A Design
ArgoNNS e Impro

Chris Carothers, Elsa Gonsiorowski, Justin LaPre,

Neil McGlohon, Mark Plagge, Caitlin Ross and Noah
Wolfe

Rensselaer Polytechnic Institute
Center for Computational Innovations

chrisc@cs.rpi.edu or chris.carothers@gmail.com

Rob Ross, Phil Carns, Kevin Harms, John Jenkins,
Misbah Mubarak and Shane Snyder

Argonne National Laboratory
Mathematics and Computer Science

rross@mecs.anl.qov

Center for

Fa=) C ional
@ Rensselaer CCI ovations

Outline
= ROSS Overview

= Shared Memory Pool
Design

@ Rensselaer 2

Massively Parallel Discrete-Event Simulation Via

Time Warp
V Local Control Mechanism:
i error detection and rollback
: (1) undo N/

state A’s

u \
al 2) cancel
|

“sent’ events .

LP 1 LP 2 LP 3

CDB_'—I

. processed event

. “straggler” event
a

Global Control Mechanism:
compute Global Virtual Time (GVT)

collect versions
of state / events
& perform I/O
operations

that are < GVT

LP 1 LP 2 LP 3

unprocessed event

. “committed” event

©@ Rensselaer

N
ROSS Data Structures — MPI rank or Processing Element (PE)

NEIIE

Processed Event Lists

(,H\ Right Rotation {f”\
g | P — g |
}”i{*—’ _—)\,é»/
">\“\ Left Rotation (Z\ ‘
K]/!

{78)

? e s

B C A B
Pending events /
Splay Tree AVL Tree

EV/EV/EV/EV/EV

Model Free Event List (FEL)

EV/EV/EV/E\,/EV'

RNG lib Network Free Event List (NEL)

\ .
ROSS: Local Control Implementation

MPI_ISend/MPI_Irecv used to
send/recv off core events

Event & Network memory is
managed directly.

— Pool is allocated @ startup

Event list keep sorted using a
Splay Tree (logN)

LP-2-Core mapping tables are
computed and not stored to
avoid the need for large global
LP maps.

AVL Tree used to keep track of
“remote” event sends to
support cancel/rollback
operations

Local Control Mechanism:
error detection and rollback

(1) undo

state A’s
\ —

(2) cancel
“sent” events . .

—p e+

('DB_'—I

LP 1 LP 2 LP 3

©@ Rensselaer

ROSS: Global Control Implementaﬂon

GVT (kicks off when memory is low):
1. Each core counts #sent, #recv

Global Control Mechanism:
compute Global Virtual Time (GVT)
2. Recv all pending MPI msgs.

3. MPI_Allreduce Sum on (#sent -
#recv)

collect versions
of state / events

& perform 1/0
4. If #sent - #recv =0 goto 2 operations
5. Compute local core’s lower bound that are <GVT

—v e g

time-stamp (LVT). GVT
6. GVT=MPI_Allreduce Min on LVTs

-
|
gvt-interval/batch parameters control m

how frequently GVT is done. e

Now have “optimistic realtime” GVT
--sync=>5 option

Note, repurposed GVT to implement
conservative YAWNS algorithm as
well !

©@ Rensselaer

ROSS Model Developer Tips & Tricks

= Make sure you model’s event population is stable (e.g., event handlers on
average don’t create/schedule more than 1 event).

= Don’t access another LP’s state directly = NO SHARED LP STATE!
= Message/event data is read-only, except when using for state-saving

= Use distinct RNG seeds for different actions within an LP to avoid
correlations in time-stamps.
— Note, you can control the number of seed sets per LP.

= Get you model working serial first
= Get your model working YAWNS/conservative next (--synch=2)

= Get your model working optimistically last (--synch=3)
— Debug using —synch=4 scheduler

= Modelis not valid until serial, conservative and optimistic all
execute/commit the same number of events.

= Avoid tie events by adding “random jitter” to event time stamps

= Reduce rollbacks by shrinking “batch” parameter

@ Rensselaer -

Outline
= ROSS Overview

= Shared Memory Pool
Design

@ Rensselaer s

Motivation and Design Constraints

We have observed that for larger remote communication rates, ROSS’ performance
degrades (potentially significantly) due to much greater MPI overheads.

— Know this because original ROSS was written for shared memory
— Pthread ROSS is 2x faster than MPI ROSS on 1 node of BG/Q

— Main optimization is it passes pointers to events as opposed to transferring a
full copy of event data via MPlI communications

So, MPIl implementation is leaving a good bit of performance on the table

A hybrid MPI + Pthreads is natural choice ... but..
— Would need to encapsulate the global ROSS state into per-thread state
— Moving to a fully global shared memory space w/i a node will break all of CODES
— Allowing pthreads to invoke MPI operations creates new overheads

— Global shared address space introduces potential for “false sharing” among
threads

A better choice is to leverage MPI shared memory buffer API.

— MPI Win allocate shared provides a shared buffer to MPI rank w/l the
same compute node

— Built on SystemV shared memory using shmget/shmat

v Rensselaer ¢

Design Overview

Processed Event Lists

Right Rotation

=

Pendlng events / Remote event
Splay Tree AVL Tree

Model Free Event List : B g RNGIb Network Free Event List
(FEL) (NEL)

(F1F1TETE]

Processed Event Lists

Right Rotation

i

Pending events / Remote event
Splay Tree AVL Tree

Model Free Event List RNG lib Network Free Event List
(FEL) (NEL)

Q-

v) Rensselaer

10

Problem with MPI SHM API

Shared memory buffer pool’s address differs across MPI ranks

linl-

year—-3-work.txt slurm-54359.out slurm-54914.out

chrisc@area52:~/PROJECTS/R0SS$ mpirun -np 2 ./mpi3shm_1Dring.v2.1
i'm rank @ with 2 intranode partners, 1 (1), 1 (1)
i'm rank 1 with 2 intranode partners, 0 (0), 0 (0)

Rank
Rank
Rank
Rank
Rank
Rank

| Rank

Rank
load
load
Rank
load
load

: SHM pool starts at address 0x7efffe910000

: partner rank 1 has partner base ptrs of 0x7f003e910000

: partner rank 1 has partner base ptrs of 0x7f003e910000

: write memory location 17 with 17 value

: SHM pool starts at address 0x7fb904feb000

: partner rank @ has partner base ptrs of 0x7fb8c4feb000

: partner rank @ has partner base ptrs of 0x7fb8c4feb000
write memory location 17 with @ value

MPI/SHM values from neighbour: rank 1, numtasks 2 on area52

MPI/SHM values from neighbour: rank 1, numtasks 2 on area52

1l: write memory location 17 with 17 value

MPI/SHM values from neighbour: rank @, numtasks 2 on area52

MPI/SHM values from neighbour: rank @, numtasks 2 on areab52

I—\I—‘I—‘I—‘SSSS

chrisc@area52:~/PROJECTS/R0SSS$ [

@ Rensselaer »

\
MPI SHM API - can’t store address pointers (yet!)

= Need to store “shared” free event lists in
buffer

= Need to perform operations like:
— event->next = ListHead

— ListHead = event
= Current APl requires translating pointer codeﬁ

to “offset + base”
— Buffer[event] .next = ListHead

— ListHead = event

= Greatly complicates pointer-based code

— Performance loss of ~2x

= Greater potential for bugs with “offset + ﬁ
base” code

— +++ lifetime employment! ©

— -—if grad student, you’ll never finish your
thesis

Q‘ @) 12

L™

Solution: “Force” all MPI ranks to attach shared
memory pool at same virtual address

= Current need to abandon the MPI SHM
API at this point ...

= Create shared memory pool using
“shmget” system call.

* Find a common available virtual address
space using “mmap” system call across

ranks on same compute nodes

= Use “shmat” to attach to created
memory pool at common address
previous determined

= *Special thanks to Kamil Iskra @ ANL
for this approach

Q_r‘ @)

AN e

13

\ |
Structure & Function of Shared Memory Pool

Now, that we have pointers, we can
have a shared memory pool that
resembles the shared memory
approaches used previously.

" Free list contains events that can be
shared by “sender” rank among N-1
other ranks on the same compute nod

= Send event results sender allocating an

event from their pool and inserting into
desk ranks “eventg”

= Receiver rank directly uses shared
events and places event into Splay Tree
once any local rollback processing is
complete

= Direct event cancellation supported on

shared events. Here, pointer to original
event is threaded into “cancelq” for

rollback processing by receiver rank

Q‘ @) 14

L™

Buffer Return and Better GVT

= Buffer Return: when GVT frees a
shared event for reuse, it needs to be
return to the sender.

— Acquire “fl_Ick”
— Insert on sender’s “free_list”
— Release “fl_lck”

— Need to agument the event structure
with sender information

= Leverage Fujimoto’s Shared Memory
GVT for LVT w/i a compute node
— Pull out all network MPI events

— Sets a “flag” that all ranks w/i a
compute node can “see”

— No events lost in shared memory pool
— Each ranks computes own LVT

— Min of all LVTs is LVT for compute
node.

— Use Allreduce approach but only 1 rank

“__from each compute need needs to
3

Rensselaer

15

Preparing of Many-Core Architectures

Knights Landing Overview

11

L

w
w

36 Tiles
connected by
2D Mesh
Interconnect

& 000
& 000

wrErmz22Z2>I0
wrmz22Z2>I0

M AT TN

MCDRAM MCDRAM MCDRAM
Package

MCDRAM

b

Omni-path not shown

/ 2x16 X4
1x4 DMI
MCDRAJ Mcnnﬂ X \\MCDRAM kcomﬁ Chip: 36 Tiles interconnected by 2D Mesh

[Tile: 2 Cores + 2 VPU/core+ 1 MB L2

Memory: MCDRAM: 16 GB on-package; High BW

DDR4: 6 channels @ 2400 up to 384GB

10: 36 lanes PCle Gen3. 4 lanes of DMI for chipset
Node: 1-Socket only
Fabric: Omni-Path on-package (not shown)

Vector Peak Perf: 3+TF DP and 6+TF SP Flops
Scalar Perf: ~3x over Knights Corner
Streams Triad (GB/s): MCDRAM : 400+; DDR: 90+

Source Intel: All products, computer systems, dates and figures specified are prellmlnary base;l on.gl
are subject to change without notice. KNL data are preliminary based on current expectal
without notice. 1Binary Compatible with Intel Xeon processors using Haswell Laain

pattern

16

Status

= Branch in GITHub is started

" Cmake build scripts have been modifed
to select shared pool functionality

" Coding has begun:

— Need to verify shget/mmap test and
shmat path creates a common
shared memory pool across all MPI

ranks.

— Determine which MPI ranks are co-
located on a common compute
node.

" |nitial functionality by year end.

@ Rensselaer v

Thank You & Acknowledgments

This work was supported by the Director, Offlce of Advanced Scientific
Computing Research, Office of Science, of the U.S. Department of Energy
under Contract No. DE-AC02-06CH11357.

