FatTreeSim: Modeling Large-scale Fat-Tree Networks for HPC Systems and Data Centers Using Parallel & Discrete Event Simulation

Ning Liu, Adnan Haider, Xian-He Sun, Dong (Kevin) Jin
Outline

• Why do we choose to model fat-tree networks?
 - Introduction/Motivation

• How do we design and implement FatTreeSim?
 - Design/Implementation

• How do we evaluate the system?
 - Evaluation/Conclusion
Introduction

• Fat-tree networks
 - Invented by Charles E. Leiserson of MIT
 - Widely used in Datacenters
 - Will be used in next generation supercomputers.

• Many issues rises as fat-tree network grows to extreme-scale
 - scalability/fault tolerance/load balance etc.

Motivation

- Big data
 - Most data are stored and processed in datacenters
 - Most traffic (75%) is internal traffic
 - There is a pressing need to understand the performance of fat-tree network at scale
 - Redesign the architecture and algorithms

Motivation cont’d

• Next generation supercomputers: OLCF SUMMIT
 - A collaboration between OLCF, IBM, Mellanox and NVIDIA
 - An investment of over 300 million dollars
 - Adopt fat-tree as the interconnection network provided by Mellanox
 - FatTreeSim can assist in evaluating the network performance, serve as the platform for building app models
Why do we build FatTreeSim?

• Support the design of datacenters and HPC systems
 - Understand the design constraints and trade-offs
 - Characterize the challenges to the scalability of extreme-scale system
 - Explore various possibilities at extreme-scale in a time and budget efficient manner

• Support the design of parallel & distributed applications
 - Predict and optimize the performance at extreme-scale
 - Qualitatively analyze the interactions between system software and hardware and the impact on applications
Background: ROSS

- ROSS: Rensselaer Optimistic Simulation System
 - Designed in C, the interface is lean
 - Features optimistic simulation using reverse computation
 - Runs on supercomputers like ALCF Blue Gene series
 - Used by many other projects
Background: CODES

- CODES: Enabling Co-Design of Multilayer Exascale Storage Architectures

- CODES Goal:
 - Develop a simulation framework for evaluating exascale storage design challenges

- CODES components:
 - CODES-net/CODES-wkld/CODES-lsm/CODES-base
FatTreeSim in CODES

• CODES is built on ROSS
 - Leverage the parallel simulation engine and other functionalities

• FatTreeSim
 - Is a part of CODES-net and in parallel with other network modules
Design

- Use LPs to model switches and servers
- Use events to model packets flow
- Implement ECMP in switch LP
Selected Procedure

- We use different procedures to model system behaviors in fat-tree networks.

- We use random destination and nearest neighbor to represent a variety of traffic patterns in datacenters and supercomputer.

procedure GT \triangleright generate packet stream
 $t =$processing delay
 $\tau = rng(I)$
 if RandomDestinationTraffic then
 $dst = rng(maxnodeID)$
 Generate packet (header contains dst)
 else if NearestNeighborTraffic then
 $dst = neighborID$
 Generate packet (header contains dst)
 else
 Unsupported traffic
 end if
 Call NSP procedure with t
 Call GT procedure with τ
end procedure
Emulab

• Emulab is a network testbed, giving researchers a wide range of environments in which to develop, debug, and evaluate their systems.

• An emulated experiment allows you to specify an arbitrary network topology, giving you a controllable, predictable, and repeatable environment, including PC nodes on which you have full "root" access, running an operating system of your choice.
Evaluation on Emulab

- Traffic pattern is random destination and nearest neighbor.
- Configuration is 4-port 2 tree, 4-port 3-tree, and 8-port 3-tree.
Blue Gene/Q: Mira

• Facts about Mira:
 - DOE supercomputer located at Argonne National Lab, Chicago
 - Mira ranks 5th as of Nov. 2014 in the top 500 list
 - Deliver a peak rate of 10 PFlop/s
 - Total number of cores is 0.78 million

• Run FatTreeSim with Mira:
 - Both ROSS and CODES can run on BG series supercomputers
 - Scalability and load balance are our concerns
Evaluation on BG/Q

• Traffic pattern is random destination. Packet arrival rate is 1600 ns.

• Demonstrate near linear scalability in c8 mode, and observe a performance drop in 16K cores in c16 mode.
YARNsim

- A simulation system for Hadoop YARN
- Still in development
- Can simulate basic Hadoop and HDFS services
- Paper published in CCGrid 2015
Evaluation on YARNsim

- Demonstrate FatTreeSim can be used by YARNsim

- Hadoop benchmarks: Wordcount and Terasort

- Achieve good accuracy for basic benchmark tests
Conclusion and Future work

• FatTreeSim accomplished goals:
 - It serves as one CODES network module
 - It is accurate as verified in Emulab using real traffic
 - It scales to 32K cores on ALCF BG/Q system, peak event-rate is 305 M/s, total nodes is 0.5 million
 - It is accurate as verified in YARNsim system using Hadoop benchmarks and a bio-application

• FatTreeSim to-dos:
 - test dynamic routing algorithms, e.g. Hedera
 - model large-scale datacenter using FatTreeSim
 - model large-scale Hadoop applications and explore them using FatTreeSim
Acknowledgment

• Many thanks to
 - Dr. Christopher Carothers Rensselaer Polytechnic Institute
 - Dr. Jonathan Jenkins Argonne National Laboratory
 - Dr. Misbah Mubarak Argonne National Laboratory
 - Dr. Robert Ross Argonne National Laboratory