TraceR: A Parallel Trace Replay Tool for Studying Interconnection Networks

Bilge Acun, PhD Candidate
Department of Computer Science
University of Illinois at Urbana-Champaign

*Contributors: Nikhil Jain, Abhinav Bhavele, Misbah Mubarak, Christopher D. Carothers, and Laxmikant V. Kale
Network Simulation

• **Motivation:**
 • Design of the future supercomputers
 • Node architecture
 • Interconnection network
 • Predict application performance
 • On existing – non existing architectures

• **State-of-the art:**
 • Discrete event based simulation
 • Not parallel or scalable
 • Large memory footprints
 • Cannot simulate real HPC workloads
 • Synthetic communication patterns
 • Skeletonized codes
From BigSim to TraceR

BigSim\(^1\) (2004)

- One of earliest packet level simulators
- BigSim Emulator and Simulator
- Extrapolation
- Charm++ and AMPI applications

BigNetSim\(^2\)

- Contention based network models
- Pluggable network modules
- POSE PDES engine
- Has multi-job simulation feature

TraceR\(^3\) (2015)

- BigSim Emulator
- Charm++ and AMPI applications
- ROSS PDES engine
- CODES network models

TraceR: Trace Replay

- A trace-driven simulator
 - Optimistic parallel discrete-event simulation (PDES)
 - For real HPC traffic workloads
- Outperforms state-of-the-art simulators
 - BigNet-Sim, SST
- Scalable
 - Simulate execution on half a million nodes in under 10 minutes using 512 cores
TraceR Components

- **Input**
 - AMPI & Charm++
 - PDES parameters
 - Network Configuration
 - Application Traces from BigSim

- **TraceR**
 - ACCURATE packet level network models;
 - Torus, Dragonfly, ...
 - PDES Framework

- **Output**
 - Performance Prediction
 - Dimensions, bandwidth, packet size, ...

PDES Framework

Application Traces from BigSim

Network Configuration

PDES parameters

AMPI & Charm++

Dimensions, bandwidth, packet size, ...

TraceR

Performance Prediction
TraceR Components

- **Input**
 - Application Traces from BigSim
 - PDES parameters
 - Network Configuration
 - AMPI & Charm++

- **TraceR**
 - CODES
 - ROSS

- **Output**
 - Performance Prediction
 - Dimensions, bandwidth, packet size, ...
 - Accurate packet level network models; Torus, Dragonfly, ...
 - PDES Framework
BigSim Trace Format

- Entry for each Sequential Execution Block (SEB)

Time Stamp, Task ID, Name, Duration, ..., Msg ID, Source Node, ..., Back&Forward Dep.

-1.000000 47 AMPI_Bcast--time:5960 0.000006 ... $B 46 $F 53
0.001148 48 start-broadcast--time:0 0.000000 ... $B $F 49
-1.000000 49 AMPI_generic--time:3099 0.000003 .. $B 48 $F 50 52
-1.000000 50 end-broadcast--time:0 0.000000 ... $B 49 $F
0.001151 51 msgep--time:953 0.000001 ... $B $F
0.001154 52 RECV_RESUME--time:953 0.000001 ... $B 49 $F 53
-1.000000 60 user_code--time:0 0.000000 ... $B 59 54 $F 61
Experimental Results

• Scaling results are done with Blue Waters at UIUC
• Prediction study results are with Vulcan at LLNL

• Applications:
 • 3D Stencil:
 • AMPI application
 • 7 point Jacobi relaxation on 3D grid
 • 128 x 128 x 128 grid points per MPI process -> 128KB msgs

• LeanMD:
 • Charm++ application
 • Mini-app version of NAMD molecular dynamics simulation
 • Mimics short-range force calculations of NAMD
 • 1.2 million atoms
Sequential Comparison of Simulators

Comparison of BigNetSim, SST and TraceR

Time (s)

Number of simulated 3D torus nodes

Skeletonized MPI code
Conservative vs. Optimistic

TraceR: 3D Stencil simulation of 4K nodes

Execution Time (s)

Number of cores

Cons. 3D TorusNet
Cons. SimpleNet
Opt. 3D TorusNet
Opt. SimpleNet
TraceR Scaling w/ AMPI app.

3D Stencil simulation using SimpleNet

Time (s)

Number of cores

512K
32K
128K
8K
TraceR Scaling w/ AMPI app.

3D Stencil simulation using 3D TorusNet

Time (s)

Number of cores

512K - Red
32K - Blue
128K - Green
8K - Black

10000
1000
100
10

1 2 4 8 16 32 64 128 256 512
Event Efficiency

TraceR: 3D Stencil simulation

Event efficiency(%) = \left(1 - \frac{\#rolled~back~events}{\#committed~events}\right) \times 100
TraceR Performance Prediction w/ Charm++ app.

Prediction accuracy for LeanMD (5D TorusNet)

Time per step (s)

Number of nodes

Actual Runtime

Predicted Runtime

Error %

2%

2%

2%

9%

7%
Ongoing Work and Summary

• **Ongoing & future work:**
 - User defined extrapolation
 - Modifications to CODES for extra data
 - Fat-tree network model
 - Integrated into CODES
 - Multiple job simulations
 - Effect of multiple jobs in the network
 - More realistic scenario
 - Switch to Charm++ based ROSS from MPI based ROSS

• **TraceR feature highlights:**
 - A parallel, trace-driven, scalable network simulator
 - Support for various topologies: Torus, Dragonfly, Fat-tree
 - Simulate AMPI, Charm++ applications
 - Can simulate half a million nodes in minutes
Thank you!

- TraceR source code:
 - http://charm.cs.uiuc.edu/gerrit/#/admin/projects/tracer
Event Rate: million events/s

3D Stencil simulation on 8K nodes of 3D TorusNet

Event rate (million events/s)

Batch size (no. of events)
Efficiency

3D Stencil simulation on 8K nodes of 3D TorusNet

Event Efficiency (%) vs. Batch size (no. of events)

- GVT 16
- GVT 64
- GVT 256
- GVT 1024
- GVT 4096
Definitions and Evaluation Metrics

Definitions:

- **PE:** simulated process, logical process (LP) visible to ROSS
- **Task:** sequential execution block (SEB)
- **Event:** represents an action with a time-stamp in the PDES
 - Kickoff Event, Message Recv Event, Completion Event
- **Reverse Handler:** responsible for reversing the effect of an event

Metrics:

- **Execution time:** time spent in performing the simulation
- **Event rate:** number of events executed per second (excl. roll backs)
- **Event efficiency:** (or rollback efficiency)

\[
\text{Event efficiency(\%)} = \left(1 - \frac{\#\text{rolled back events}}{\#\text{committed events}}\right) \times 100
\]
TraceR: Execution flow

First task

1. Execute Task
2. Send message to other PEs
3. Schedule completion event
 - Completion Event
 - Message Recv Event
4. Receive message from other PEs

TraceR functions

ROSS Events
Trace Reading Time

- Insignificant overhead with increasing number of cores!
TraceR Scaling w/ Charm++ app.

LeanMD simulation on 32K nodes of 5D TorusNet

Time (s)

Number of cores