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Trends in extreme HPC

• Evolution of the top10 in 
the last six years:
– Average total compute power:

• 0.86 PFlops  21 PFlops
• ~24x increase

– Average nodal compute power:
• 31GFlops  600GFlops
• ~19x increase

– Average number of nodes
• 28k  35k
• ~1.3x increase

 Node compute power main contributor to performance growth
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Interconnect trends

• Top 10 average node level
evolutions:
– Average node compute power:

• 31GFlops  600GFlops
• ~19x increase

– Average bandwidth available
per node

• 2.7GB/s  7.8GB/s
• ~3.2x increase

– Average byte-per-flop ratio
• 0.06 B/Flop  0.01 B/Flop
• ~6x decrease
• Sunway TaihuLight (#1) shows 0.004 B/Flop !!

 Growing gap in interconnect bandwidth
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• Real Exascale goal: reaching an Exaflop… 
• …while satisfying constraints (20MW, $200M)
• …with reasonably useful applications

• Assume 15% of $ budget for interconnect:
– 15% x $200M / 500 Pb/s = 6 ¢/Gb/s
– Bi-directional links must thus be sold for ~10 ¢/Gb/s

• Today: optical 10$/Gb/s  
electrical 0.1-1 $/Gb/s

• Assume 15% of power budget for interconnect:
– 15% x 20MW / 125 Pb/s = 24 mW/Gb/s = 24 pJ/bit

= budget for communicating a bit end-to-end

 6 pJ/bit per hop
 4 pJ/bit for switching today ~20 pJ/bit
 2 pJ/bit for transmission today ~10 pJ/bit (elec) ~20 pJ/bit (optical)

Exascale interconnects – power and cost constraints
1.25 ExaFLOP

X 0.01 B/FLOP

= 125 Pb/s injection BW
X 4 hops

= 500 Pb/s installed BW
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The Photonic Opportunity for Data Movement
 Energy efficient, low-latency, high-bandwidth data interconnectivity is the core 

challenge to continued scalability across computing platforms
 Energy consumption completely dominated by costs of data movement

 Bandwidth taper from chip to system forces extreme locality

Reduce Energy Consumption Eliminate Bandwidth Taper
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Default interconnect architecture

Node Router Router Node

Long distance
(router-router) link

Short distance
(router-router) link

Electrical transceivers

Optical transceivers
(currently 10-20% of 
router-router links)

Router

Node

Short distance
NR (node-router) link

N compute
nodes in system

Node

Node

Node

One rack
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Router

Core

Exascale optical interconnect ?

• Requirements for that to happen: 
– Divide cost by 1.5 orders of magnitude at least
– Improve energy-efficiency by one order of magnitude at least

Node Router

Core

Router

Core

Node

Long distance RR link

Electrical transceivers

Optical transceivers

Node

N compute
nodes in system

Node

Node
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Exascale supercomputing node

• Consider 50k nodes
• Total injection bandwidth ~ 100 Pb/s

• 4 ZB per year at 1% utilization
• Total cumulated unidirectional bandwidth: ~ 500 Pb/s

Compute power: 
From 10 to 30 Teraflop (TF)

Interconnect bandwidth:
0.01 B/F 0.8 – 2.4 Tb/s

Bulk memory bandwidth: 
0.1 B/F  8 - 24 Tb/s

Near memory bandwidth: 
10-30 TF x 8bit x 0.5B/F = 40 - 120Tb/s

Requirements 
for next-
generation 
interconnects!

Ideal case:
Back to 0.01B/F to
ensure well fed nodes



Silicon Photonics: all the parts

• Silicon as core material
– High refractive index; high contrast; 

sub micron cross-section, small 
bend radius.

• Small footprint devices
– 10 μm – 1 mm scale compared to 

cm-level scale for telecom 

• Low power consumption
– Can reach <1 pJ/bit per link

• Aggressive WDM platform
– Bandwidth densities 1-2Tb/s pin IO

Switching

WDM Modulation & 
Demultiplexing

Modulation

Detection

•Silicon wafer-scale CMOS
– Integration, density scaling
– CMOS fabrication tools
– 2.5D and 3D platforms

S. Rumley et al. "Silicon Photonics for Exascale Systems”, IEEE JLT 33 (4), 2015.



Photonic Computing Architectures: Beyond Wires
10

• Leverage dense WDM bandwidth density
• Photonic switching
• Distance-independent, cut-through, bufferless
• Bandwidth-energy optimized interconnects

On chip
Short distance PCB
Long distance PCB
Optical link

Conventional hop-by-hop 
data movement

Fully flattened end-to-end 
data movement

12
conversions!

No conversion!



Silicon Photonic Link Design
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• Co-existence of Electronics and Photonics
• Energy-Bandwidth optimization 
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[1] M. Bahadori et al. “Comprehensive Design Space Exploration of 
Silicon Photonic Interconnects," IEEE JLT 34 (12), 2015.
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Utilization of Optical Power Budget

Photonic Elements
From Electronics To Electronics

Coupler 
Loss

Sensitivity level of receiver

Demux Array Penalty

Coupler 
Loss

Coupler 
Loss

Modulator Array Penalty

Available 
Laser 
power

Maximum Available Budget per λ
Max 5 dBm 
per λ

Extra 
Budget

Maximum link utilization
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All-Parameter Optimization: Min Energy Design

Photonic Elements
From Electronics To Electronics

Optimal design based on physical dimensions Breakdown of consumption for given bandwidth 

1 pJ/bit
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Highly parallel, “SERDES-less” links

• Investigate “many-channel” architectures with low bitrate wavelengths
– Leads to poor laser utilization

• Only possible with high laser efficiency
– But may allow drastic simplification of drivers and SERDES blocks

400G
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Cost per bandwidth – declining but slowly

• Today (2017):
– 100G (EDR) best 

$/Gb/s figure

– Copper cable have 
shorter reaches due to 
higher bit-rate

– Optics: Not even ½ 
order of magnitude 
price drop over 4 
years

– But electrical-optical 
gap is shrinking

[Besta et al. “Slim Fly: A Cost Effective 
Low-Diameter Network Topology”, 

SuperComputing 2014]

[may 2017]
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Packaging and connector drive costs

[Molex] [Barwicz/IBM, OFC 2017]
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Toward integrated optical transceivers

• Fundamental step to reduce cost and power of optics: co-integration

Node Router

Core

Router

Core

Node

Long distance RR link

Electrical transceivers

Optical transceivers

Router

Core

Node

Short distance
NR link
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Towards integrated, general-purpose optical 
transceivers

Node Router

Core

Router

Core

Node

Electrical transceivers

Integrated optical transceivers

Router

Core

Node

Short distance
NR link

• Fundamental step to reduce cost and power of optics



Rev PA1Rev PA1 19

Cost vs. energy

• Transceiver procurement cost dominates TCO
– Same energy/procurement ratio as Cori (30% / 70%) with 0.4 $/Gb/s

• This is a factor of 10 from the current cost figure

Hypotetical 0.1$/Gb/s transceivers (8 years)

Hypotetical 1$/Gb/s transceivers (8 years)

Typical 100G transceivers (8 years, 2.5W, $500)

Titan (6 years, 8.2 MW, M$97)

Cori (8 years, 3.9 MW, M$100)

Roadrunner (5 years, 2.35 MW, M$100) 

0% 20% 40% 60% 80% 100%
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Desktop PC (5 years, 100W, $2000)

Cost of energy over lifetime ($100/MWh)

Procurement cost
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The bright side of optical switching
• Optical switches can have astonishing aggregate bandwidths

– Absence of signal introspection
– Possibility to receive dense WDM signals (> 1 Tb/s) on each port

• Translates into alluring $/Gb/s figures:

 Optical switching >10 cheaper than electrical packet routing…

Type # ports Bandwidth 
per port

Total 
bandwidth

Price Price per 
Gb/s

Calient 
S320
Mems 
switch

320 ports 400Gbps 
(with 16 
wavelengths 
at 25G –
CDAUI-16 
signaling)

128 Tb/s $40k 0.3 $/Gb/s

Mellanox 
SB7790

36 ports 100 Gbps 
(4xEDR 
Infiniband)

3.6 Tb/s $12k 3.3 $/Gb/s
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Optical switch vs. Electrical packet router

• (Random access) buffering plays a crucial role. 
– Without buffering, end-to-end scheduling is required 
– With buffering, scheduling made link-after-link
– Without buffering, no back-to-back transmissions

• Packet routers also allow differentiated QoS, error correction, etc.
 Packet router offers much higher “value” than optical switches

My personal guess: 
At least 30x more value (for 10ns optical switching time)
Optical switches not competing with packet routers for “daily switching”

Optical switch: Bufferless Electrical packet router: Buffered
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Our FPGA-Controlled Switch Test-Bed

• 16 high-speed DACs enable test 
and control of integrated 
photonic switch circuit

PIN shifter Thermal tuner

3dB coupler

Grating coupler array

FPGA with 16 
high-speed 
DACs/ADCs
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Transitioning to Novel Modular Architectures…

• Modular architecture and control 
plane

• Avoids on chip crossings
• Fully non-blocking
• Path independent insertion loss
• Low crosstalk 

[Dessislava Nikolova*, David M. Calhoun*, Yang Liu, Sébastien Rumley, Ari Novack, Tom Baehr-Jones, Michael Hochberg, Keren Bergman , Modular 
architecture for  fully non-blocking silicon photonic switch fabric , Nature Microsystems & Nanoengineering 3 (1607) (Jan 2017).]
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AIM Datacom 2nd Tapeout Run

• More efforts poured into monolithically-
integrated photonic devices

• Novel switch devices and test structures 
submitted to AIM platform

Device Area

1 4x4x4 λ Space-and-
wavelength switch

1.9mm x 
2.6mm

2 4x4 Si space switch 1.4mm x 
2.3mm

3 4x4 Si/SiN two-layered 
space switch

1.5mm x 
2.3mm

4 2x2 double-gated/single-
gated ring switch

0.8mm x 
1.4mm

5 Crossing and escalator 
test structure

0.6mm x 
1mm

6 1x2x8 λ MUX with rings 1.2mm x 
0.2mm

7 1x2x4 λ MUX with micro-
disks

0.6mm x 
0.2mm

8 2x2 double-gated MZM 
switch

3mm x 
0.4mm
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What optical networks are good at: bandwidth 
steering
• Put your fibers where traffic is
• Example: 3D stencil traffic over Dragonfly

– 20 groups, 462 nodes per group, 24x24x16 stencil

• Per workload reconfiguration – avoids switching time overhead
• No need for ultra-large radixes – 8x8 is sufficient

[1] K. Wen, et al. “Flexfly: Enabling a Reconfigurable Dragonfly  through Silicon Photonics”, SC 2016
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GPU3GPU1 GPU2 GPU4

CMP1 CMP2 NIC1 NIC2MEMMEM

MEMMEM

Intra-node bandwidth steering
• Emerging architectural concept: 

unified interconnect fabric

– AMD’s Infinitiy fabric
– HPE’s “The Machine”
– Gen-Z 

• Highly flexible!

• But involves many hops

– Latency
– Cost/power of routers
– Many chip-to-chip PHYs
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GPU3GPU1 GPU2 GPU4

CMP1 CMP2 NIC1 NIC2MEMMEM

MEMMEM

Intra-node bandwidth steering
• Alternative concept: use many low-

radix optical switches
– 8x8 realizable with today’s 

technology
– Tens of switches can be 

collocated on a single chip

• Somehow less flexible than the 
packet routed counterpart

– Not all-to-all
– Reconfiguration takes

microseconds

• But transparent for packets
– Latency of point-to-point
– Energy efficient
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Conventional architecture

MM MM MM
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GPU3GPU1 GPU2 GPU4

CMP1 CMP2 NIC1 NIC2MEMMEM

MEMMEM

GPU3GPU1

GPU2 GPU4

CMP1 CMP2

NIC1 NIC2

MEMMEM MEMMEM

GPU centric / CMPs as data-accelerators
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Conclusions
• Lack of bandwidth is threatening scalability

• For Exascale, need to work on (priority-sorted)
– Costs of the optical part

• Automated packaging and testing
• Increased integration
• Larger market

– Power of electrical part
• Packet routers

– Finely cost/performance-optimized
topologies [1]

• Taper optical bandwidth, but not too much
• Get as much as we can from optical cables

– Power of optical part
• Energy-wise optimized designs
• Improved laser efficiency (technology or “tricks”)
• Technological advances

– Costs of electrical part

[1] M.Y. Teh, et al. “Design space exploration of the Dragonfly topology”, Exacomm workshop (best paper), 2017
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Conclusions

• All-optical interconnects
• Optical switches and packets routers not directly comparable
• Bandwidth-steering based architectures should be explored

• Optical switches used in addition to regular routers

GPU3GPU1 GPU2 GPU4
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NIC1 NIC2

MEMMEM MEMMEM
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Thank you!
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