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ROSS data collection

 Reverse computation adds complexity to 
development of simulations

 Need help tuning and debugging

 Add data collection to ROSS that will give us 
more insight to the behavior of the 
simulation engine

 Connect simulation-level data with model-
level data to understand the correlations 
between the two
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What’s been done so far

 GVT collection

 Collect immediately after GVT computation

 # events processed, rollbacks, ties, remote 
events, remote sends and recvs

 Real time collection

 User specifies how often to sample

 Collect during batch processing

 How far KPs are ahead of GVT, cycle counters, 
forward events, reverse events, rollbacks



What’s been done so far

 These can be run independently or together

 Vis2 branch on ROSS GitHub repo

 Turned off by default
 --enable-gvt-stats=1

 --real-time-samp=n, where n is time in 

milliseconds

 Collected data stored in a buffer

 Configurable size and when to dump



I/O

 All writing takes place just after GVT

 Output is in binary

 Uses MPI I/O

 One file per simulation

 Right now using our own format

 Switch to an established format in the future?



Challenges

 Don’t want to perturb simulation

 Too much could slow down the simulation 
enough that the rollback behavior changes 
drastically

 Too much data to store/transfer

 Long running simulations, large-scale models 
means we can’t collect everything at a fine 
granularity



How to deal with these challenges?

 Perform as much work as possible 
immediately after GVT

 Store collected data in a buffer and only 
write out when it’s full

 Only collect fine grained data when 
‘something interesting happens’



In Progress

 Preliminary testing of data collection

 Compare to non-instrumented ROSS

 So far we’ve seen minimal decrease (1%) of 
rollbacks in most cases we’ve tested

 Developing use cases for this data collection 
for the dragonfly model

 How to best show the 4 views discussed 
previously?
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 Configuration file: collect only specific data the user 
wants

 Allow the user to trade between performance and 
data capture

 Let the user define situations where they want to 
collect data at a finer granularity



Thank You!
Questions?


