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ROSS Data Structures — MPI rank or Processing Element (PE)
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ROSS: Local Control Implementation

MPI_ISend/MPI_Irecv used to
send/recv off core events

Event & Network memory is
managed directly.

— Pool is allocated @ startup

Event list keep sorted using a
Splay Tree (logN)

LP-2-Core mapping tables are
computed and not stored to
avoid the need for large global
LP maps.

AVL Tree used to keep track of
“remote” event sends to
support cancel/rollback
operations

Local Control Mechanism:
error detection and rollback

(1) undo

state A’s
\ —

(2) cancel
“sent” events . .
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ROSS: Global Control Implementaﬂon

GVT (kicks off when memory is low):
1. Each core counts #sent, #recv

Global Control Mechanism:
compute Global Virtual Time (GVT)
2. Recv all pending MPI msgs.

3. MPI_Allreduce Sum on (#sent -
#recv)

collect versions
of state / events

& perform 1/0
4.  If #sent - #recv =0 goto 2 operations
5. Compute local core’s lower bound that are <GVT

—v e g

time-stamp (LVT). GVT
6. GVT=MPI_Allreduce Min on LVTs

-
|
gvt-interval/batch parameters control m

how frequently GVT is done. e

Now have “optimistic realtime” GVT
--sync=>5 option

Note, repurposed GVT to implement
conservative YAWNS algorithm as
well !
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ROSS Model Developer Tips & Tricks

= Make sure you model’s event population is stable (e.g., event handlers on
average don’t create/schedule more than 1 event).

= Don’t access another LP’s state directly = NO SHARED LP STATE!
= Message/event data is read-only, except when using for state-saving

= Use distinct RNG seeds for different actions within an LP to avoid
correlations in time-stamps.
— Note, you can control the number of seed sets per LP.

= Get you model working serial first
= Get your model working YAWNS/conservative next (--synch=2)

= Get your model working optimistically last (--synch=3)
— Debug using —synch=4 scheduler

= Modelis not valid until serial, conservative and optimistic all
execute/commit the same number of events.

= Avoid tie events by adding “random jitter” to event time stamps

= Reduce rollbacks by shrinking “batch” parameter

@ Rensselaer -



Outline
= ROSS Overview

= Shared Memory Pool
Design

@ Rensselaer s



Motivation and Design Constraints

We have observed that for larger remote communication rates, ROSS’ performance
degrades (potentially significantly) due to much greater MPI overheads.

— Know this because original ROSS was written for shared memory
— Pthread ROSS is 2x faster than MPI ROSS on 1 node of BG/Q

— Main optimization is it passes pointers to events as opposed to transferring a
full copy of event data via MPlI communications

So, MPIl implementation is leaving a good bit of performance on the table

A hybrid MPI + Pthreads is natural choice ... but..
— Would need to encapsulate the global ROSS state into per-thread state
— Moving to a fully global shared memory space w/i a node will break all of CODES
— Allowing pthreads to invoke MPI operations creates new overheads

— Global shared address space introduces potential for “false sharing” among
threads

A better choice is to leverage MPI shared memory buffer API.

— MPI Win allocate shared provides a shared buffer to MPI rank w/l the
same compute node

— Built on SystemV shared memory using shmget/shmat

v Rensselaer ¢



Design Overview

Processed Event Lists

Right Rotation

=

Pendlng events / Remote event
Splay Tree AVL Tree

Model Free Event List : B g RNGIb Network Free Event List
(FEL) (NEL)

(F1F1TETE]

Processed Event Lists

Right Rotation

i

Pending events / Remote event
Splay Tree AVL Tree

Model Free Event List RNG lib Network Free Event List
(FEL) (NEL)

Q-

v) Rensselaer

10




Problem with MPI SHM API

Shared memory buffer pool’s address differs across MPI ranks

linl-

year—-3-work.txt slurm-54359.out slurm-54914.out

chrisc@area52:~/PROJECTS/R0SS$ mpirun -np 2 ./mpi3shm_1Dring.v2.1
i'm rank @ with 2 intranode partners, 1 (1), 1 (1)
i'm rank 1 with 2 intranode partners, 0 (0), 0 (0)

Rank
Rank
Rank
Rank
Rank
Rank

| Rank

Rank
load
load
Rank
load
load

: SHM pool starts at address 0x7efffe910000

: partner rank 1 has partner base ptrs of 0x7f003e910000

: partner rank 1 has partner base ptrs of 0x7f003e910000

: write memory location 17 with 17 value

: SHM pool starts at address 0x7fb904feb000

: partner rank @ has partner base ptrs of 0x7fb8c4feb000

: partner rank @ has partner base ptrs of 0x7fb8c4feb000
write memory location 17 with @ value

MPI/SHM values from neighbour: rank 1, numtasks 2 on area52

MPI/SHM values from neighbour: rank 1, numtasks 2 on area52

1l: write memory location 17 with 17 value

MPI/SHM values from neighbour: rank @, numtasks 2 on area52

MPI/SHM values from neighbour: rank @, numtasks 2 on areab52

I—\I—‘I—‘I—‘SSSS

chrisc@area52:~/PROJECTS/R0SSS$ [
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\
MPI SHM API - can’t store address pointers (yet!)

= Need to store “shared” free event lists in
buffer

= Need to perform operations like:
— event->next = ListHead

— ListHead = event
= Current APl requires translating pointer codeﬁ

to “offset + base”
— Buffer[event] .next = ListHead

— ListHead = event

= Greatly complicates pointer-based code

— Performance loss of ~2x

= Greater potential for bugs with “offset + ﬁ
base” code

— +++ lifetime employment! ©

— -—if grad student, you’ll never finish your
thesis

Q‘ @) 12

L™



Solution: “Force” all MPI ranks to attach shared
memory pool at same virtual address

= Current need to abandon the MPI SHM
API at this point ...

= Create shared memory pool using
“shmget” system call.

* Find a common available virtual address
space using “mmap” system call across

ranks on same compute nodes

= Use “shmat” to attach to created
memory pool at common address
previous determined

= *Special thanks to Kamil Iskra @ ANL
for this approach

Q_r‘ @)
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Structure & Function of Shared Memory Pool

Now, that we have pointers, we can
have a shared memory pool that
resembles the shared memory
approaches used previously.

" Free list contains events that can be
shared by “sender” rank among N-1
other ranks on the same compute nod

= Send event results sender allocating an

event from their pool and inserting into
desk ranks “eventg”

= Receiver rank directly uses shared
events and places event into Splay Tree
once any local rollback processing is
complete

= Direct event cancellation supported on

shared events. Here, pointer to original
event is threaded into “cancelq” for

rollback processing by receiver rank

Q‘ @) 14
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Buffer Return and Better GVT

=  Buffer Return: when GVT frees a
shared event for reuse, it needs to be
return to the sender.

— Acquire “fl_Ick”
— Insert on sender’s “free_list”
— Release “fl_lck”

— Need to agument the event structure
with sender information

= Leverage Fujimoto’s Shared Memory
GVT for LVT w/i a compute node
— Pull out all network MPI events

— Sets a “flag” that all ranks w/i a
compute node can “see”

— No events lost in shared memory pool
— Each ranks computes own LVT

— Min of all LVTs is LVT for compute
node.

— Use Allreduce approach but only 1 rank

“\__from each compute need needs to
3

Rensselaer
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Preparing of Many-Core Architectures

Knights Landing Overview
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Status

= Branch in GITHub is started

" Cmake build scripts have been modifed
to select shared pool functionality

" Coding has begun:

— Need to verify shget/mmap test and
shmat path creates a common
shared memory pool across all MPI

ranks.

— Determine which MPI ranks are co-
located on a common compute
node.

" |nitial functionality by year end.
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