
Data Collection for Performance Analysis and 
Visualization of ROSS/CODES Simulations

Caitlin Ross and Christopher Carothers
Rensselaer Polytechnic Institute

Kelvin Li and Kwan-Liu Ma
University of California, Davis

Misbah Mubarak and Robert Ross
Argonne National Laboratory



ROSS data collection

 Reverse computation adds complexity to 
development of simulations

 Need help tuning and debugging

 Add data collection to ROSS that will give us 
more insight to the behavior of the 
simulation engine

 Connect simulation-level data with model-
level data to understand the correlations 
between the two



4 Views of PDES

Global 
Speculative

Local 
Speculative

Local 
Committed

Global 
Committed



4 Views of PDES

Global 
Speculative

Local 
Committed

Global 
Committed

Local Speculative

• PDES written from this view

• Collect during batch 
processing of events

• Model can reach invalid states



4 Views of PDES

• PDES written from this view

• Collect during batch 
processing of events

• Model can reach invalid states

Local 
Committed

Global 
Committed

Global Speculative
• Max, min, avg, mode

• Helpful for performance 
analysis and debugging

• Observe load balance of 
system, impact of rollbacks

Local Speculative



4 Views of PDES

• PDES written from this view

• Collect during batch 
processing of events

• Model can reach invalid states

Global 
Committed

Global Speculative
• Max, min, avg, mode

• Helpful for performance 
analysis and debugging

• Observe load balance of 
system, impact of rollbacks

Local Speculative

Local Committed

• Helpful for understanding 
model behavior

• Collect just after GVT 
computation



4 Views of PDES

• PDES written from this view

• Collect during batch 
processing of events

• Model can reach invalid states

Global Speculative
• Max, min, avg, mode

• Helpful for performance 
analysis and debugging

• Observe load balance of 
system, impact of rollbacks

Local Speculative

Local Committed

• Helpful for understanding 
model behavior

• Collect just after GVT 
computation

Global Committed

• Max, min, avg, mode

• Progress tracking

• Global synch to allow for in 
situ analysis of global state 



What’s been done so far

 GVT collection

 Collect immediately after GVT computation

 # events processed, rollbacks, ties, remote 
events, remote sends and recvs

 Real time collection

 User specifies how often to sample

 Collect during batch processing

 How far KPs are ahead of GVT, cycle counters, 
forward events, reverse events, rollbacks



What’s been done so far

 These can be run independently or together

 Vis2 branch on ROSS GitHub repo

 Turned off by default
 --enable-gvt-stats=1

 --real-time-samp=n, where n is time in 

milliseconds

 Collected data stored in a buffer

 Configurable size and when to dump



I/O

 All writing takes place just after GVT

 Output is in binary

 Uses MPI I/O

 One file per simulation

 Right now using our own format

 Switch to an established format in the future?



Challenges

 Don’t want to perturb simulation

 Too much could slow down the simulation 
enough that the rollback behavior changes 
drastically

 Too much data to store/transfer

 Long running simulations, large-scale models 
means we can’t collect everything at a fine 
granularity



How to deal with these challenges?

 Perform as much work as possible 
immediately after GVT

 Store collected data in a buffer and only 
write out when it’s full

 Only collect fine grained data when 
‘something interesting happens’



In Progress

 Preliminary testing of data collection

 Compare to non-instrumented ROSS

 So far we’ve seen minimal decrease (1%) of 
rollbacks in most cases we’ve tested

 Developing use cases for this data collection 
for the dragonfly model

 How to best show the 4 views discussed 
previously?



Future work

 Continue adding various metrics to what we’re 
already collecting, such as memory usage

 Event level data collection

 Decide which events are recorded





Future work

 Continue adding various metrics to what we’re 
already collection, such as memory usage

 Event level data collection

 Decide which events are recorded

 Configuration file: collect only specific data the user 
wants

 Allow the user to trade between performance and 
data capture

 Let the user define situations where they want to 
collect data at a finer granularity



Thank You!
Questions?


