication of the impact this light
leakage has on a galaxy-galaxy signal so we will not correct for the
few large objects in this paper. However, as shown in Figure 5, the
correction to the innermost F flexion bin is non-zero even without
accounting for the very large objects. The shear is largely unaf-
fected, but for flexion analyses in future deeper and larger surveys
it will be important to correct for this effect.

Figure 6. Simulated shear and flexion signals azimuthally averaged in
galaxy haloes with and without TSIS subhaloes. Grey stars, circles and
triangles represent the binned shear, F flexion and G flexion respectively.
Purple, pink and green lines represent the shear, F flexion and G flexion
signal if the halo is a smooth SIS (dashed). The solid lines are an SIS pro-
file as fitted to the shear data points in a simulated galaxy containing TSIS
subhaloes and translated into predictions for the flexions.

5.5 The Effect of Substructure

Since flexion is more sensitive to the underlying mass distribution
on small scales than shear is, we expect it to respond differently
to the presence of substructure in galaxy haloes. To test whether
this has any impact on our analysis we take a galaxy-size SIS halo
(see B06, for shear and flexion expressions) and populate it with
subhaloes, allowing 20% of the mass to be in substructure. The
total mass of the halo is 1012 h−1M" and the galaxy is placed
at z = 0.35 with Dl/Dls = 0.5. We spread the substructure
mass over 100 subhaloes, randomly distributed according to an SIS
density profile. Finally we average the azimuthally averaged sig-
nal over 100 such galaxies. Now, subhaloes are generally stripped.
To approximate this we use a Truncated SIS (TSIS) profile for the

c© 2010 RAS, MNRAS 000, 1–13
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F=0.009-i0.002;G=0.001+i0.014



Next Step

We have to figure our a new high moment 
measurement method, because a gaussian 
adaptive moment can weight out flexion 
information

Various systematics: PSF, Poisson noise, light 
from central galaxy... ...



Conclusion
Accurate image processing are needed to 
constraints the systematics under 1% which 
is comparable to the statistical error for 
LSST 

Group-galaxy lensing study preliminary 
results shows that the most massive galaxies 
are closer to the real potential center

Moderate flexion can be a powerful tool to 
study substructures and complementary to 
g-g lensing shear



Thank you!


