
FatTreeSim: Modeling Large-scale Fat-Tree
Networks for HPC Systems and Data

Centers Using Parallel & Discrete Event
Simulation

Ning Liu, Adnan Haider, Xian-He Sun, Dong (Kevin) Jin

Outline

• Why do we choose to model fat-tree networks?
- Introduction/Motivation

• How do we design and implement FatTreeSim?
- Design/Implementation

• How do we evaluate the system?
- Evaluation/Conclusion

2

Introduction

• Fat-tree networks
- Invented by Charles E.

Leiserson of MIT
- Widely used in Datacenters
- Will be used in next generation

supercomputers.

• Many issues rises as fat-tree
network grows to extreme-
scale
- scalability/fault tolerance/load

balance etc.

3

3-level fat-tree · 432 servers, 180 switches, degree 12
[1] https://reproducingnetworkresearch.wordpress.com/2012/06/04/jellyfish-vs-fat-tree/

https://reproducingnetworkresearch.wordpress.com/2012/06/04/jellyfish-vs-fat-tree/

Motivation

• Big data
- Most data are stored and

processed in datacenters
- Most traffic (75%) is

internal traffic
- There is a pressing need to

understand the performance
of fat-tree network at scale

- Redesign the architecture
and algorithms

4

Global data growth
[2] http://www1.unece.org/stat/platform/display/msis/Big+Data

http://www1.unece.org/stat/platform/display/msis/Big+Data

Motivation cont’d

• Next generation supercomputers: OLCF SUMMIT
- A collaboration between OLCF, IBM, Mellanox and NIVIDIA
- An investment of over 300 million dollars
- Adopt fat-tree as the interconnection network provided by

Mellanox
- FatTreeSim can assist in evaluating the network performance,

serve as as the platform for building app models

5

Why do we build FatTreeSim?

• Support the design of datacenters and HPC systems
- Understand the design constraints and trade-offs
- Characterize the challenges to the scalability of extreme-scale

system
- Explore various possibilities at extreme-scale in a time and

budget efficient manner

• Support the design of parallel & distributed applications
- Predict and optimize the performance at extreme-scale
- Qualitatively analyze the interactions between system software

and hardware and the impact on applications

6

Background: ROSS

• ROSS: Rensselaer Optimistic Simulation System
- Designed in C, the interface is lean
- Features optimistic simulation using reverse computation
- Runs on supercomputers like ALCF Blue Gene series
- Used by many other projects

7

Background: CODES

8

Application I/O Workloads

Exascale I/O Architecture Models

Compute Nodes
I/O Aggregation

Nodes

System Software

Storage Software

Models Real

I/O Software

Models Real

Storage

Network Models

Storage Device

Models

• CODES: Enabling Co-Design
of Multilayer Exascale Storage
Architectures

• CODES Goal:
- Develop a simulation framework

for evaluating exascale storage
design challenges

• CODES components:
- CODES-net/CODES-wkld/

CODES-lsm/CODES-base

FatTreeSim in CODES

• CODES is built on ROSS
- Leverage the parallel simulation engine and other functionalities

• FatTreeSim
- Is a part of CODES-net and in parallel with other network modules

9

torus
network
model

dragonfly
network
model

fat-tree
network
model

CODES

 ROSS

CODES-wkld CODES-net

CODES-base

sequential
simulation engine

conservative parallel
simulation engine

optimistic parallel
simulation engine

traffic
generator

Initializer:
topology,

bandwidth, etc

simulated
switch

statistic
collector

protocols

routing

algorithms

simulated
nodes

Design

• Use LPs to model switches and servers

• Use events to model packets flow

• Implement ECMP in switch LP

10

002

001000 003002

012

011010 013012

022

021020 023022

032

031030 033032

102

101100 103102

001 011 021 031 101

000 ...

...

...

...

ECMP

Selected Procedure

• We use different
procedures to model
system behaviors in fat-
tree networks

• We use random
destination and nearest
neighbor to represent a
variety of traffic
patterns in datacenters
and supercomputer

11

procedure GT . generate packet stream
t =processing delay
⌧ = rng(I)
if RandomDestinationTra�c then

dst = rng(maxnodeID)
Generate packet (header contains dst)

else if NearestNeighborTra�c then

dst = neighborID
Generate packet (header contains dst)

else

Unsupported tra�c
end if

Call NSP procedure with t
Call GT procedure with ⌧

end procedure

Figure 4: Procedure GT

bu↵ers currently use the store-and-forward technique, thus
the delay can be described using equation 1.

T = H · (D/B + Tp) + Ts (1)

Here, H is the number of hops the packet takes in its entire
route. In fat-tree network this number usually equals to the
number of hops in a minimal path. D is the packet size. B
is the link bandwidth. Equation 1 assumes the bandwidth
are equal between nodes or switches. In FatTreeSim, the
link bandwidth is configurable through a customized config-
uration file. Thus equation 1 can be slightly modified so as
to represent the most accurate cost. Tp is the average prop-
agation delay on links. This parameter is also configurable
in FatTreeSim.

3.4 Simulating the Fat-Tree Network
The key components in a fat-tree network system are switches
and processing nodes. In FatTreeSim, we use LP to model
switch and processing nodes. FatTreeSim only focuses on
the network topology and its related features and simplifies
the hardware components such as I/O system, CPU and
memory. The processing node LP can be considered as a
network interface card (NIC) in CODES system where de-
tailed hardware models are provided. We also use an addi-
tional LP (App LP) type to model an application software,
e.g. a MPI process or MapReduce task. The purpose is to
accurately capture the application layer behavior and thus
quantitatively model its e↵ects on the network layer. For
example, a group of MPI processes running on terminals
can issue a collective communication call which generates a
burst of packets in the network layer. In FatTreeSim, switch
LPs are classified as a core switch LP, intermediate-switch
LP and edge switch LP. This resembles a real fat-tree net-
work system. Edge-switch LP connects to processing-node
LP. The same group of switch LP and processing-node LP
share the same address prefix. For the convenience of pre-
sentation, we use procedures to describe the typical events
used in FatTreeSim and illustrate them in Figures 4 to 7.

The packet routing in FatTreeSim is based on the address-
ing system. A m-port n-tree fat-tree network has a total of

procedure NSP . node send packet
t = D/B + Tp

dst =my connected router
Call flit generates procedure with t and dst

end procedure

Figure 5: Procedure NSP

procedure RFR . router receives flit
t =processing delay
Check flit dst
Call RFS procedure with t

end procedure

Figure 6: Procedure RFR

m · (m/2)(n�1) processing nodes and (2n � 1) · (m/2)(n�1)

switches. Each node LP is assigned a unique n-bit address.
The first bit indicates the group number. mport means the
total number of groups is m. The rest n� 1 bits vary from
1 to (m� 1)/2. Thus the total number of processing nodes
inside each group is (m/2)(n�1). A switch LP is also as-
signed a unique n-bit address. The first bit also indicates
the group number. The last bit of the address indicates the
layer number, where 0 represents the core layer and n � 1
represents the edge layer. The rest n � 2 bits vary from 1
to (m � 1)/2. Thus the total number of switches in each
layer is 2 · (m/2)(n�1) with the exception that the core layer
has (m/2)(n�1) switches. The routing starts at the edge
switch LP and iterates through all the layers. At any layer,
if the first k bits of the destination node address matches
the first k bits of the address of the current switch, then
the packet starts to go down to the lower layer of the switch
or the processing node. Otherwise, the packet continues to
go to upper layer switch. When packets go up, there are
multi-paths to choose from. ECMP algorithm hashes the
packet header and find the corresponding egress port based
on the hash value. In [23], the authors validated the rout-
ing algorithms with analytical proof and experiments. With
the aforementioned scheme, the packet routing is based on
table look-up rather than pre-allocation, which could save
memory for storing LP state variables in FatTreeSim.

In ROSS and CODES, the LP is addressed through a global
ID in the form an unsigned long integer. This is di↵erent
from the bit-format address assigned to the LP in routing.
Thus, we convert addresses between the two formats and
guarantee the events are forwarded to the correct LPs.

The most important event in an App LP is the packet gener-
ation event. We describe this event in Fig. 4. GT procedure
models the communication patterns of an application. As
described in 3.2, FatTreeSim support two types of tra�c:
random destination and nearest neighbor. GT procedure
calls itself with an random interval. The intervals applies
to exponential distribution, therefore, the GT procedure is
capable of generating a Poisson input stream.

The NSP procedure illustrates a packet has been generated
in an App LP and is injected into the fat-tree network. NSP

Emulab

• Emulab is a network testbed, giving researchers a wide
range of environments in which to develop, debug, and
evaluate their systems.

• An emulated experiment allows you to specify an
arbitrary network topology, giving you a controllable,
predictable, and repeatable environment, including PC
nodes on which you have full "root" access, running an
operating system of your choice.

12

Evaluation on Emulab

• Traffic pattern is random
destination and nearest
neighbor.

• Configuration is 4-port 2
tree, 4-port 3-tree, and 8-
port 3-tree.

13

Blue Gene/Q: Mira

• Facts about Mira:
- DOE supercomputer located at Argonne

National Lab, Chicago
- Mira ranks 5th as of Nov. 2014 in the top

500 list
- Deliver a peak rate of 10 PFlop/s
- Total number of cores is 0.78 million

• Run FatTreeSim with Mira:
- Both ROSS and CODES can run on BG

series supercomputers
- Scalability and load balance are our

concerns

14

Evaluation on BG/Q

• Traffic pattern is random
destination. Packet
arrival rate is 1600 ns.

• Demonstrate near linear
scalability in c8 mode,
and observe a
performance drop in 16K
cores in c16 mode.

15

0%
20%
40%
60%
80%
100%

0
50

100
150
200
250
300

Ef
fic

ie
nc

y

Ev
en

t R
at

e
(M

/s
ec

)

Number of Cores

Event Rate Efficiency

YARNsim

16

AMS

HDFS

Apps

YARN

MR MPI

NN CLT

MAP

RED

NM

AM RS

DN

• A simulation system for
Hadoop YARN

• Still in development

• Can simulate basic
Hadoop and HDFS
services

• Paper published in
CCGrid 2015

Evaluation on YARNsim

• Demonstrate FatTreeSim
can be used by YARNsim

• Hadoop benchmarks:
Wordcount and Terasort

• Achieve good accuracy for
basic benchmark tests

17

Conclusion and Future work

• FatTreeSim accomplished goals:
- It serves as one CODES network module
- It is accurate as verified in Emulab using real traffic
- It scales to 32K cores on ALCF BG/Q system, peak event-rate is

305 M/s, total nodes is 0.5 million
- It is accurate as verified in YARNsim system using Hadoop

benchmarks and a bio-application

• FatTreeSim to-dos:
- test dynamic routing algorithms, e.g. Hedera
- model large-scale datacenter using FatTreeSim
- model large-scale Hadoop applications and explore them using

FatTreeSim

18

Acknowledgment

• Many thanks to
- Dr. Christopher Carothers Rensselaer Polytechnic Institute
- Dr. Jonathan Jenkins Argonne National Laboratory
- Dr. Misbah Mubarak Argonne National Laboratory
- Dr. Robert Ross Argonne National Laboratory

19

