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• Why do we choose to model fat-tree networks? 
- Introduction/Motivation 

• How do we design and implement FatTreeSim? 
- Design/Implementation 

• How do we evaluate the system? 
- Evaluation/Conclusion
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Introduction

• Fat-tree networks 
- Invented by Charles E. 

Leiserson of MIT 
- Widely used in Datacenters 
- Will be used in next generation 

supercomputers. 

• Many issues rises as fat-tree 
network grows to extreme-
scale 
- scalability/fault tolerance/load 

balance etc.

3

3-level fat-tree · 432 servers, 180 switches, degree 12  
[1] https://reproducingnetworkresearch.wordpress.com/2012/06/04/jellyfish-vs-fat-tree/

https://reproducingnetworkresearch.wordpress.com/2012/06/04/jellyfish-vs-fat-tree/


Motivation

• Big data 
- Most data are stored and 

processed in datacenters 
- Most traffic (75%) is 

internal traffic 
- There is a pressing need to 

understand the performance 
of fat-tree network at scale 

- Redesign the architecture 
and algorithms
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Global data growth 
[2] http://www1.unece.org/stat/platform/display/msis/Big+Data

http://www1.unece.org/stat/platform/display/msis/Big+Data


Motivation cont’d

• Next generation supercomputers: OLCF SUMMIT  
- A collaboration between OLCF, IBM, Mellanox and NIVIDIA 
- An investment of over 300 million dollars 
- Adopt fat-tree as the interconnection network provided by 

Mellanox 
- FatTreeSim can assist in evaluating the network performance, 

serve as as the platform for building app models
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Why do we build FatTreeSim?

• Support the design of datacenters and HPC systems 
- Understand the design constraints and trade-offs  
- Characterize the challenges to the scalability of extreme-scale 

system 
- Explore various possibilities at extreme-scale in a time and 

budget efficient manner 

• Support the design of parallel & distributed applications 
- Predict and optimize the performance at extreme-scale 
- Qualitatively analyze the interactions between system software 

and hardware and the impact on applications 
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Background: ROSS

• ROSS: Rensselaer Optimistic Simulation System 
- Designed in C, the interface is lean 
- Features optimistic simulation using reverse computation 
- Runs on supercomputers like ALCF Blue Gene series 
- Used by many other projects
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Background: CODES
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• CODES: Enabling Co-Design 
of Multilayer Exascale Storage 
Architectures  

• CODES Goal: 
- Develop a simulation framework 

for evaluating exascale storage 
design challenges 

• CODES components: 
- CODES-net/CODES-wkld/

CODES-lsm/CODES-base



FatTreeSim in CODES

• CODES is built on ROSS 
- Leverage the parallel simulation engine and other functionalities 

• FatTreeSim 
- Is a part of CODES-net and in parallel with other network modules
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Design

• Use LPs to model switches and servers 

• Use events to model packets flow 

• Implement ECMP in switch LP
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Selected Procedure

• We use different 
procedures to model 
system behaviors in fat-
tree networks 

• We use random 
destination and nearest 
neighbor to represent a 
variety of traffic 
patterns in datacenters 
and supercomputer
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procedure GT . generate packet stream
t =processing delay
⌧ = rng(I)
if RandomDestinationTra�c then

dst = rng(maxnodeID)
Generate packet (header contains dst )

else if NearestNeighborTra�c then

dst = neighborID
Generate packet (header contains dst )

else

Unsupported tra�c
end if

Call NSP procedure with t
Call GT procedure with ⌧

end procedure

Figure 4: Procedure GT

bu↵ers currently use the store-and-forward technique, thus
the delay can be described using equation 1.

T = H · (D/B + Tp) + Ts (1)

Here, H is the number of hops the packet takes in its entire
route. In fat-tree network this number usually equals to the
number of hops in a minimal path. D is the packet size. B
is the link bandwidth. Equation 1 assumes the bandwidth
are equal between nodes or switches. In FatTreeSim, the
link bandwidth is configurable through a customized config-
uration file. Thus equation 1 can be slightly modified so as
to represent the most accurate cost. Tp is the average prop-
agation delay on links. This parameter is also configurable
in FatTreeSim.

3.4 Simulating the Fat-Tree Network
The key components in a fat-tree network system are switches
and processing nodes. In FatTreeSim, we use LP to model
switch and processing nodes. FatTreeSim only focuses on
the network topology and its related features and simplifies
the hardware components such as I/O system, CPU and
memory. The processing node LP can be considered as a
network interface card (NIC) in CODES system where de-
tailed hardware models are provided. We also use an addi-
tional LP (App LP) type to model an application software,
e.g. a MPI process or MapReduce task. The purpose is to
accurately capture the application layer behavior and thus
quantitatively model its e↵ects on the network layer. For
example, a group of MPI processes running on terminals
can issue a collective communication call which generates a
burst of packets in the network layer. In FatTreeSim, switch
LPs are classified as a core switch LP, intermediate-switch
LP and edge switch LP. This resembles a real fat-tree net-
work system. Edge-switch LP connects to processing-node
LP. The same group of switch LP and processing-node LP
share the same address prefix. For the convenience of pre-
sentation, we use procedures to describe the typical events
used in FatTreeSim and illustrate them in Figures 4 to 7.

The packet routing in FatTreeSim is based on the address-
ing system. A m-port n-tree fat-tree network has a total of

procedure NSP . node send packet
t = D/B + Tp

dst =my connected router
Call flit generates procedure with t and dst

end procedure

Figure 5: Procedure NSP

procedure RFR . router receives flit
t =processing delay
Check flit dst
Call RFS procedure with t

end procedure

Figure 6: Procedure RFR

m · (m/2)(n�1) processing nodes and (2n � 1) · (m/2)(n�1)

switches. Each node LP is assigned a unique n-bit address.
The first bit indicates the group number. mport means the
total number of groups is m. The rest n� 1 bits vary from
1 to (m� 1)/2. Thus the total number of processing nodes
inside each group is (m/2)(n�1). A switch LP is also as-
signed a unique n-bit address. The first bit also indicates
the group number. The last bit of the address indicates the
layer number, where 0 represents the core layer and n � 1
represents the edge layer. The rest n � 2 bits vary from 1
to (m � 1)/2. Thus the total number of switches in each
layer is 2 · (m/2)(n�1) with the exception that the core layer
has (m/2)(n�1) switches. The routing starts at the edge
switch LP and iterates through all the layers. At any layer,
if the first k bits of the destination node address matches
the first k bits of the address of the current switch, then
the packet starts to go down to the lower layer of the switch
or the processing node. Otherwise, the packet continues to
go to upper layer switch. When packets go up, there are
multi-paths to choose from. ECMP algorithm hashes the
packet header and find the corresponding egress port based
on the hash value. In [23], the authors validated the rout-
ing algorithms with analytical proof and experiments. With
the aforementioned scheme, the packet routing is based on
table look-up rather than pre-allocation, which could save
memory for storing LP state variables in FatTreeSim.

In ROSS and CODES, the LP is addressed through a global
ID in the form an unsigned long integer. This is di↵erent
from the bit-format address assigned to the LP in routing.
Thus, we convert addresses between the two formats and
guarantee the events are forwarded to the correct LPs.

The most important event in an App LP is the packet gener-
ation event. We describe this event in Fig. 4. GT procedure
models the communication patterns of an application. As
described in 3.2, FatTreeSim support two types of tra�c:
random destination and nearest neighbor. GT procedure
calls itself with an random interval. The intervals applies
to exponential distribution, therefore, the GT procedure is
capable of generating a Poisson input stream.

The NSP procedure illustrates a packet has been generated
in an App LP and is injected into the fat-tree network. NSP



Emulab

• Emulab is a network testbed, giving researchers a wide 
range of environments in which to develop, debug, and 
evaluate their systems. 

• An emulated experiment allows you to specify an 
arbitrary network topology, giving you a controllable, 
predictable, and repeatable environment, including PC 
nodes on which you have full "root" access, running an 
operating system of your choice.
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Evaluation on Emulab

• Traffic pattern is random 
destination and nearest 
neighbor. 

• Configuration is 4-port 2 
tree, 4-port 3-tree, and 8-
port 3-tree.
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Blue Gene/Q: Mira

• Facts about Mira: 
- DOE supercomputer located at Argonne 

National Lab, Chicago 
- Mira ranks 5th as of Nov. 2014 in the top 

500 list 
- Deliver a peak rate of 10 PFlop/s 
- Total number of cores is 0.78 million 

• Run FatTreeSim with Mira: 
- Both ROSS and CODES can run on BG 

series supercomputers 
-  Scalability and load balance are our 

concerns
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Evaluation on BG/Q

• Traffic pattern is random 
destination. Packet 
arrival rate is 1600 ns.  

• Demonstrate near linear 
scalability in c8 mode, 
and observe a 
performance drop in 16K 
cores in c16 mode.
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YARNsim
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• A simulation system for 
Hadoop YARN 

• Still in development 

• Can simulate basic 
Hadoop and HDFS 
services 

• Paper published in 
CCGrid 2015



Evaluation on YARNsim

• Demonstrate FatTreeSim 
can be used by YARNsim 

• Hadoop benchmarks: 
Wordcount and Terasort 

•  Achieve good accuracy for 
basic benchmark tests 
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Conclusion and Future work

• FatTreeSim accomplished goals:  
- It serves as one CODES network module 
- It is accurate as verified in Emulab using real traffic 
- It scales to 32K cores on ALCF BG/Q system, peak event-rate is 

305 M/s, total nodes is 0.5 million 
- It is accurate as verified in YARNsim system using Hadoop 

benchmarks and a bio-application 

• FatTreeSim to-dos: 
- test dynamic routing algorithms, e.g. Hedera 
- model large-scale datacenter using FatTreeSim 
- model large-scale Hadoop applications and explore them using 

FatTreeSim 
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