Big Data + Extreme-scale
Time to Compute → Actionable Insights

Alok Choudhary
John G. Searle Professor
Dept. of Electrical Engineering and Computer Science
and Professor, Kellogg School of Management
Northwestern University
choudhar@eecs.northwestern.edu
BIG DATA?
“Data intensive” vs “Data Driven”

Data Intensive (DI)

- Depends on the perspective
 - Processor, memory, application, storage?
- An application can be data intensive without (necessarily) being I/O intensive

Data Driven (DD)

- Operations are driven and defined by data
 - BIG analytics
 - Top-down query (well-defined operations)
 - Bottom up discovery (unpredictable time-to-result)
 - BIG data processing
 - Predictive modeling
- Usage model further differentiates these
 - Single App, users
 - Large number, sharing, historical/temporal

Very few large-scale applications of practical importance are NOT Data Intensive

In Extreme Scale Science domain, we typically focus on “Transactional” thinking
Understanding Climate Change

CO2 levels hit new peak at key observatory

![Graph showing CO2 emissions over time with two scenarios for 2100: Higher Emissions Scenario and Lower Emissions Scenario. The graph indicates a significant rise in CO2 concentration towards the end of the 21st century.](http://www.ncdc.noaa.gov/indicators/)
Understanding Climate Change – Physics-Based Approach

General Circulation Models: Mathematical models with physical equations based on fluid dynamics

Parameterization and non-linearity of differential equations are sources for uncertainty!

![CCSM CAM3](NCAR)
General Circulation Models: Mathematical models with physical equations based on fluid dynamics

Figure Courtesy: NCAR

Figure Courtesy: ORNL
Understanding Climate Change - Physics Based Approach

Projection of temperature increase under different Special Report on Emissions Scenarios (SRES) by 24 different GCM configurations from 16 research centers used in the Intergovernmental Panel on Climate Change (IPCC) 4th Assessment Report.
Physics based models are essential but insufficient

- Relatively reliable predictions at global scale for ancillary variables such as temperature
- Least reliable predictions for variables that are crucial for impact assessment such as regional precipitation

“The sad truth of climate science is that the most crucial information is the least reliable”
(Nature, 2010)

<table>
<thead>
<tr>
<th>Low uncertainty</th>
<th>High uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Hurricanes</td>
</tr>
<tr>
<td>Pressure</td>
<td>Extremes</td>
</tr>
<tr>
<td>Large-scale wind</td>
<td>Precipitation</td>
</tr>
</tbody>
</table>
Data-Driven Knowledge Discovery in Climate Science

Transformation from Data-Poor to Data-Rich

- Sensor Observations
- Reanalysis Data
- Model Simulations

A new and transformative data-driven approach that:

- Makes use of wealth of observational and simulation data
- Advances understanding of climate processes
- Informs climate change impacts and adaptation

“Climate change research is now ‘big science,’ comparable in its magnitude, complexity, and societal importance to human genomics and bioinformatics.”

(Nature Climate Change, Oct 2012)
Need for data driven discovery

<table>
<thead>
<tr>
<th>Low uncertainty</th>
<th>High uncertainty</th>
<th>Out of scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Hurricanes</td>
<td>Fires</td>
</tr>
<tr>
<td>Pressure</td>
<td>Extremes</td>
<td>Malaria outbreaks</td>
</tr>
<tr>
<td>Large-scale wind</td>
<td>Precipitation</td>
<td>Landslides</td>
</tr>
</tbody>
</table>

Physics based models

Global sea surface temperatures

Atlantic hurricanes

Global fires
End-to-End: From Transactional analytics to relationship mining

Climate Data

Anomaly time series at each node

Climate Network

Edge weights: significant correlations
Nodes in the graph: grid points on the globe

Correlation between two anomaly time series

Stat. significant correlations

Climate Data

Climate Network

Multivariate Networks

CMIP3 ➔ CMIP5 => Climate BIG DATA: 10s of TBs to 10s of PBs
Data Mining, Analytics and Actionable Insights?
A Poem

The Unknown

As we know,
There are known knowns.
There are things we know we know.

Conventional Wisdom

• High Humidity results in outbreak of Meningitis
• Customers switch carriers when contract is over

Validate Hypothesis

• Nuclear Reaction happens under these conditions
• Did combustion occur at the expected parameter values
• I think this location contains a black hole

© Alok Choudhary Northwestern University
The Unknown
As we know,
There are known knowns.
There are things we know we know.

We also know
There are known unknowns.
That is to say
We know there are some things
We do not know.

Top-Down Discovery - We know the question to ask

- Will this hurricane strike the Atlantic coast?
- What is the likelihood of this patient to develop cancer
- Will this customer buy a new smart phone?
The Unknown
As we know,
There are known knowns.
There are things we know we know.
We also know
There are known unknowns.
That is to say
We know there are some things
We do not know.

But there are also unknown unknowns,
The ones we don't know
We don't know.

Bottom up Discovery - We don't know the question to ask
• Wow! I found a new galaxy?
• Switch C fails when switch A fails followed by switch B failing
• On Thursday people buy beer and diaper together.
• The ratio K/P > X is an indicator of onset of diabetes.
Who Knew?

The Unknown
As we know,
There are known knowns.
There are things we know we know.
We also know
There are known unknowns.
That is to say
We know there are some things
We do not know.
But there are also unknown unknowns,
The ones we don't know
We don't know.

—Feb. 12, 2002, Department of Defense news briefing by Donald Rumsfeld
Knowledge Discovery Life-Cycle: Transactional to Relationships – Current to Historical

- **Historical data**
- **Learning Models**
- **Trigger/questions**
- **Predict**

Instruments, sensors

supercomputers

- **Transactional: Data Generation**
- **Historical: Data Processing, transformation, approximation**
- **Discovery, Insights, Feedback**

- **Data Sharing**
- **Data Visualization**
- **Data Reduction, Query**
- **Data Management**

Knowledge Discovery Life-Cycle

- **Transaction**
- **Relationship**
- **Current**
- **Historical**
Relationship mining: Seasonal hurricane activity

- Contrast-based network mining for discriminatory signatures
- Novel dynamic graph clustering for dense directed graphs
- Statistically robust methodology for automatic inference of modulating networks
- Improved forecast skill for seasonal hurricane activity
- Discovered key factors and mechanisms modulating NA hurricane variability
- Discovered novel climate index with much improved correlation with NA hurricane variability: 0.69 vs 0.49

References

- NSF News, DOE Research News, Science360
- Sencan et al. *IJCAI* (2011)
- Chen et al. *Data Mining & Knowledge Discovery* (2012)
- Chen et al. *IJCAI* (2013)
- Semazzi et al. in review at journal (2013)
Challenges in data driven analysis

- **Complex dependence**
 - Non-IID
 - Spatio-temporal correlation
 - Long memory in time
 - Long range dependence in space
 - Nonlinear relationships

- **Data characteristics**
 - Heterogeneous, Multivariate
 - Heavy Tailed Distributions
 - Noisy, incl. low frequency variability
 - Paucity of training data

- **Complex processes**
 - Evolutionary
 - Multi-scale in space and time
 - Non-stationary
From Science to Social

- People/Customers/fans are interacting points in space-time
- Similarity of interests defines communities
- Communication across globes defines networks

Society

Activity/interaction based Network

Edge weights: significant interactions/influence
Nodes in the graph: people/brands/...

Action-Based Connections

Massive Data and Social Networks Mining

Influence Tracking and Analysis

Scalable Analytics

Multi-language Sentiment Analytics

Learning and Predictive Modeling

facebook
twitter
LinkedIn
Google+
Blogger
YouTube

interest

BRAND

interest
Top Associations by Fans For Bing, Google & Yahoo on FB

- 3.75% of Windows Phone users
- 2.58% of Microsoft users
- 1.44% of Dentyne users
- 1% of Chex Mix users
- 2.15% of Chex Mix users
- 2.20% of Trident A Chewing Gum users
- 2.32% of Yahoo! Sports users
- 2.37% of Dentyne users
- 2.58% of Crest Users
- 2.425% of Pepto-Bismol users
- 2.49% of TechCrunch users
- 2.49% of Internet Explorer users
- 2.53% of Adobe Flash users
- 2.48% of TechCrunch users
- 3.83% of Logitech users
- 5.30% of Google Chrome users
- 0.99% of Chilldock users
- 0.98% of George Foreman Cooking users
- 0.98% of George Foreman Cooking users

All data for 16-34 age group only
A different way of thinking: Extreme Computing + Big data analytics => Accelerating Discovery

MATERIAL SCIENCE: A “DATA DRIVEN DISCOVERY” WORTH A THOUSAND SIMULATIONS?
Discovery of stable compounds

- Calculating many, known materials
- Solving unknown materials structures
- Dataset of materials properties
 - Big Data mining
 - Materials discovery!
Ranking – Approximation is good enough for ranking 😊 (closing the loop)

DM: bin. +4k tern.

† indicates a model prediction associated with a known stable ternary compound that had was absent from DFT thermodynamic database; the prediction is thus confirmed, but no crystal structure search was necessary.
Structure-Property Optimization – Try optimization for 10^3 dimensions

Traditional Method

- **Microstructure Representation**
 - Features that mathematically or statistically describe microstructures

- **Global Optimization**
 - Find the value of microstructure that leads to the extremal properties

- **Database Construction**
 - Randomly generated microstructure-property pairs with most desired and most undesired objectives

- **Feature Selection**
 - Select a small set of "critical" microstructure features

Data Mining Method
Accelerating Time to Insights

![Graph](image)

- * Time consumed
- O - Optimum found

Experiment Result: Solution found / Performance vs. Number of Variables

- Vertical axis: Optimum Solution (E-06)
- Horizontal axis: Number of Variables
- Y-axis range: 3.48 to 3.62
- X-axis range: 1 to 76
- Time Consumption (s) range: 0 to 14000
Extreme Computing + Big data: Not a single dimensional challenge

- **Velocity**
- **Variety**
- **Volume**
- **Analytics**
- **Algorithms**
- **Visualization**
- **Scalability and Performance**
- **Storage and I/O**
- **Power and Energy Efficiency**
- **Data Management**
- **Software**

Big Data: Challenges
Extreme Computing + Big Data Analytics = A Knowledge Discovery Engine?
Thank You!

Alok Choudhary
John G. Searle Professor
Dept. of Electrical Engineering and Computer Science
and Professor, Kellogg School of Management
Northwestern University
choudhar@eecs.northwestern.edu
Discovering Materials: Simulations ➔ Analytics

(a) Construction of FE prediction database
- Consists of compounds with known formation energy (FE)
- Empiric periodic table information added (e.g. electronegativity, mass, atomic radii, # valence s, p, d, f electrons)

(b) Large scale FE prediction
- Run combinatorial list of compounds through the FE model

Predictive Modeling
- Construct data mining models to predict formation energy using chemical formula and derivable empirical information

Model Evaluation
- Test model on unseen data
- 10-fold cross validation (data divided into 10 segments, model built on 9 segments and tested on remaining 1 segment; process repeated 10 times with different test segment)

Screening
- Thermodynamic stability and heuristics

Validation
- Structure prediction
- Quantum mechanical modeling

Combinatorial list of ternary compounds ➔ FE model ➔ List of predictions ➔ Shortlisted high-potential candidates ➔ Stable discovered structures
Climate Change Analytics Challenges

Process Understanding
- Extreme Events
 - Heat Waves
 - Rainfall Extremes
 - Droughts
 - Hurricanes
- Model Evaluation
- Downscaling
 - Statistical
 - Dynamical
- Ocean-Atm.-Land Interactions

Change Detection
- Abrupt vs. Gradual
- Point vs. Regions/Intervals
- Change in Extremes

Spatio-Temporal Classification
- Sparse/High-Dim. Methods
- Causal Relationships
- Networks/Graphs

Computational Innovations
- HPC

<table>
<thead>
<tr>
<th>Understanding Climate Change</th>
<th>Process Understanding</th>
<th>Change Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Extreme Events</td>
<td>Abrupt vs. Gradual</td>
</tr>
<tr>
<td></td>
<td>Heat Waves</td>
<td>Point vs. Regions/Intervals</td>
</tr>
<tr>
<td></td>
<td>Rainfall Extremes</td>
<td>Change in Extremes</td>
</tr>
<tr>
<td></td>
<td>Droughts</td>
<td>Spatio-Temporal Classification</td>
</tr>
<tr>
<td></td>
<td>Hurricanes</td>
<td>Sparse/High-Dim. Methods</td>
</tr>
<tr>
<td></td>
<td>Model Evaluation</td>
<td>Causal Relationships</td>
</tr>
<tr>
<td></td>
<td>Downscaling</td>
<td>Networks/Graphs</td>
</tr>
<tr>
<td></td>
<td>Statistical</td>
<td>HPC</td>
</tr>
<tr>
<td></td>
<td>Dynamical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ocean-Atm.-Land Interactions</td>
<td></td>
</tr>
</tbody>
</table>