
Programming with Parallel Migratable Objects

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain

Parallel Programming Laboratory
University of Illinois Urbana-Champaign

July 31, 2013

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 1 / 202

Please check http://charm.cs.illinois.edu/nikhil/tutorial ATPESC.pdf for the
latest material

Manual: http://charm.cs.illinois.edu/manuals/html/charm++/manual.html

Installation: http://charm.cs.illinois.edu/manuals/html/charm++/A.html

Outline

1 Introduction
Object Design
Execution Model

2 Hello World
Object Collections

3 Benefits of Charm++
4 Charm++ Basics
5 Overdecomposition

6 Structured Dagger
7 Application Design
8 Performance Tuning
9 Using Dynamic Load Balancing

10 Checkpointing and Resilience
11 Interoperability
12 Debugging
13 Further Optimization

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 3 / 202

Harnessing Parallelism: Challenges
Trends in System Architecture

Frequencies have stopped increasing

Memory costs are high
I Relatively low per core memory

Increasing heterogeneity
I Accelerators, SMT

Energy, power, and thermal considerations

Frequent component failures

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 4 / 202

Harnessing Parallelism: Challenges
Trends in System Architecture

However, compute resources are not
faster cores, but more cores
Unprecedented levels of available
concurrency

I IBM BG/Q
F ‘Sequoia’: 1,572,864 cores
F ‘Mira’: 786,432 cores

I Cray
F XE6+XK6 ‘Bluewaters‘: 386,816

cores
F XK6 ‘Titan’: 299,008 cores

I K Supercomputer: 705,024 cores

Mid-size clusters will be ubiquitous

Implications

Each thread of execution has to:
I operate on lesser data
I wait relatively longer for remote data

Have to operate in strong scaling regime

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 5 / 202

Harnessing Parallelism: Challenges
Trends in System Architecture

However, compute resources are not
faster cores, but more cores
Unprecedented levels of available
concurrency

I IBM BG/Q
F ‘Sequoia’: 1,572,864 cores
F ‘Mira’: 786,432 cores

I Cray
F XE6+XK6 ‘Bluewaters‘: 386,816

cores
F XK6 ‘Titan’: 299,008 cores

I K Supercomputer: 705,024 cores

Mid-size clusters will be ubiquitous

Implications

Each thread of execution has to:
I operate on lesser data
I wait relatively longer for remote data

Have to operate in strong scaling regime

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 5 / 202

Harnessing Parallelism: Challenges
Next-generation Applications

Need for strong scaling
I faster solutions (not just larger problems)

Application Characteristics
I Multi-resolution

F Adaptive, spatial and temporal resolutions
F Dynamic/adaptive refinements: to handle application variation

I Multi-module (multi-physics)
F Complex physics in multiple, interacting modules

I Adapt to a volatile computational environment
I Exploit heterogeneous architecture
I Deal with thermal and energy considerations

So? Consequences:
I Must support automated resource management
I Must support interoperability and parallel composition

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 6 / 202

Harnessing Parallelism: Challenges
Next-generation Applications

Need for strong scaling
I faster solutions (not just larger problems)

Application Characteristics
I Multi-resolution

F Adaptive, spatial and temporal resolutions
F Dynamic/adaptive refinements: to handle application variation

I Multi-module (multi-physics)
F Complex physics in multiple, interacting modules

I Adapt to a volatile computational environment
I Exploit heterogeneous architecture
I Deal with thermal and energy considerations

So? Consequences:
I Must support automated resource management
I Must support interoperability and parallel composition

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 6 / 202

Harnessing Parallelism: Challenges
Programming Models: MPI

Highly successful

Universally used

Has supported application evolution from gigascale to petascale

Library

Communication primitives

MPI does not directly support automated resource management (e.g.
load balancing, fault tolerance, etc.)

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 7 / 202

Charm++ builds upon a proven approach: objects

Stuff you already know
Benefits of Object-based code

Objects encapsulate data
Methods represent functionality relevant to that data
Method invocations can modify / update state of the object / data
Computation can be expressed in terms of objects interacting via
method invocations

Methods are natural units of sequential computation on object data
Thoughtful design yields focused methods with single purpose
Naturally expresses an object’s response to inputs (signals / data)

Nothing new
Still quite uncommon in HPC code
Its not about language syntax. Its about program structure

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 9 / 202

Globally-Visible Objects: Chares and Proxies

A
B

C

D

EF
G

H

Parallel Address Space

7
9

64

3

1

0 5

8

2

Certain “special” object instances are:
I first-class citizens in the parallel address space,
I with unique location-independent names

Under the hood, the runtime handles locality and provides the
mechanisms to promote objects to the parallel space

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 10 / 202

Globally-Visible Methods: Entry Methods

A
B

C

D

EF
G

H

Parallel Address Space

E.m1()
G.m2()

H.m2()

E.m3()

F.m4()

B.m2()

How can objects communicate across address spaces?
I Just like a sequential object-oriented language, an object’s reference is

used to invoke a method
I In the parallel space, this is a handle that is location transparent
I A method invocation becomes an act of communication

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 11 / 202

Method-Driven Asynchronous Communication

Instance A

Instance B

B.m1()

execute m1()

idle waiting for B

B.m1() returns

kernelA()

What happens if an object waits for a return value from a method
invocation?

I Performance
I Latency
I Reasoning about correctness

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 12 / 202

Design Principle: Do not wait for remote completion

Instance A

Instance B

B.m1()

execute m1()

idle

A.m2() response

kernelA()

Hence, method invocations should be asynchronous
I No return values

Computations are driven by the incoming data
I Initiated by the sender or method caller

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 13 / 202

For example, a Jacobi reduction

compute compute

reduction

compute compute

reduction

idle time
avoided
below

synchronous
reduction

asynchronous
reduction

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 14 / 202

Methods: Natural Units of Sequential Computation

Methods still have the same
sequential semantics

I Atomicity: methods do not
execute in parallel

Methods cannot be interrupted or
preempted

Methods interact and update state
of an object in the same way

Method sequencing is what changes
from sequential computation

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 15 / 202

Methods: Natural Units of Sequential Computation

Methods still have the same
sequential semantics

I Atomicity: methods do not
execute in parallel

Methods cannot be interrupted or
preempted

Methods interact and update state
of an object in the same way

Method sequencing is what changes
from sequential computation

A B

B.m1()

B.m2()

A C

C.m2()

B.m1() B C.m3()

B may observe

m1() m2()
OR

m2() m1()

C may observe

m2() m3()
OR

m3() m2()

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 16 / 202

The Execution Model

Several objects live on a single PE
I For now, think of it as a core (or just “processor”)

As a result,
I Method invocations directed at objects on that processor will have to

be stored in a pool,
I And a user-level scheduler will select one invocation from the queue

and runs it to completion
I A PE is the entity that has one scheduler instance associated with it

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 17 / 202

The Execution Model

Several objects live on a single PE
I For now, think of it as a core (or just “processor”)

As a result,
I Method invocations directed at objects on that processor will have to

be stored in a pool,

I And a user-level scheduler will select one invocation from the queue
and runs it to completion

I A PE is the entity that has one scheduler instance associated with it

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 17 / 202

The Execution Model

Several objects live on a single PE
I For now, think of it as a core (or just “processor”)

As a result,
I Method invocations directed at objects on that processor will have to

be stored in a pool,
I And a user-level scheduler will select one invocation from the queue

and runs it to completion
I A PE is the entity that has one scheduler instance associated with it

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 17 / 202

Message-driven Execution

Execution is trigggered by availability of a “message” (a method
invocation)

When an entry method executes,
I it may generate messages for other objects
I the RTS deposits them in the message Q on the target processor

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 18 / 202

Message-driven Execution

Execution is trigggered by availability of a “message” (a method
invocation)

When an entry method executes,
I it may generate messages for other objects
I the RTS deposits them in the message Q on the target processor

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 18 / 202

Outline

1 Introduction
Object Design
Execution Model

2 Hello World
Object Collections

3 Benefits of Charm++
4 Charm++ Basics
5 Overdecomposition

6 Structured Dagger
7 Application Design
8 Performance Tuning
9 Using Dynamic Load Balancing

10 Checkpointing and Resilience
11 Interoperability
12 Debugging
13 Further Optimization

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 19 / 202

Hello World Example

hello.ci file

mainmodule hello {
mainchare Main {

entry Main(CkArgMsg ∗m);
};
};

hello.cpp file

#include <stdio.h>
#include ”hello.decl.h”

class Main : public CBase Main {
public: Main(CkArgMsg∗ m) {

ckout << ”Hello World!” << endl;
CkExit();
};
};

#include ”hello.def.h”

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 20 / 202

Hello World with Chares

hello.ci file

mainmodule hello {
mainchare Main {
entry Main(CkArgMsg ∗m);
};
chare Singleton {
entry Singleton();
};
};

hello.cpp file

#include <stdio.h>
#include ”hello.decl.h”

class Main : public CBase Main {
public: Main(CkArgMsg∗ m) {

CProxy Singleton::ckNew();
};
};

class Singleton : public
CBase Singleton {

public: Singleton() {
ckout << ”Hello World!” << endl;
CkExit();
};
};
#include ”hello.def.h”

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 21 / 202

Collections of Objects: Concepts

Objects can be grouped into indexed collections

Basic examples
I Matrix block
I Chunk of unstructured mesh
I Portion of distributed data structure
I Volume of simulation space

Advanced Examples
I Abstract portions of computation
I Interactions among basic objects or underlying entities

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 22 / 202

Collections of Objects

Structured: 1D, 2D, . . . , 6D

Unstructured: Anything hashable

Dense

Sparse

Static - all created at once

Dynamic - elements come and go

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 23 / 202

Collections of Objects

Structured: 1D, 2D, . . . , 6D

Unstructured: Anything hashable

Dense

Sparse

Static - all created at once

Dynamic - elements come and go

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 23 / 202

Collections of Objects

Structured: 1D, 2D, . . . , 6D

Unstructured: Anything hashable

Dense

Sparse

Static - all created at once

Dynamic - elements come and go

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 23 / 202

Chare Array: Hello Example

mainmodule arr {
readonly int arraySize;

mainchare Main {
entry Main(CkArgMsg∗);
}

array [1D] hello {
entry hello();
entry void printHello();
}
}

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 24 / 202

Chare Array: Hello Example

#include ”arr.decl.h”

/∗readonly∗/ int arraySize;

struct Main : CBase Main {
Main(CkArgMsg∗ msg) {

arraySize = atoi(msg−>argv[1]);
CProxy hello p = CProxy hello::ckNew(arraySize);
p[0].printHello();
}
};

struct hello : CBase hello {
hello() { }
hello(CkMigrateMessage∗) { }
void printHello() {

CkPrintf(”%d: hello from %d\n”, CkMyPe(), thisIndex);
if (thisIndex == arraySize − 1) CkExit();
else thisProxy[thisIndex + 1].printHello();
}
};

#include ”arr.def.h”

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 25 / 202

Hello World Array Projections Timeline View

Add -tracemode projections to link line to enable tracing

Run Projections tool to load trace log files and visualize performance

arrayHello on BG/Q 16 Nodes, mode c16, 1024 elements (4 per process)

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 26 / 202

Outline

1 Introduction
Object Design
Execution Model

2 Hello World
Object Collections

3 Benefits of Charm++
4 Charm++ Basics
5 Overdecomposition

6 Structured Dagger
7 Application Design
8 Performance Tuning
9 Using Dynamic Load Balancing

10 Checkpointing and Resilience
11 Interoperability
12 Debugging
13 Further Optimization

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 27 / 202

Impact on communication

Current use of communication network
I Compute-communicate cycles in typical MPI apps
I Network is used for a fraction of time
I And is on the critical path

Hence, current communication networks are over-engineered by
necessity

With overdecomposition
I Communication is spread over an iteration
I Adaptive overlap of communication and computation

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 28 / 202

Impact on communication

Current use of communication network
I Compute-communicate cycles in typical MPI apps
I Network is used for a fraction of time
I And is on the critical path

Hence, current communication networks are over-engineered by
necessity

With overdecomposition
I Communication is spread over an iteration
I Adaptive overlap of communication and computation

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 28 / 202

Impact on communication

Current use of communication network
I Compute-communicate cycles in typical MPI apps
I Network is used for a fraction of time
I And is on the critical path

Hence, current communication networks are over-engineered by
necessity

With overdecomposition
I Communication is spread over an iteration
I Adaptive overlap of communication and computation

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 28 / 202

Example: Stencil Computation

Consider a simple stencil computation
I With traditional design based on traditional methods (e.g. MPI-based)

F Each processor has a chunk, which alternates between computing and
communicating

I With Charm++
F Multiple chunks on each processor
F Wait time for each chunk overlapped with useful computation for others
F Communication spread over time

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 29 / 202

Example: Stencil Computation

Consider a simple stencil computation
I With traditional design based on traditional methods (e.g. MPI-based)

F Each processor has a chunk, which alternates between computing and
communicating

I With Charm++
F Multiple chunks on each processor
F Wait time for each chunk overlapped with useful computation for others
F Communication spread over time

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 29 / 202

Example: Stencil Computation

Stencil in MPI: No overlap among computation and communication

P1

P2

Stencil in Charm: Communication of a chare overlaps with computation of
others

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 30 / 202

Example: Stencil Computation

Stencil in MPI: No overlap among computation and communication

P1

P2

Stencil in Charm: Communication of a chare overlaps with computation of
others

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 30 / 202

Modularity and Compositionality

Without message-driven execution (and virtualization), you get either:
Space-division

Time

B

C

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 31 / 202

Modularity and Compositionality

Sequentialization

Time

B

C

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 32 / 202

Modularity and Compositionality

Parallel Composition: A1; (B —— C); A2

Time

B

C

Recall: Different modules, written in different languages/paradigms, can
overlap in time and on processors, without programmer having to worry
about this explicitly

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 33 / 202

Migratability

Once the programmer has written the code without reference to
processors, all of the communication is expressed among objects

The system is free to migrate the objects across processors as and
when it pleases

I It must ensure it can deliver method invocations to the objects,
whereever they go

I This migratability turns out to be a key attribute for empowering an
adaptive runtime system

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 34 / 202

Decomposition Independent of numCores

Rocket simulation under traditional MPI

Solid

Fluid

Solid

Fluid

Solid

Fluid
. . .

1 2 P

Rocket simulation with migratable objects

Solid1

Fluid1

Solid2

Fluid2

Solidn

Fluidm
. . .

Solid3
. . .

I Benefits: load balance, communication
optimizations, modularity

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 35 / 202

Decomposition Independent of numCores

Rocket simulation under traditional MPI

Solid

Fluid

Solid

Fluid

Solid

Fluid
. . .

1 2 P

Rocket simulation with migratable objects

Solid1

Fluid1

Solid2

Fluid2

Solidn

Fluidm
. . .

Solid3
. . .

I Benefits: load balance, communication
optimizations, modularity

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 35 / 202

Utility for Multi-cores, Many-cores, Accelerators

Objects connote and promote locality
Message-driven execution is

I A strong principle of prediction for data and code use
I Much stronger than principle of locality

F Can be used to scale memory wall
F Prefetching of needed data, e.g, into scratch pad memories

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 36 / 202

Load Balancing

Static
I Irregular applications
I Programmer shouldn’t have to figure out ideal mapping

Dynamic
I Applications are increasingly using adaptive strategies
I Abrupt refinements
I Continuous migration of work: e.g. particles in MD

Challenges
I Performance limited by most overloaded processor
I The chance that one processor is severely overloaded gets higher as

#processors increases

Migratable Objects Empower Automated Load Balancing!

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 37 / 202

A quick Example
Weather Forecasting in BRAMS

Brams: Brazillian weather code (based on RAMS)

AMPI version (Eduardo Rodrigues, with Mendes and J. Panetta)

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 38 / 202

Basic Virtualization of BRAMS

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 39 / 202

Baseline: 64 objects on 64 processors

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 40 / 202

Over-decomposition: 1024 objects on 64 processors
Benefits from communication/computation overlap

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 41 / 202

With Load Balancing: 1024 objects on 64 processors

No overdecomp (64 threads): 4988 sec
Overdecomp into 1024 threads: 3713 sec
Load balancing (1024 threads): 3367 sec

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 42 / 202

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 43 / 202

Outline

1 Introduction
Object Design
Execution Model

2 Hello World
Object Collections

3 Benefits of Charm++
4 Charm++ Basics
5 Overdecomposition

6 Structured Dagger
7 Application Design
8 Performance Tuning
9 Using Dynamic Load Balancing

10 Checkpointing and Resilience
11 Interoperability
12 Debugging
13 Further Optimization

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 44 / 202

Charm++ File structure

C++ objects (including Charm++ objects)
I Defined in regular .h and .cpp files

Chare objects, entry methods (asynchronous methods)
I Defined in .ci file
I Implemented in the .cpp file

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 45 / 202

Charm Interface: Modules

Charm++ programs are organized as a collection of modules

Each module has one or more chares

The module that contains the mainchare, is declared as the
mainmodule

Each module, when compiled, generates two files:
<modulename>.decl.h and <modulename>.def.h

[main]module <modulename> {
//... chare definitions ...
};

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 46 / 202

Charm Interface: Chares

Chares are parallel objects that are managed by the RTS

Each chare has a set entry methods, which are asynchronous methods
that may be invoked remotely

The following code, when compiled, generates a C++ class
CBase <charename> that encapsulates the RTS object

This generated class is extended and implemented in the .cpp file

[main]chare <charename> {
//... entry method definitions ...
};

class <charename> : public CBase <charename> {
//... entry method implementations ...
};

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 47 / 202

Charm Interface: Entry Methods

Entry methods are C++ methods that can be remotely and
asynchronously invoked by another chare

.ci file:

entry <charename>(); /∗ constructor entry method ∗/
entry void foo();
entry void bar(int param);

.cpp file:

<charename>::<charename>() { /∗... constructor code ...∗/ }

<charename>::foo() { /∗... code to execute ...∗/ }

<charename>::bar(int param) { /∗... code to execute ...∗/ }

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 48 / 202

Charm Interface: mainchare

Execution begins with the mainchare’s constructor

The mainchare’s constructor takes a pointer to system-defined class
CkArgMsg

CkArgMsg contains argv and argc

The mainchare will often construct other parallel objects and then
wait for them to finish

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 49 / 202

Creating a Chare

A chare declared as chare <charename> {...}; can be
instantiated by the following call:

CProxy <charename>::ckNew(... constructor arguments ...);

To communicate with this class in the future, a proxy to it must be
retained

CProxy <charename> proxy =
CProxy <charename>::ckNew(... constructor arguments ...);

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 50 / 202

Chare Proxies

A chare’s own proxy can be obtained through a special variable
thisProxy

Chare proxies can also be passed so chares can learn about others

In this snippet, <charename> learns about a chare instance main ,
and then invokes a method on it:

.ci file

entry void foobar2(CProxy Main main);

.cpp file

<charename>::foobar2(CProxy Main main) {
main.foo();
}

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 51 / 202

Charm Termination

There is a special system call CkExit() that terminates the parallel
execution on all processors (but it is called on one processor) and
performs the requisite cleanup

The traditional exit() is insufficient because it only terminates one
process, not the entire parallel job (and will cause a hang)

CkExit() should be called when you can safely terminate the
application (you may want to synchronize before calling this)

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 52 / 202

Compiling a Charm++ Program

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 53 / 202

Building Charm++

git clone -b charm-6.5 git://charm.cs.uiuc.edu/charm.git

./build <TARGET> <ARCH> <OPTS>

TARGET = Charm++, AMPI, bgampi, LIBS etc.

ARCH = net-linux-x86 64, pamilrts-bluegeneq etc.

OPTS = –with-production, –enable-tracing, xlc, smp, -j8 etc.

http://charm.cs.illinois.edu/manuals/html/charm++/A.html

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 54 / 202

Hello World Example

Compiling
I charmc hello.ci
I charmc -c hello.cpp
I charmc -o hello hello.o

Running
I ./charmrun +p7 ./hello
I The +p7 tells the system to use seven cores

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 55 / 202

Chare Creation Example: .ci file

mainmodule MyModule {
mainchare Main {

entry Main(CkArgMsg ∗m);
};

chare Simple {
entry Simple(int x, double y);
};
};

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 56 / 202

Chare Creation Example: .cpp file

#include <stdio.h>
#include ”MyModule.decl.h”

class Main : public CBase Main {
public: Main(CkArgMsg∗ m) {

ckout << ”Hello World!” << endl;
if (m−>argc > 1) ckout << ” Hello ” << m−>argv[1] << ”!!!” << endl;
double pi = 3.1415;
CProxy Simple::ckNew(12, pi);
};
};
class Simple : public CBase Simple {
public: Simple(int x, double y) {

ckout << ”Hello from a simple chare running on ” << CkMyPe() << endl;
ckout << ”Area of a circle of radius” << x << ” is ” << y∗x∗x << endl;
CkExit();
}
};

#include ”MyModule.def.h”

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 57 / 202

Asynchronous Methods

Entry methods are invoked by performing a C++ method call on a
chare’s proxy

CProxy <charename> proxy =
CProxy <charename>::ckNew(... constructor arguments ...);

proxy.foo();
proxy.bar(5);

The foo and bar methods will then be executed with the
arguments, wherever <charename> happens to live

The policy is one-at-a-time scheduling (that is, one entry method on
one chare executes on a processor at a time)

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 58 / 202

Asynchronous Methods

Method invocation is not ordered (between chares, entry methods on
one chare, etc.)!

For example, if a chare executes this code:

CProxy <charename> proxy = CProxy <charename>::ckNew();
proxy.foo();
proxy.bar(5);

These prints may occur in any order

<charename>::foo() {
ckout << ”foo executes” << endl;
}

<charename>::bar(int param) {
ckout << ”bar executes with ” << param << endl;
}

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 59 / 202

Asynchronous Methods

For example, if a chare invokes the same entry method twice:

proxy.bar(7);
proxy.bar(5);

These may be delivered in any order

<charename>::bar(int param) {
ckout << ”bar executes with ” << param << endl;
}

Output

bar executes with 5
bar executes with 7

OR

bar executes with 7
bar executes with 5

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 60 / 202

Asynchronous Example: .ci file

mainmodule MyModule {
mainchare Main {

entry Main(CkArgMsg ∗m);
};
chare Simple {

entry Simple(double y);
entry void findArea(int radius, bool done);
};
};

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 61 / 202

Asynchronous Example: .cpp file

Does this program execute correctly?

struct Main : public CBase Main {
Main(CkArgMsg∗ m) {

double pi = 3.1415;
CProxy Simple sim = CProxy Simple::ckNew(pi);
for (int i = 1; i< 10; i++) sim.findArea(i, false);
sim.findArea(10, true);
};
};

struct Simple : public CBase Simple {
float y;
Simple(double pi) {

y = pi;
ckout << ”Hello from a simple chare running on ” << CkMyPe() << endl;
}
void findArea(int r, bool done) {

ckout << ”Area of a circle of radius” << r << ” is ” << y∗r∗r << endl;
if (done) CkExit();
}
};Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 62 / 202

Data types and entry methods

You can pass basic C++ types to entry methods (int, char, bool,
etc.)

C++ STL data structures can be passed by including pup stl.h

Arrays of basic data types can also be passed like this:

.ci file:

entry void foobar(int length, int data[length]);

.cpp file:

<charename>::foobar(int length, int∗ data) {
// ... foobar code ...
}

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 63 / 202

Readonlys

A readonly is a global (within a module) read-only variable that can
only be written to in the mainchare’s constructor
Can then be read (not written!) by any chare in the module
It is declared in the .ci file:

readonly <type> <name>;
readonly CProxy Main mainProxy;
readonly int numChares;

And defined the the .cpp file:

<type> <name>;
CProxy Main mainProxy;
int numChares;

And set in the mainchare’s constructor

<charename>::<charename>(CkArgMsg ∗m) {
mainProxy = thisProxy;
numChares = 10;
}

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 64 / 202

Declaring a Chare Array

.ci file:

array [1d] foo {
entry foo(); // constructor
// ... entry methods ...
}
array [2d] bar {

entry bar(); // constructor
// ... entry methods ...
}

struct foo : public CBase foo {
foo() { }
foo(CkMigrateMessage∗) { }
};
struct bar : public CBase bar {

bar() { }
bar(CkMigrateMessage∗) { }
};

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 65 / 202

Constructing a Chare Array

Constructed much like a regular chare

The size of each dimension is passed to the constructor

void someMethod() {
CProxy foo::ckNew(10);
CProxy bar::ckNew(5, 5);

}

The proxy may be retained:

CProxy foo myFoo = CProxy foo::ckNew(10);

The proxy represents the entire array, and may be indexed to obtain a
proxy to an individual element in the array

CProxyElement foo elm = myFoo[5];
elm.invokeEntry();
myFoo[4].invokeEntry();

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 66 / 202

thisIndex

1d: thisIndex returns the index of the current chare array element

2d: thisIndex.x and thisIndex.y returns the indices of the
current chare array element

array [1d] foo {
entry foo();
}

struct foo : public CBase foo {
foo() {

CkPrintf(”array index = %d”, thisIndex);
}
};

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 67 / 202

Collections of Objects: Runtime Service

System knows how to ‘find’ objects efficiently:
(collection, index)→ processor

Applications can specify a mapping, or use simple runtime-provided
options (e.g. blocked, round-robin)

Distribution can be static, or dynamic!

Key abstraction: application logic doesn’t change, even though
performance might

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 68 / 202

Collections of Objects: Runtime Service

Can develop and test logic in objects separately from their distribution

Separation in time: make it work, then make it fast

Division of labor: domain specialist writes object code,
computationalist writes mapping

Portability: different mappings for different systems, scales, or
configurations

Shared progress: improved mapping techniques can benefit existing
code

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 69 / 202

Collections of Objects

A[1]

A[0]

A[2]

B[3]

B[0]

C[1,0]

C[1,2]

C[0,0]

C[0,2]

C[1,4]

Processor 1 Processor 2

B[3]C[0,0]

C[1,4]

Processor 3 Processor 4

A[1]A[2]

C[0,2]

C[1,0]
C[1,2]

A[0]

B[0]

Location ManagerSchedulerLocation ManagerScheduler

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 70 / 202

Collective Communication Operations

Point-to-point operations involve only two objects

Collective operations that involve a collection of objects

Broadcast: calls a method in each object of the array

Reduction: collects a contribution from each object of the array

A spanning tree is used to send/receive data

A

B C

D E F G

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 71 / 202

Broadcast

A message to each object in a collection

The chare array proxy object is used to perform a broadcast

It looks like a function call to the proxy object

From the main chare:

CProxy Hello helloArray = CProxy Hello::ckNew(helloArraySize);
helloArray.foo();

From a chare array element that is a member of the same array:

thisProxy.foo()

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 72 / 202

Reduction

Combines a set of values: sum, max, aggregate

Usually reduces the set of values to a single value

Combination of values requires an operator

The operator must be commutative and associative

Each object calls contribute in a reduction

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 73 / 202

Reduction: Example

mainmodule reduction {
mainchare Main {

entry Main(CkArgMsg∗ msg);
entry [reductiontarget] void done(int value);
};
array [1D] Elem {

entry Elem(CProxy Main mProxy);
};
}

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 74 / 202

Reduction: Example

#include ”reduction.decl.h”

const int numElements = 49;

class Main : public CBase Main {
public:

Main(CkArgMsg∗ msg) { CProxy Elem::ckNew(thisProxy, numElements); }
void done(int value) {

CkAssert(value == numElements ∗ (numElements − 1) / 2);
CkPrintf(”value: %d\n”, value);
CkExit();
}
};

class Elem : public CBase Elem {
public:

Elem(CProxy Main mProxy) {
int val = thisIndex;
CkCallback cb(CkReductionTarget(Main, done), mProxy);
contribute(sizeof(int), &val, CkReduction::sum int, cb);
}
Elem(CkMigrateMessage∗) { }
};

#include ”reduction.def.h”

Output:
value: 1176
Program finished.

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 75 / 202

Quick Hands-on

Log onto your vesta account.

Obtain the following code:
git clone git://charm.cs.uiuc.edu/users/tutorial exercise

Read the README.

Change to toy directory, and read assignment.txt.

Uncomment the CHARMC declaration at top of Makefile.

./charmrun -A <your account> +p4 ./hello 16.

Modify paramter to be an array instead of int.

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 76 / 202

Outline

1 Introduction
Object Design
Execution Model

2 Hello World
Object Collections

3 Benefits of Charm++
4 Charm++ Basics
5 Overdecomposition

6 Structured Dagger
7 Application Design
8 Performance Tuning
9 Using Dynamic Load Balancing

10 Checkpointing and Resilience
11 Interoperability
12 Debugging
13 Further Optimization

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 77 / 202

Task Parallelism with Objects

Divide-and-conquer
I Each object recursively creates n objects that divide the problem into

subproblems
I Each object t then waits for all n objects to finish and then may

‘combine’ the responses
I At some point the recursion stops (at the bottom of the tree), and

some sequential kernel is executed
I Then the result is propagated upward in the tree recursively
I Examples: fibonacci, quick sort, . . .

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 78 / 202

Fibonacci Example

Each Fib object is a task that performs one of two actions:
I Creates two new Fib objects to compute fib(n− 1) and fib(n− 2)

and then waits for the response, adding up the two responses when
they arrive

F After both arrive, sends a response message with the result to the
parent object

F Or prints the value and exits if it is the root

I If n = 1 or n = 0 (passed down from the parent) it sends a response
message with n back to the parent object

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 79 / 202

Fibonacci Execution

fib(5)

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 80 / 202

Fibonacci Execution

fib(5)

fib(4)
fib(3)

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 80 / 202

Fibonacci Execution

fib(5)

fib(4)

fib(3) fib(2)

fib(3)

fib(2) fib(1)

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 80 / 202

Fibonacci Execution

fib(5)

fib(4)

fib(3) fib(2)

fib(1) fib(0)fib(2) fib(1)

fib(3)

fib(2) fib(1)

fib(1) fib(0)

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 80 / 202

Fibonacci Execution

fib(5)

fib(4)

fib(3) fib(2)

fib(1) fib(0)fib(2) fib(1)

fib(1) fib(0)

fib(3)

fib(2) fib(1)

fib(1) fib(0)

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 80 / 202

Fibonacci Execution

fib(5)

fib(4)

fib(3) fib(2)

fib(1) fib(0)fib(2) fib(1)

fib(1) fib(0)

fib(3)

fib(2) fib(1)

fib(1) fib(0)

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 80 / 202

Fibonacci Execution

fib(5)

fib(4)

fib(3) fib(2)

fib(1) fib(0)fib(2) fib(1)

fib(3)

fib(2) fib(1)

fib(1) fib(0)

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 80 / 202

Fibonacci Execution

fib(5)

fib(4)

fib(3) fib(2)

fib(3)

fib(2) fib(1)

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 80 / 202

Fibonacci Execution

fib(5)

fib(4)
fib(3)

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 80 / 202

Fibonacci Execution

fib(5)

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 80 / 202

Overdecomposing Your Application

Object-based Over-decomposition

Let the programmer decompose computation into objects
I Work units, data-units, composites

Let an intelligent runtime system assign objects to processors
I RTS can change this assignment (mapping) during execution
I Locality of data references is a critical attribute for performance
I A parallel object can access only its own data
I Asynchronous method invocation for accessing other objects data
I RTS can schedule work whose dependencies have been satisfied

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 82 / 202

Amdahls Law and Grainsize

Original “law”:
I If a program has K% sequential section, then speedup is limited to

100
K .

F If the rest of the program is parallelized completely

Grainsize corollary:
I If any individual piece of work is > K time units, and the sequential

program takes Tseq,

F Speedup is limited to
Tseq

K

So:
I Examine performance data via histograms to find the sizes of

remappable work units
I If some are too big, change the decomposition method to make smaller

units

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 83 / 202

Overdecomposition and Grainsize

Common misconception: overdecomposition must be expensive

(working) Definition: the amount of computation per potentially
parallel event (task creation, enqueue/dequeue, messaging, locking,
etc.)

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 84 / 202

Grainsize and Overhead

What is the ideal grainsize?

Should it depend on the number of processors?

T1 = T
(
1 + v

g

)
Tp = max

{
g, T1

p

}
Tp = max

{
g,

T
(
1+ v

g

)
p

}
v: overhead per message,

Tp: p processor completion time
g: grainsize (computation per message)

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 85 / 202

Grainsize and Scalability

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 86 / 202

Grainsize Study for Stencil Computation

Blue Waters (JYC) , 2 nodes, 32 cores each

 0.125

 0.25

 0.5

 1

 2

 4

 1 4 16 64 256 1024 4096 16384

ti
m

es
te

p
(s

ec
)

number of chares per core

time step(sec) using different number of chares (64 cores)

2048x2048x2048 (50%mem)
2048x2048x1024
2048x1024x1024
1024x1024x1024
512x1024x1024

Typically, having tens of chares per code is adequate (although reasoning
should be based on computation per message)

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 87 / 202

Rules of thumb for grainsize

Make it as small as possible, as long as it amortizes the overhead

More specifically, ensure:
I Average grainsize is greater than kv (say 10v)
I No single grain should be allowed to be too large

F Must be smaller than T
p

, but actually we can express it as:
F Must be smaller than kmv (say 100v)

Important corollary:
I You can be at close to optimal grainsize without having to think about

p, the number of processors

kv < g < mkv (10v < g < 100v)

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 88 / 202

Grain size for Fibonacci Example

Set a sequential threshold in the computational tree
I Past this threshold (i.e. when n < threshold), instead of constructing

two new chares, compute the fibonacci sequentially

fib(5)

fib(4)

fib(3) fib(2)

fib(3)

sequential fib(3) sequential fib(2)

sequential fib(3)

fib(5), fib(4) are fine grains, fib(3), fib(2) are coarser grains

The coarser grains now amortize the cost of the fine-grained execution

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 89 / 202

Outline

1 Introduction
Object Design
Execution Model

2 Hello World
Object Collections

3 Benefits of Charm++
4 Charm++ Basics
5 Overdecomposition

6 Structured Dagger
7 Application Design
8 Performance Tuning
9 Using Dynamic Load Balancing

10 Checkpointing and Resilience
11 Interoperability
12 Debugging
13 Further Optimization

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 90 / 202

Chares are reactive

The way we described Charm++ so far, a chare is a reactive entity:
I If it gets this method invocation, it does this action,
I If it gets that method invocation then it does that action
I But what does it do?
I In typical programs, chares have a life-cycle

How to express the life-cycle of a chare in code?
I Only when it exists

F i.e. some chars may be truly reactive, and the programmer does not
know the life cycle

I But when it exists, its form is:
F Computations depend on remote method invocations, and completion

of other local computations
F A DAG (Directed Acyclic Graph)!

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 91 / 202

Fibonacci Example

mainmodule fib {
mainchare Main {

entry Main(CkArgMsg∗ m);
};

chare Fib {
entry Fib(int n, bool isRoot, CProxy Fib parent);
entry void respond(int value);
};
};

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 92 / 202

Fibonacci Example

class Main : public CBase Main {
public: Main(CkArgMsg∗ m) {

CProxy Fib::ckNew(atoi(m−>argv[1]), true, CProxy Fib());
}
};

class Fib : public CBase Fib {
public: CProxy Fib parent; bool isRoot; int result, count;

Fib(int n, bool isRoot , CProxy Fib parent)
: parent(parent), isRoot(isRoot), result(0), count(2) {

if (n < 2) respond(n);
else {

CProxy Fib::ckNew(n − 1, false, thisProxy);
CProxy Fib::ckNew(n − 2, false, thisProxy);
}
}

void respond(int val) {
result += val;
if (−−count == 0 || n < 2) {

if (isRoot) {
CkPrintf(”Fibonacci number is: %d\n”, result);
CkExit();
} else {

parent.respond(result);
delete this;
}
}
}
};

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 93 / 202

Consider Fibonacci Chare

The Fibonacci chare gets created

If its not a leaf,
I It fires two chares
I When both children return results (by calling respond):

F It can compute my result and send it up, or print it

I But in our, this logic is hidden in the flags and counters . . .
F This is simple for this simple example, but . . .

I Lets look at how this would look with a little notational support

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 94 / 202

Structured Dagger
The when construct

The when construct
I Declare the actions to perform when a message is received
I In sequence, it acts like a blocking receive

entry void someMethod() {
when entryMethod1(parameters) { /∗ block2 ∗/ }
when entryMethod2(parameters) { /∗ block3 ∗/ }
};

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 95 / 202

Structured Dagger
The serial construct

The serial construct
I A sequential block of C++ code in the .ci file
I The keyword serial means that the code block will be executed

without interruption/preemption, like an entry method
I Syntax: serial <optionalString> { /* C++ code */ }
I The <optionalString> is used for identifying the serial for

performance analysis
I Serial blocks can access all members of the class they belong to

Examples (.ci file):

entry void method1(parameters) {
serial {

thisProxy.invokeMethod(10);
callSomeFunction();
}
};

entry void method2(parameters) {
serial ”setValue” {

value = 10;
}
};

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 96 / 202

Structured Dagger
The when construct

entry void someMethod() {
serial { /∗ block1 ∗/ }
when entryMethod1(parameters) serial { /∗ block2 ∗/ }
when entryMethod2(parameters) serial { /∗ block3 ∗/ }
};

Sequence

I Sequentially execute /* block1 */

I Wait for entryMethod1 to arrive, if it has not, return control back to

the Charm++ scheduler, otherwise, execute /* block2 */

I Wait for entryMethod2 to arrive, if it has not, return control back to

the Charm++ scheduler, otherwise, execute /* block3 */

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 97 / 202

Structured Dagger
The when construct

entry void someMethod() {
serial { /∗ block1 ∗/ }
when entryMethod1(parameters) serial { /∗ block2 ∗/ }
when entryMethod2(parameters) serial { /∗ block3 ∗/ }
};

Sequence
I Sequentially execute /* block1 */

I Wait for entryMethod1 to arrive, if it has not, return control back to

the Charm++ scheduler, otherwise, execute /* block2 */

I Wait for entryMethod2 to arrive, if it has not, return control back to

the Charm++ scheduler, otherwise, execute /* block3 */

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 97 / 202

Structured Dagger
The when construct

entry void someMethod() {
serial { /∗ block1 ∗/ }
when entryMethod1(parameters) serial { /∗ block2 ∗/ }
when entryMethod2(parameters) serial { /∗ block3 ∗/ }
};

Sequence
I Sequentially execute /* block1 */

I Wait for entryMethod1 to arrive, if it has not, return control back to

the Charm++ scheduler, otherwise, execute /* block2 */

I Wait for entryMethod2 to arrive, if it has not, return control back to

the Charm++ scheduler, otherwise, execute /* block3 */

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 97 / 202

Structured Dagger
The when construct

entry void someMethod() {
serial { /∗ block1 ∗/ }
when entryMethod1(parameters) serial { /∗ block2 ∗/ }
when entryMethod2(parameters) serial { /∗ block3 ∗/ }
};

Sequence
I Sequentially execute /* block1 */

I Wait for entryMethod1 to arrive, if it has not, return control back to

the Charm++ scheduler, otherwise, execute /* block2 */

I Wait for entryMethod2 to arrive, if it has not, return control back to

the Charm++ scheduler, otherwise, execute /* block3 */

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 97 / 202

Structured Dagger
The when construct

Execute /* further sdag */ when myMethod arrives
when myMethod(int param1, int param2)
/∗ further code ∗/

Execute /* further sdag */ when myMethod1 and myMethod2

arrive
when myMethod1(int param1, int param2),

myMethod2(bool param3)
/∗ further code ∗/

Which is almost the same as this:
when myMethod1(int param1, int param2) {

when myMethod2(bool param3) { }
}

/∗ further code ∗/

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 98 / 202

Structured Dagger
Boilerplate

Structured Dagger can be used in any entry method (except for a
constructor)

I Can be used in a mainchare , chare , or array

For any class that has Structured Dagger in it you must insert two
calls:

I The Structured Dagger macro: [ClassName] SDAG CODE

I For later: call the sdag pup() in the pup method

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 99 / 202

Structured Dagger
Boilerplate

The .ci file:

[mainchare,chare,array] MyFoo {
...
entry void method(parameters) {

// ... structured dagger code here ...
};
...
}

The .cpp file:

class MyFoo : public CBase MyFoo {
MyFoo SDAG CODE /∗ insert SDAG macro ∗/

public:
MyFoo() { }
};

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 100 / 202

Fibonacci with Structured Dagger

mainmodule fib {
mainchare Main {

entry Main(CkArgMsg∗ m);
};

chare Fib {
entry Fib(int n, bool isRoot, CProxy Fib parent);
entry void calc(int n) {

if (n < THRESHOLD) serial { respond(seqFib(n)); }
else {

serial {
CProxy Fib::ckNew(n − 1, false, thisProxy);
CProxy Fib::ckNew(n − 2, false, thisProxy);
}
when response(int val)

when response(int val2)
serial { respond(val + val2); }

}
};
entry void response(int);
};
};

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 101 / 202

Fibonacci with Structured Dagger

#include ”fib.decl.h”
#define THRESHOLD 10

class Main : public CBase Main {
public: Main(CkArgMsg∗ m) { CProxy Fib::ckNew(atoi(m−>argv[1]), true, CProxy Fib()); }
};

class Fib : public CBase Fib {
public:

Fib SDAG CODE
CProxy Fib parent; bool isRoot;

Fib(int n, bool isRoot , CProxy Fib parent)
: parent(parent), isRoot(isRoot) {
calc(n);
}

int seqFib(int n) { return (n < 2) ? n : seqFib(n − 1) + seqFib(n − 2); }

void respond(int val) {
if (!isRoot) {

parent.response(val);
delete this;
} else {

CkPrintf(”Fibonacci number is: %d\n”, val);
CkExit();
}
}
};

#include ”fib.def.h”

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 102 / 202

Structured Dagger
The when construct

What is the sequence?
when myMethod1(int param1, int param2) {

when myMethod2(bool param3),
myMethod3(int size, int arr[size]) /∗ sdag block1 ∗/

when myMethod4(bool param4) /∗ sdag block2 ∗/
}

Sequence:
I Wait for myMethod1 , upon arrival execute body of myMethod1

I Wait for myMethod2 and myMethod3 , upon arrival of both, execute

/* sdag block1 */

I Wait for myMethod4 , upon arrival execute /* sdag block2 */

Question: if myMethod4 arrives first what will happen?

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 103 / 202

Structured Dagger
The when construct

What is the sequence?
when myMethod1(int param1, int param2) {

when myMethod2(bool param3),
myMethod3(int size, int arr[size]) /∗ sdag block1 ∗/

when myMethod4(bool param4) /∗ sdag block2 ∗/
}

Sequence:
I Wait for myMethod1 , upon arrival execute body of myMethod1

I Wait for myMethod2 and myMethod3 , upon arrival of both, execute

/* sdag block1 */

I Wait for myMethod4 , upon arrival execute /* sdag block2 */

Question: if myMethod4 arrives first what will happen?

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 103 / 202

Structured Dagger
The when construct

What is the sequence?
when myMethod1(int param1, int param2) {

when myMethod2(bool param3),
myMethod3(int size, int arr[size]) /∗ sdag block1 ∗/

when myMethod4(bool param4) /∗ sdag block2 ∗/
}

Sequence:
I Wait for myMethod1 , upon arrival execute body of myMethod1

I Wait for myMethod2 and myMethod3 , upon arrival of both, execute

/* sdag block1 */

I Wait for myMethod4 , upon arrival execute /* sdag block2 */

Question: if myMethod4 arrives first what will happen?

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 103 / 202

Structured Dagger
The when construct

What is the sequence?
when myMethod1(int param1, int param2) {

when myMethod2(bool param3),
myMethod3(int size, int arr[size]) /∗ sdag block1 ∗/

when myMethod4(bool param4) /∗ sdag block2 ∗/
}

Sequence:
I Wait for myMethod1 , upon arrival execute body of myMethod1

I Wait for myMethod2 and myMethod3 , upon arrival of both, execute

/* sdag block1 */

I Wait for myMethod4 , upon arrival execute /* sdag block2 */

Question: if myMethod4 arrives first what will happen?

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 103 / 202

Structured Dagger Constructs
The when construct

The when clause can wait on a certain reference number

If a reference number is specified for a when , the first parameter for
the when must be the reference number

Semantic: the when will “block” until a message arrives with that
reference number

when method1[100](int ref, bool param1)
/∗ sdag block ∗/

serial {
proxy.method1(200, false); /∗ will not be delivered to the when ∗/
proxy.method1(100, true); /∗ will be delivered to the when ∗/
}

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 104 / 202

Structured Dagger
The if-then-else construct

The if-then-else construct:
I Same as the typical C if-then-else semantics and syntax

if (thisIndex.x == 10) {
when method1[block](int ref, bool someVal) /∗ code block1 ∗/
} else {

when method2(int payload) serial {
//... some C++ code
}
}

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 105 / 202

Structured Dagger
The for construct

The for construct:
I Defines a sequenced for loop (like a sequential C for loop)
I Once the body for the ith iteration completes, the i+ 1 iteration is

started

for (iter = 0; iter < maxIter; ++iter) {
when recvLeft[iter](int num, int len, double data[len])

serial { computeKernel(LEFT, data); }
when recvRight[iter](int num, int len, double data[len])

serial { computeKernel(RIGHT, data); }
}

iter must be defined in the class as a member

class Foo : public CBase Foo {
public: int iter;
};

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 106 / 202

Structured Dagger
The while construct

The while construct:
I Defines a sequenced while loop (like a sequential C while loop)

while (i < numNeighbors) {
when recvData(int len, double data[len]) {

serial {
/∗ do something ∗/
}
when method1() /∗ block1 ∗/
when method2() /∗ block2 ∗/
}
serial { i++; }
}

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 107 / 202

Structured Dagger
The overlap construct

The overlap construct:
I By default, Structured Dagger defines a sequence that is followed

sequentially
I overlap allows multiple independent clauses to execute in any order

I Any constructs in the body of an overlap can happen in any order

I An overlap finishes in sequence when all the statements in it are

executed
I Syntax: overlap { /* sdag constructs */ }

What are the possible execution sequences?

serial { /∗ block1 ∗/ }
overlap {

serial { /∗ block2 ∗/ }
when entryMethod1[100](int ref num, bool param1) /∗ block3 ∗/
when entryMethod2(char myChar) /∗ block4 ∗/
}
serial { /∗ block5 ∗/ }

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 108 / 202

Illustration of a long “overlap”

Overlap can be used to get back some
of the asynchrony within a chare

I But it is constrained
I Makes for more disciplined

programming,
F with fewer race conditions

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 109 / 202

Structured Dagger
The forall construct

The forall construct:
I Has “do-all” semantics: iterations may execute an any order
I Syntax:

forall [<ident>] (<min> : <max>, <stride>) <body>

I The range from <min> to <max> is inclusive

forall [block] (0 : numBlocks − 1, 1) {
when method1[block](int ref, bool someVal) /∗ code block1 ∗/
}

Assume block is declared in the class as public: int block;

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 110 / 202

5-point Stencil

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 111 / 202

5-point Stencil

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 112 / 202

5-point Stencil

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 113 / 202

Jacobi: .ci file

mainmodule jacobi3d {
readonly CProxy Main mainProxy;

mainchare Main {
entry Main(CkArgMsg ∗m);
entry void done(int iterations);
};

array [3D] Jacobi {
entry Jacobi(void);
entry void updateGhosts(int ref, int dir, int w, int h, double gh[w∗h]);
entry [reductiontarget] void checkConverged(bool result);
entry void run() {
// ... main loop (next slide) ...
};
};
};

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 114 / 202

Jacobi: .ci file

entry void run() {
while (!converged) {

serial {
copyToBoundaries();
int x = thisIndex.x, y = thisIndex.y, z = thisIndex.z;
int bdX = blockDimX, bdY = blockDimY, bdZ = blockDimZ;
thisProxy(wrapX(x−1),y,z).updateGhosts(iter, RIGHT, bdY, bdZ, rightGhost);
thisProxy(wrapX(x+1),y,z).updateGhosts(iter, LEFT, bdY, bdZ, leftGhost);
thisProxy(x,wrapY(y−1),z).updateGhosts(iter, TOP, bdX, bdZ, topGhost);
thisProxy(x,wrapY(y+1),z).updateGhosts(iter, BOTTOM, bdX, bdZ, bottomGhost);
thisProxy(x,y,wrapZ(z−1)).updateGhosts(iter, BACK, bdX, bdY, backGhost);
thisProxy(x,y,wrapZ(z+1)).updateGhosts(iter, FRONT, bdX, bdY, frontGhost);
freeBoundaries();
}
for (remoteCount = 0; remoteCount < 6; remoteCount++)

when updateGhosts[iter](int ref, int dir, int w, int h, double buf[w∗h]) serial {
updateBoundary(dir, w, h, buf);
}

serial {
double error = computeKernel();
int conv = error < DELTA;
contribute(sizeof(int), &conv, CkReduction::logical and, CkCallback(CkReductionTarget(Jacobi,

checkConverged), thisProxy));
}
when checkConverged(bool result)

if (result) serial { mainProxy.done(iter); converged = true; }
serial { ++iter; }
}
};

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 115 / 202

Jacobi: .ci file (with asynchronous reductions)

entry void run() {
while (!converged) {

serial {
copyToBoundaries();
int x = thisIndex.x, y = thisIndex.y, z = thisIndex.z;
int bdX = blockDimX, bdY = blockDimY, bdZ = blockDimZ;
thisProxy(wrapX(x−1),y,z).updateGhosts(iter, RIGHT, bdY, bdZ, rightGhost);
thisProxy(wrapX(x+1),y,z).updateGhosts(iter, LEFT, bdY, bdZ, leftGhost);
thisProxy(x,wrapY(y−1),z).updateGhosts(iter, TOP, bdX, bdZ, topGhost);
thisProxy(x,wrapY(y+1),z).updateGhosts(iter, BOTTOM, bdX, bdZ, bottomGhost);
thisProxy(x,y,wrapZ(z−1)).updateGhosts(iter, BACK, bdX, bdY, backGhost);
thisProxy(x,y,wrapZ(z+1)).updateGhosts(iter, FRONT, bdX, bdY, frontGhost);
freeBoundaries();
}
for (remoteCount = 0; remoteCount < 6; remoteCount++)

when updateGhosts[iter](int ref, int dir, int w, int h, double buf[w∗h]) serial {
updateBoundary(dir, w, h, buf);
}

serial {
double error = computeKernel();
int conv = error < DELTA;
if (iter % 5 == 1)

contribute(sizeof(int), &conv, CkReduction::logical and, CkCallback(CkReductionTarget(Jacobi,
checkConverged), thisProxy));

}
if (++iter % 5 == 0)

when checkConverged(bool result)
if (result) serial { mainProxy.done(iter); converged = true; }

}
};

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 116 / 202

Power of Asynchrony
Example

Consider the following problem:
I A large number of key-value pairs are distributed on several (hundred)

processors (or chares)

I Each chare needs to get some subset of these values before they can
proceed to the next phase of the computation

I The set of keys needed are not known in advance: they are determined
based on the input data

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 117 / 202

Power of Asynchrony
Example

Consider the following problem:
I A large number of key-value pairs are distributed on several (hundred)

processors (or chares)
I Each chare needs to get some subset of these values before they can

proceed to the next phase of the computation

I The set of keys needed are not known in advance: they are determined
based on the input data

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 117 / 202

Power of Asynchrony
Example

Consider the following problem:
I A large number of key-value pairs are distributed on several (hundred)

processors (or chares)
I Each chare needs to get some subset of these values before they can

proceed to the next phase of the computation
I The set of keys needed are not known in advance: they are determined

based on the input data

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 117 / 202

Structured dagger version

entry void retrieveValues {
for (i = 0; i < n; i++) serial {

keys[i] = // compute i’th key;
keyValueProxy[keys[i] / B].requestValue(keys[i], thisProxy, i);
}

for (i = 0; i < n; i++)
when response(int i, ValueType value)

serial { values[i] = value; }
};

// next phase of computation thats uses the keys and values.

KeyValueClass::requestValue(int key, CProxy Client c, int ref) {
ValueType v = localTable[key];
c.response(ref, v);
}

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 118 / 202

Structured dagger version

entry void retrieveValues {
for (i = 0; i < n; i++) serial {

keys[i] = // compute i’th key;
keyValueProxy[keys[i] / B].requestValue(keys[i], thisProxy, i);
}

for (i = 0; i < n; i++)
when response(int i, ValueType value)

serial { values[i] = value; }
};

// next phase of computation thats uses the keys and values.

KeyValueClass::requestValue(int key, CProxy Client c, int ref) {
ValueType v = localTable[key];
c.response(ref, v);
}

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 118 / 202

Structured dagger version

entry void retrieveValues {
for (i = 0; i < n; i++) serial {

keys[i] = // compute i’th key;
keyValueProxy[keys[i] / B].requestValue(keys[i], thisProxy, i);
}

for (i = 0; i < n; i++)
when response(int i, ValueType value)

serial { values[i] = value; }
};

// next phase of computation thats uses the keys and values.

KeyValueClass::requestValue(int key, CProxy Client c, int ref) {
ValueType v = localTable[key];
c.response(ref, v);
}

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 118 / 202

Outline

1 Introduction
Object Design
Execution Model

2 Hello World
Object Collections

3 Benefits of Charm++
4 Charm++ Basics
5 Overdecomposition

6 Structured Dagger
7 Application Design
8 Performance Tuning
9 Using Dynamic Load Balancing

10 Checkpointing and Resilience
11 Interoperability
12 Debugging
13 Further Optimization

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 119 / 202

NAMD

Ground-breaking Nature article on the structure of the HIV capsid

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 120 / 202

Molecular Dynamics in NAMD

Collection of charged atoms, with bonds
I Newtonian mechanics
I Relatively small of atoms (100K 10M)

Calculate forces on each atom
I Bonds
I Non-bonded: electrostatic and van der Waals

F Short-distance: every timestep
F Long-distance: using PME (3D FFT)
F Multiple Time Stepping : PME every 4 timesteps

Calculate velocities and advance positions

Challenge: femtosecond time-step, millions needed!

Collaboration with K. Schulten, R. Skeel, and coworkers

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 121 / 202

Molecular Dynamics in NAMD

Collection of charged atoms, with bonds
I Newtonian mechanics
I Relatively small of atoms (100K 10M)

Calculate forces on each atom
I Bonds
I Non-bonded: electrostatic and van der Waals

F Short-distance: every timestep
F Long-distance: using PME (3D FFT)
F Multiple Time Stepping : PME every 4 timesteps

Calculate velocities and advance positions

Challenge: femtosecond time-step, millions needed!

Collaboration with K. Schulten, R. Skeel, and coworkers

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 121 / 202

Molecular Dynamics in NAMD

Collection of charged atoms, with bonds
I Newtonian mechanics
I Relatively small of atoms (100K 10M)

Calculate forces on each atom
I Bonds
I Non-bonded: electrostatic and van der Waals

F Short-distance: every timestep
F Long-distance: using PME (3D FFT)
F Multiple Time Stepping : PME every 4 timesteps

Calculate velocities and advance positions

Challenge: femtosecond time-step, millions needed!

Collaboration with K. Schulten, R. Skeel, and coworkers

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 121 / 202

Molecular Dynamics in NAMD

Collection of charged atoms, with bonds
I Newtonian mechanics
I Relatively small of atoms (100K 10M)

Calculate forces on each atom
I Bonds
I Non-bonded: electrostatic and van der Waals

F Short-distance: every timestep
F Long-distance: using PME (3D FFT)
F Multiple Time Stepping : PME every 4 timesteps

Calculate velocities and advance positions

Challenge: femtosecond time-step, millions needed!

Collaboration with K. Schulten, R. Skeel, and coworkers

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 121 / 202

Spatial Decomposition Via Charm

Cells, Cubes or�Patches�

Atoms distributed to cubes based on
their location

Size of each cube :
I Just a bit larger than cut-off radius
I Communicate only with neighbors
I Work: for each pair of nbr objects

C/C ratio: O(1)

However:
I Load imbalance
I Limited parallelism

Charm++ is useful to handle this case

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 122 / 202

Spatial Decomposition Via Charm

Cells, Cubes or�Patches�

Atoms distributed to cubes based on
their location

Size of each cube :
I Just a bit larger than cut-off radius
I Communicate only with neighbors
I Work: for each pair of nbr objects

C/C ratio: O(1)

However:
I Load imbalance
I Limited parallelism

Charm++ is useful to handle this case

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 122 / 202

Spatial Decomposition Via Charm

Cells, Cubes or�Patches�

Atoms distributed to cubes based on
their location

Size of each cube :
I Just a bit larger than cut-off radius
I Communicate only with neighbors
I Work: for each pair of nbr objects

C/C ratio: O(1)

However:
I Load imbalance
I Limited parallelism

Charm++ is useful to handle this case

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 122 / 202

Spatial Decomposition Via Charm

Cells, Cubes or�Patches�

Atoms distributed to cubes based on
their location

Size of each cube :
I Just a bit larger than cut-off radius
I Communicate only with neighbors
I Work: for each pair of nbr objects

C/C ratio: O(1)

However:
I Load imbalance
I Limited parallelism

Charm++ is useful to handle this case

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 122 / 202

Object Based Parallelization for MD
Force Decomposition + Spatial Decomposition

Now, we have many objects to load
balance:

I Each diamond can be assigned to any
proc.

I Number of diamonds (3D):
14*Number of Patches

2-away variation:
I Half-size cubes
I Communicate only with neighbors
I 5 x 5 x 5 interactions

3-away interactions: 7 x 7 x 7

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 123 / 202

Object Based Parallelization for MD
Force Decomposition + Spatial Decomposition

Now, we have many objects to load
balance:

I Each diamond can be assigned to any
proc.

I Number of diamonds (3D):
14*Number of Patches

2-away variation:
I Half-size cubes
I Communicate only with neighbors
I 5 x 5 x 5 interactions

3-away interactions: 7 x 7 x 7

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 123 / 202

Object Based Parallelization for MD
Force Decomposition + Spatial Decomposition

Now, we have many objects to load
balance:

I Each diamond can be assigned to any
proc.

I Number of diamonds (3D):
14*Number of Patches

2-away variation:
I Half-size cubes
I Communicate only with neighbors
I 5 x 5 x 5 interactions

3-away interactions: 7 x 7 x 7

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 123 / 202

NAMD Parallelization Using Charm++

The computation is decomposed into “natural” objects of the application,
which are assigned to processors by Charm++ RTS

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 124 / 202

NAMD Projections

green: communication

Blue/Purple: electrostatics

turquoise: angle/dihedral

Orange: PME

Apo-A1, on BlueGene/L, 1024 procs

Charm++’s “Projections” Analysis tool

Time intervals on x axis, activity added across
processors on Y axis

Time

Red: integration

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 125 / 202

DHFR Performance on Titan

Best performance is 590us/step

0.6

1.0

2.0

4.0

 64 128 256 512 1024 2048 4096

m
s/

st
ep

number of cores

Gemini Charm++

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 126 / 202

Apoa1 Performance on BG/P BG/Q

Best performance on BG/Q is 794us/step

 1

 5

 25

 125

 16 64 256 1024 4096 16384 65536

m
s/

st
ep

number of cores

Bluegene/Q
Bluegene/P

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 127 / 202

NAMD Performance on IBM Blue Gene/P

2048

4096

8192

16384

32768

65536

2048 4096 8192 16384 32768 65536

Sp
ee

d
up

Number of Cores

Ideal

PME

cutoff w/
barrier

PME:%%162.6%ms/step%
(~1.1%ns/day)%

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 128 / 202

100M STMV Performance on Titan

9 ms/step Number of cores

T
im

es
te

p
(m

s/
st

ep
)

 25

 125

298992128K64K16K4K

Cutoff only
PME every 4 steps

13ms/
step

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 129 / 202

ChaNGa: Parallel Gravity

Collaborative project (NSF)
I with Tom Quinn, Univ. of Washington

Evolution of Universe and Galaxy Formation

Gravity, gas dynamics

Barnes-Hut tree codes
I Oct tree is natural decomposition
I Geometry has better aspect ratios, so you “open up fewer nodes
I But is not used because it leads to bad load balance
I Assumption: one-to-one map between sub-trees and PEs
I Binary trees are considered better load balanced

With Charm++: Use Oct-Tree, and let Charm++ map subtrees to
processors

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 130 / 202

ChaNGa: Parallel Gravity

Collaborative project (NSF)
I with Tom Quinn, Univ. of Washington

Evolution of Universe and Galaxy Formation

Gravity, gas dynamics

Barnes-Hut tree codes
I Oct tree is natural decomposition
I Geometry has better aspect ratios, so you “open up fewer nodes
I But is not used because it leads to bad load balance
I Assumption: one-to-one map between sub-trees and PEs
I Binary trees are considered better load balanced

With Charm++: Use Oct-Tree, and let Charm++ map subtrees to
processors

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 130 / 202

ChaNGa: Parallel Gravity

Collaborative project (NSF)
I with Tom Quinn, Univ. of Washington

Evolution of Universe and Galaxy Formation

Gravity, gas dynamics

Barnes-Hut tree codes
I Oct tree is natural decomposition
I Geometry has better aspect ratios, so you “open up fewer nodes
I But is not used because it leads to bad load balance
I Assumption: one-to-one map between sub-trees and PEs
I Binary trees are considered better load balanced

With Charm++: Use Oct-Tree, and let Charm++ map subtrees to
processors

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 130 / 202

ChaNGa: Parallel Gravity

Collaborative project (NSF)
I with Tom Quinn, Univ. of Washington

Evolution of Universe and Galaxy Formation

Gravity, gas dynamics

Barnes-Hut tree codes
I Oct tree is natural decomposition
I Geometry has better aspect ratios, so you “open up fewer nodes
I But is not used because it leads to bad load balance
I Assumption: one-to-one map between sub-trees and PEs
I Binary trees are considered better load balanced

With Charm++: Use Oct-Tree, and let Charm++ map subtrees to
processors

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 130 / 202

ChaNGa: Control Flow

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 131 / 202

OpenAtom: MD with quantum effects

Much more fine-grained:
I Each electronic state is

modeled with a large array

Collaboration with:
I G. Martyna (IBM)
I M. Tuckerman (NYU)

Using Charm++ virtualization,
we can efficiently scale small (32
molecule) systems to thousands
of processors

Semiconductor Surfaces

Nanowires

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 132 / 202

OpenAtom: MD with quantum effects

Much more fine-grained:
I Each electronic state is

modeled with a large array

Collaboration with:
I G. Martyna (IBM)
I M. Tuckerman (NYU)

Using Charm++ virtualization,
we can efficiently scale small (32
molecule) systems to thousands
of processors

Semiconductor Surfaces

Nanowires

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 132 / 202

OpenAtom: MD with quantum effects

Much more fine-grained:
I Each electronic state is

modeled with a large array

Collaboration with:
I G. Martyna (IBM)
I M. Tuckerman (NYU)

Using Charm++ virtualization,
we can efficiently scale small (32
molecule) systems to thousands
of processors

Semiconductor Surfaces

Nanowires

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 132 / 202

OpenAtom: Decomposition and Computation Flow

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 133 / 202

Outline

1 Introduction
Object Design
Execution Model

2 Hello World
Object Collections

3 Benefits of Charm++
4 Charm++ Basics
5 Overdecomposition

6 Structured Dagger
7 Application Design
8 Performance Tuning
9 Using Dynamic Load Balancing

10 Checkpointing and Resilience
11 Interoperability
12 Debugging
13 Further Optimization

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 134 / 202

Performance Analysis Using Projections

Instrumentation and measurement
I Link program with -tracemode projections or summary
I Trace data is generated automatically during run
I User events can be easily inserted as needed

Projections: visualization and analysis
I Scalable tool to analyze up to 300,000 log files
I A rich set of tool features : time profile, time lines, usage profile,

histogram, extrema tool
I Detect performance problems: load imbalance, grain size,

communication bottleneck, etc

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 135 / 202

Using Projections

Tools of aggregated performance viewing
I Time profile
I Histogram
I Communication over time

Tools of processor level granularity
I Overview
I Timeline

Tools of derived/processed data
I Extrema analysis : identifies outliers
I Noise miner : highlights probable interference

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 136 / 202

Problem Identification

Load imbalance
I Time profile : lower CPU usage
I Extrema analysis tool:

F Least idle processors

I Load the over-loaded processors in Timeline
I Histogram : grain size issues

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 137 / 202

Using Projections

Example Demonstration
I Trying to identify the next performance obstacle for NAMD

F Running on 8192 processors, with 1 million atom simulation
F Jaguar Cray XK6
F Test scenario: with PME every step

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 138 / 202

Time Profile

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 139 / 202

Extrema Tool for Least Idle Processors

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 140 / 202

Time Lines with Message Back Tracing

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 141 / 202

Communication over Time for all Processors

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 142 / 202

Outline

1 Introduction
Object Design
Execution Model

2 Hello World
Object Collections

3 Benefits of Charm++
4 Charm++ Basics
5 Overdecomposition

6 Structured Dagger
7 Application Design
8 Performance Tuning
9 Using Dynamic Load Balancing

10 Checkpointing and Resilience
11 Interoperability
12 Debugging
13 Further Optimization

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 143 / 202

The PUP Framework

Chare Migration: motivations

Chares are initially placed according to a placement map
I The user can specify this map

While running, some processors might be overloaded
I Need to rebalance the load

Automatic checkpoint
I Migration to disk

Chares are made serializable for transport using the Pack UnPack
(PUP) framework

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 145 / 202

The PUP Process

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 146 / 202

Writing a PUP routine

class MyChare : public
CBase MyChare {

int a;
float b;
char c;
float localArray[LOCAL SIZE];
};

void pup(PUP::er &p) {
CBase MyChare::pup(p);
p | a;
p | b;
p | c;
p(localArray, LOCAL SIZE);

}

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 147 / 202

Writing a PUP routine

class MyChare : public
CBase MyChare {

int heapArraySize;
float∗ heapArray;
MyClass ∗pointer;
};

void pup(PUP::er &p) {
CBase MyChare::pup(p);
p | heapArraySize;
if (p.isUnpacking()) {

heapArray = new float[
heapArraySize];

}
p(heapArray, heapArraySize);
bool isNull = !pointer;
p | isNull;
if (!isNull) {

if (p.isUnpacking()) pointer =
new MyClass();

p | ∗pointer;
}
}
}

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 148 / 202

PUP: Concerns

If variables are added to an object, update the PUP routine

If the object allocates data on the heap, copy it recursively, not just
the pointer

Remember to allocate memory while unpacking

Sizing, Packing, and Unpacking must scan the variables in the same
order

Test PUP routines with +balancer RotateLB

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 149 / 202

Dynamic Load Balancing

How to Diagnose Load Imbalance

Often hidden in statements such as:
I Very high synchronization overhead

F Most processors are waiting at a reduction

Count total amount of computation (ops/flops) per processor
I In each phase!
I Because the balance may change from phase to phase

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 151 / 202

Golden Rule of Load Balancing

Fallacy: objective of load balancing is to minimize variance in load across
processors

Example:
I 50,000 tasks of equal size, 500 processors:

F A: All processors get 99, except last 5 gets 100 + 99 = 199
F OR, B: All processors have 101, except last 5 get 1

Identical variance, but situation A is much worse!

Golden Rule: It is ok if a few processors idle, but avoid having processors
that are overloaded with work
Finish time = maxi(Time on processor i)

excepting data dependence and communication overhead issues

The speed of any group is the speed of slowest member of that group.

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 152 / 202

Automatic Dynamic Load Balancing

Measurement based load balancers
I Principle of persistence: In many CSE applications, computational

loads and communication patterns tend to persist, even in dynamic
computations

I Therefore, recent past is a good predictor of near future
I Charm++ provides a suite of load-balancers
I Periodic measurement and migration of objects

Seed balancers (for task-parallelism)
I Useful for divide-and-conquer and state-space-search applications
I Seeds for charm++ objects moved around until they take root

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 153 / 202

Code to Use Load Balancing

Write PUP method to serialize the state of a chare

Insert if (myLBStep) AtSync(); call at natural barrier

Implement ResumeFromSync() to resume execution

I Typical ResumeFromSync contribute to a reduction

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 154 / 202

Using the Load Balancer

link a LB module
I -module <strategy>

I RefineLB, NeighborLB, GreedyCommLB, others
I EveryLB will include all load balancing strategies

compile time option (specify default balancer)
I -balancer RefineLB
I runtime option
I +balancer RefineLB

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 155 / 202

Example: Stencil

while (!converged) {
serial {

int x = thisIndex.x, y = thisIndex.y, z = thisIndex.z;
copyToBoundaries();
thisProxy(wrapX(x−1),y,z).updateGhosts(i, RIGHT, dimY, dimZ, right);
/∗ ...similar calls to send the 6 boundaries... ∗/
thisProxy(x,y,wrapZ(z+1)).updateGhosts(i, FRONT, dimX, dimY, front);
}
for (remoteCount = 0; remoteCount < 6; remoteCount++) {

when updateGhosts[i](int i, int d, int w, int h, double b[w∗h])
serial { updateBoundary(d, w, h, b); }
}
serial {

int c = computeKernel() < DELTA;
CkCallback cb(CkReductionTarget(Jacobi, checkConverged), thisProxy);
if (i%5 == 1) contribute(sizeof(int), \&c, CkReduction::logical and, cb);
}
if (i % lbPeriod == 0) { serial { AtSync(); } when ResumeFromSync() {} }
if (++i % 5 == 0) {

when checkConverged(bool result) serial {
if (result) { mainProxy.done(); converged = true; }
}
}
}

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 156 / 202

Dynamic Load Balancing Scenarios

Examples representing typical classes of situations
I Particles distributed over simulation space

F Dynamic: because Particles move.
F Cases:

Highly non-uniform distribution (cosmology)
Relatively Uniform distribution

Structured grids, with dynamic refinements/coarsening

Unstructured grids with dynamic refinements/coarsening

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 157 / 202

Load Balancing Strategies

Classified by when it is done:
I Initially
I Dynamic: Periodically
I Dynamic: Continuously

Classified by whether decisions are taken with global information
I Fully centralized

F Quite good a choice when load balancing period is high

I Fully distributed
F Each processor knows only about a constant number of neighbors
F Extreme case: totally local decision (send work to a random destination

processor, with some probability).

I Use aggregated global information, and detailed neighborhood info.

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 158 / 202

Periodic Load Balancing

Centralized strategies:

Charm RTS collects data (on one processor) about:
I Computational Load and Communication for each pair

Partition the graph of objects across processors
I Take communication into account

F Pt-to-pt, as well as multicast over a subset
F As you map an object, add to the load on both sending and receiving

processor

I Multicasts to multiple co-located objects are effectively the cost of a
single send

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 159 / 202

Typical Load Balancing Steps

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 160 / 202

Crack Propagation

Decomposition into 16 chunks (left) and 128 chunks, 8 for each PE
(right). The middle area contains cohesive elements. Both decompositions
obtained using Metis. Pictures: S. Breitenfeld, and P. Geubelle
As computation progresses, crack propagates, and new elements are
added, leading to more complex computations in some chunks.

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 161 / 202

Load Balancing Crack Propagation

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 162 / 202

Distributed Load balancing

Centralized strategies
I Still ok for 3000 processors for NAMD

Distributed balancing is needed when:
I Number of processors is large and/or
I load variation is rapid

Large machines:
I Need to handle locality of communication

F Topology sensitive placement

I Need to work with scant global information
F Approximate or aggregated global information (average/max load)
F Incomplete global info (only neighborhood)
F Work diffusion strategies (1980s work by Kale and others!)

I Achieving global effects by local action

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 163 / 202

Load Balancing on Large Machines

Centralized load balancing strategies dont scale on extremely large
machines

Limitations of centralized strategies:
I Central node: memory/communication bottleneck
I Decision-making algorithms tend to be very slow

Limitations of distributed strategies:
I Difficult to achieve well-informed load balancing decisions

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 164 / 202

Hierarchical Load Balancers

Partition processor allocation into processor groups

Apply different strategies at each level

Scalable to a large number of processors

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 165 / 202

Our Hybrid Scheme

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 166 / 202

MetaBalancer - When and how to load balance?

Difficult to find the optimum load balancing period
I Depends on the application characteristics
I Depends on the machine the application is run on

Monitors the application continuously and predicts behavior.

Decides when to invoke which load balancer.

Command line argument - +MetaLB

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 167 / 202

Metabalancer Utilization Graph for Fractography

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 168 / 202

Outline

1 Introduction
Object Design
Execution Model

2 Hello World
Object Collections

3 Benefits of Charm++
4 Charm++ Basics
5 Overdecomposition

6 Structured Dagger
7 Application Design
8 Performance Tuning
9 Using Dynamic Load Balancing

10 Checkpointing and Resilience
11 Interoperability
12 Debugging
13 Further Optimization

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 169 / 202

Resilience

Fault Tolerance in Charm++/AMPI

Four Approaches:

I Disk-based checkpoint/restart
I In-memory double checkpoint/restart
I Experimental: Proactive object migration
I Experimental: Message-logging for scalable fault tolerance

Common Features:
I Easy checkpoint
I Migrate-to-disk leverages object-migration capabilities
I Based on dynamic runtime capabilities
I Can be used in concert with load-balancing schemes

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 171 / 202

Checkpointing to the file system : Split Execution

The common form of checkpointing
I The job runs for 5 hours, then will continue at the next allocation

another day!

The existing Charm++ infrastructure for chare migration helps

Just “migrate” chares to disk

The call to checkpoint the application is made in the main chare at a
synchronization point

CkCallback cb(CkIndex Hello::SayHi(),helloProxy);
CkStartCheckpoint(‘‘log’’,cb);

> ./charmrun hello +p4 +restart log

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 172 / 202

In-memory checkpointing with auto restart

Idea: checkpoint data in a buddy processor’s memory, in addition to a
local checkpoint

System auto detects when a node crashes

Failed process is restarted on a spare, and retrieves it’s checkpoint
from the buddy

(you can also do without the spare)

Every other processor retrieves its local checkpoint

void CkStartMemCheckpoint(CkCallback &cb)

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 173 / 202

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 174 / 202

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 175 / 202

Outline

1 Introduction
Object Design
Execution Model

2 Hello World
Object Collections

3 Benefits of Charm++
4 Charm++ Basics
5 Overdecomposition

6 Structured Dagger
7 Application Design
8 Performance Tuning
9 Using Dynamic Load Balancing

10 Checkpointing and Resilience
11 Interoperability
12 Debugging
13 Further Optimization

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 176 / 202

Adaptive MPI

MPI implemented on top of Charm++

Each MPI process implemented as a user-level thread embedded in a
chare

Overdecompose to obtain communication-computation overlap
between threads

Supports migration, load balancing, fault tolerance and other
Charm++ functionality

Use cases - Rocstar, BRAMS, NPB, Lulesh etc

Build with AMPI as target and compile using ampi* compilers
./build AMPI net-linux-x86 64 –with-production –enable-tracing -j8
ampiCC myAMPIpgm.C -o myAMPIpgm

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 177 / 202

Charm++-MPI Interoperability

Any library written in Charm++ can be called from MPI

Charm++ resides in the same memory space as the MPI program

Control transfer between MPI and Charm++ analogous to the
control transfer between a program and an external library being used
by the program

Currently requires mpi-based build of Charm++

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 178 / 202

Charm++-MPI Interoperability

Any library written in Charm++ can be called from MPI

Charm++ resides in the same memory space as the MPI program

Control transfer between MPI and Charm++ analogous to the
control transfer between a program and an external library being used
by the program

Currently requires mpi-based build of Charm++

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 178 / 202

Charm++-MPI Interoperability

Any library written in Charm++ can be called from MPI

Charm++ resides in the same memory space as the MPI program

Control transfer between MPI and Charm++ analogous to the
control transfer between a program and an external library being used
by the program

Currently requires mpi-based build of Charm++

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 178 / 202

Interoperability Modes

MPI Control

Charm++ Control

Time

(a) Time Sharing

...

P(1) P(2) P(N-1) P(N)

(b) Space Sharing

...

P(1) P(2) P(N-1) P(N)

(c) Combined Sharing

...

P(1) P(2) P(N-1) P(N)

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 179 / 202

Interoperability Modes

MPI Control

Charm++ Control

Time

(a) Time Sharing

...

P(1) P(2) P(N-1) P(N)

(b) Space Sharing

...

P(1) P(2) P(N-1) P(N)

(c) Combined Sharing

...

P(1) P(2) P(N-1) P(N)

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 179 / 202

Interoperability Modes

MPI Control

Charm++ Control

Time

(a) Time Sharing

...

P(1) P(2) P(N-1) P(N)

(b) Space Sharing

...

P(1) P(2) P(N-1) P(N)

(c) Combined Sharing

...

P(1) P(2) P(N-1) P(N)

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 179 / 202

Example Code Flow

MPI Init(argc,argv); //initialize MPI
//Do MPI related work here

//create comm to be used by Charm++
MPI Comm split(MPI COMM WORLD, myRank % 2, myRank, newComm);
CharmLibInit(newComm,.) //initialize Charm++ over my communicator

if(myRank % 2)
StartHello(); //invoke Charm++ library on one set

else
//do MPI work on other set

kNeighbor(); //invoke Charm++ library on both sets individually
CharmLibExit(); //destroy Charm++

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 180 / 202

Example Code Flow

MPI Init(argc,argv); //initialize MPI
//Do MPI related work here

//create comm to be used by Charm++
MPI Comm split(MPI COMM WORLD, myRank % 2, myRank, newComm);
CharmLibInit(newComm,.) //initialize Charm++ over my communicator

if(myRank % 2)
StartHello(); //invoke Charm++ library on one set

else
//do MPI work on other set

kNeighbor(); //invoke Charm++ library on both sets individually
CharmLibExit(); //destroy Charm++

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 180 / 202

Example Code Flow

MPI Init(argc,argv); //initialize MPI
//Do MPI related work here

//create comm to be used by Charm++
MPI Comm split(MPI COMM WORLD, myRank % 2, myRank, newComm);
CharmLibInit(newComm,.) //initialize Charm++ over my communicator

if(myRank % 2)
StartHello(); //invoke Charm++ library on one set

else
//do MPI work on other set

kNeighbor(); //invoke Charm++ library on both sets individually
CharmLibExit(); //destroy Charm++

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 180 / 202

Example Code Flow

MPI Init(argc,argv); //initialize MPI
//Do MPI related work here

//create comm to be used by Charm++
MPI Comm split(MPI COMM WORLD, myRank % 2, myRank, newComm);
CharmLibInit(newComm,.) //initialize Charm++ over my communicator

if(myRank % 2)
StartHello(); //invoke Charm++ library on one set

else
//do MPI work on other set

kNeighbor(); //invoke Charm++ library on both sets individually
CharmLibExit(); //destroy Charm++

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 180 / 202

Enabling Interoperability

Add interface functions that can be called from MPI, and triggers
Charm++ RTS-

void StartHello(int elems)
if(CkMyPe() == 0) {

CProxy MainHello mainhello =
CProxy MainHello::ckNew(elems);
}
StartCharmScheduler();
}

Use CkExit to return the control back to MPI

Include mpi-interoperate.h in MPI and Charm++ code

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 181 / 202

Enabling Interoperability

Add interface functions that can be called from MPI, and triggers
Charm++ RTS-

void StartHello(int elems)
if(CkMyPe() == 0) {

CProxy MainHello mainhello =
CProxy MainHello::ckNew(elems);
}
StartCharmScheduler();
}

Use CkExit to return the control back to MPI

Include mpi-interoperate.h in MPI and Charm++ code

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 181 / 202

Outline

1 Introduction
Object Design
Execution Model

2 Hello World
Object Collections

3 Benefits of Charm++
4 Charm++ Basics
5 Overdecomposition

6 Structured Dagger
7 Application Design
8 Performance Tuning
9 Using Dynamic Load Balancing

10 Checkpointing and Resilience
11 Interoperability
12 Debugging
13 Further Optimization

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 182 / 202

Debugging Parallel Applications

It can be very difficult

The typical “printf” strategy may be insufficient

Using gdb
I Very easy with Charm++!
I Just run the application with the ++debug command line parameter

and a gdb window for each PE will open through X (and can be
forwarded)

F Not very scalable

We have developed a scalable tool for debugging Charm++
applications

I It’s interactive
I Allows you to change message order to find bugs!
I “What-if” scenarios can be explored using provisional message delivery
I Memory can be tracked to find memory leaks

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 183 / 202

Overview of CharmDebug

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 184 / 202

CharmDebug

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 185 / 202

Getting CharmDebug

It is part of Charm++

For the basic feature set, nothing special needs to be done

Precompiled for java 6
I Use ant to recompile

Help
I charm@cs.illinois.edu (preferred)
I ppl@cs.illinois.edu

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 186 / 202

Compiling Your Applications for use with CharmDebug

Charm++
I Use -g
I No -O3 or --with-production

Application
I Just compile with -g
I OR
I Compile with -debug

F Adds -g -O0, --memory charmdebug, Python modules

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 187 / 202

Launching in Debug Mode

Attach to running application in net- build
I Uses CCS to receive application output

Attach to running application in other builds
I Read the output file of the application

Start a new application in net- build
I Can use tunnels

Options available also in command line
I Use charmdebug help to see them

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 188 / 202

Outline

1 Introduction
Object Design
Execution Model

2 Hello World
Object Collections

3 Benefits of Charm++
4 Charm++ Basics
5 Overdecomposition

6 Structured Dagger
7 Application Design
8 Performance Tuning
9 Using Dynamic Load Balancing

10 Checkpointing and Resilience
11 Interoperability
12 Debugging
13 Further Optimization

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 189 / 202

Overview of Performance Enhancement Features

Shared Memory Optimizations

Objects’ memory buffers disjoint

Communication will leverage refcounted message pointers to avoid
copying

Avoids packing/unpacking within node

Single copy of node level read only structures

Dedicated thread for intra-node communication

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 191 / 202

Controlling Placement

In some applications, load patterns dont change much as computation
progresses

I You, the programmer, may want to control which chare lives on which
processors

I This is also true when load may evolve over time, but you want to
control initial placement of chares

The feature in Charm++ for this purpose is called Map Objects
I Sec. 13.2.2 of the Charm++ manual

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 192 / 202

Messages

Avoids extra copy

Can be custom packed

Reusable

Useful for transfer of complex data structures

It provides explicit control for the application over allocation, reuse,
and scope

Encapsulates variable size quantities

Execution order of messages in the queue can be prioritized

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 193 / 202

Groups

Like a chare-array with one chare per PE

Encapsulate processor local data

May access the local member as a regular C++ object

In .ci file,

group ExampleGroup {
// Interface specifications as for normal chares
// For instance, the constructor ...
entry ExampleGroup(parameters1);
// ... and an entry method
entry void someEntryMethod(parameters2);
};

No difference in .h and .C file definitions

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 194 / 202

Node Groups

A chare-array with one chare per node
I In non-smp node groups and node groups are same

No difference in .h and .C

Creation and usage same as others

An entry method on a node-group member may be executed on any
PE of the node

Concurrent execution of two entry methods of a node-group member
may happen

I Use [exclusive] for entry methods which are unsuitable for
reentrance safety

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 195 / 202

Customizing Entry Method Attributes

threaded executed using separate thread
I each thread has a stack, and may be suspended, for sync methods or

futures
I to set stacks size use +stacksize < size in bytes >

sync - returns a value

inline entry method invoked immediately if destination chare on
same PE

I blocking call

reductiontarget target of an array reduction

I Takes parameter marshaled arguments

notrace not traced for projections

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 196 / 202

Customizing Entry Methods

expedited entry method skips the priority-based message queue in

Charm++ runtime (for groups)

immediate - skips the message scheduling queue (for any chare
array)

nokeep message belongs to Charm

exclusive mutual exclusion on execution of entry methods on
node-groups

python can be called from python scripts

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 197 / 202

Sections

It is often convenient to define subcollections of elements within a
chare array

I Example: rows or columns of a 2D chare array
I One may wish to perform collective operations on the subcollection

(e.g. broadcast, reduction)

Sections are the standard subcollection construct in Charm++

CProxySection Hello proxy =
CProxySection Hello::ckNew(helloArrayID, 0, 9, 1, 0, 19, 2, 0, 29, 2);

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 198 / 202

sync methods

Synchronous as opposed to asynchronous

They return a value - always a message type

Other than that, just like any other entry method:

In the interface file:

entry [sync] MsgData ∗ f(double A[2∗m], int m);

In the C++ file:

MsgData ∗f(double X[], int size) {
...
m = new MsgData(..);
...
return m;
}

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 199 / 202

Threaded methods

Any method that calls a sync method must be able to suspend:
I Needs to be declared as a threaded method
I A threaded method of a chare C

F Can suspend, without blocking the processor
F Other chares can then be executed
F Even other methods of chare C can be executed

Low level thread operations for advanced users:
I CthThread CthSelf()
I CthAwaken(CthThread t)
I CthYield()
I CthSuspend()

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 200 / 202

Customized Load Balancers

Statistics collected by Charm
struct LDStats { // load balancing database

ProcStats ∗procs; //statistics of PEs
int count;

int n objs;
int n migrateobjs;
LDObjData∗ objData; //info regarding chares

int n comm;
LDCommData∗ commData; //communication information

int ∗from proc, ∗to proc; //residence of
chares
}

Use LDStats, ProcArray and ObjGraph for processor load and
communication statistics

work is the function invoked by Charm RTS to perform load balancing

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 201 / 202

Conclusion

Charm++ is a production-ready parallel programming system

Program mostly in C++

Very powerful runtime system
I Dynamic load balancing
I Automatic overlap of computation and communication
I Fault tolerance built in

Topics we did not cover:
I Many different types of load balancers
I Threaded methods in detail
I Futures
I Accelerator support
I Topology aware communication strategies

More information on http://charm.cs.illinois.edu/

Laxmikant V. Kalé, Eric Bohm, Nikhil Jain (UIUC) Parallel Migratable Objects July 31, 2013 202 / 202

	Introduction
	Hello World
	Benefits of Charm++
	Charm++ Basics
	Overdecomposition
	Structured Dagger
	Application Design
	Performance Tuning
	Using Dynamic Load Balancing
	Checkpointing and Resilience
	Interoperability
	Debugging
	Further Optimization

