
Kokkos Tutorial

H. Carter Edwards 1, Christian R. Trott 1, and
Fernanda Foertter 2

1Sandia National Laboratories

2Oak Ridge National Laboratory

GPU Tech Conf, May 8-11, 2017

Sandia National Laboratories is a multi-mission laboratory managed and operated by

National Technology and Engineering Solutions of Sandia, LLC., a wholly owned

subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National

Nuclear Security Administration under contract DE-NA0003525.

SAND2017-4683 C

GPU Tech Conf, May 8-11, 2017 2/87

NVIDIA’s NVLABS LOGISTICS (1)

SOFTWARE FOR LAB

Remote Desktop Software:

I Download NoMachine now for best performance from
www.nomachine.com/download

I Alternatively you may use a VNC client or the provided
browser-based VNC option

SSH Access Software (optional):

I PuTTy for Windows can be downloaded from www.putty.org

I Alternatively you may use a provided browser-based SSH
option

GPU Tech Conf, May 8-11, 2017 3/87

NVIDIA’s NVLABS LOGISTICS (2)

CONNECTION INSTRUCTIONS
I Navigate to nvlabs.qwiklab.com

I Login or create a new account

I Select the Instructor-Led Hands-on Labs Class

I Find the lab called Kokkos, ..., select it, click Select, and
finally click Start

I After a short wait, lab instance Connection information will be
shown

I Please ask Lab Assistants for help!

GPU Tech Conf, May 8-11, 2017 4/87

Kokkos Tutorial

H. Carter Edwards 1, Christian R. Trott 1, and
Fernanda Foertter 2

1Sandia National Laboratories

2Oak Ridge National Laboratory

GPU Tech Conf, May 8-11, 2017

Sandia National Laboratories is a multi-mission laboratory managed and operated by

National Technology and Engineering Solutions of Sandia, LLC., a wholly owned

subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National

Nuclear Security Administration under contract DE-NA0003525.

SAND2017-4683 C

GPU Tech Conf, May 8-11, 2017 5/87

Prerequisites for Tutorial Exercises

Knowledge of C++: class constructors, member variables,
member functions, member operators, template arguments

Using NVIDIA’s NVLABS

I Kokkos pre installed in ${HOME}/kokkos

I Exercises pre installed in ${HOME}/GTC2017

Using your own ${HOME}
I Git

I GCC 4.8.4 (or newer) OR Intel 14 (or newer) OR Clang 3.5.2 (or newer)

I CUDA nvcc 7.5 (or newer) AND NVIDIA compute capability 3.0 (or newer)

I clone github.com/kokkos/kokkos into ${HOME}/kokkos
I clone github.com/kokkos/kokkos-tutorials/GTC2017 into ${HOME}/GTC2017

makefiles look for ${HOME}/kokkos

GPU Tech Conf, May 8-11, 2017 6/87

Tutorial Objectives

Understand Kokkos Programming Model Abstractions

I What, how and why of performance portability

I Productivity and hope for future-proofing

Kokkos’ basic capabilities covered today:

I Simple data parallel computational patterns

I Deciding where code is run and where data is placed

I Managing data access pattens for performance portability

Kokkos’ advanced capabilities not covered today:

I Thread safety, thread scalability, and atomic operations

I Hierarchical patterns for maximizing parallelism

I Dynamic directed acyclic graph of tasks pattern

I Numerous pluggin points for extensibility

GPU Tech Conf, May 8-11, 2017 7/87

Tutorial Takeaways

I For portability: OpenMP, OpenACC, ... or Kokkos.

I Only Kokkos obtains performant memory access patterns via
architecture-aware arrays and work mapping.

i.e., not just portable, performance portable.

I With Kokkos, simple things stay simple (parallel-for, etc.).
i.e., it’s no more difficult than OpenMP.

I Advanced performance-optimizing patterns are simpler
with Kokkos than with native versions.

i.e., you’re not missing out on advanced features.

GPU Tech Conf, May 8-11, 2017 8/87

Operating assumptions (0)

Assume you are here because:

I Want to use GPUs (and perhaps other accelerators)

I Are familiar with data parallelism

I Have taken “cuda programming 101”

I Familiar with NVIDIA GPU architecture at a high level
Aware that coalesced memory access is important

I Some familiarity with OpenMP

I Want CUDA to be easier

I Would like portability, if it doesn’t hurt performance

GPU Tech Conf, May 8-11, 2017 9/87

Operating assumptions (1)

Target machine:

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator

GPU Tech Conf, May 8-11, 2017 10/87

Important Point: Performance Portability

Important Point

There’s a difference between portability and
performance portability.

Example: implementations may target particular architectures and
may not be thread scalable.

(e.g., locks on CPU won’t scale to 100,000 threads on GPU)

Goal: write one implementation which:

I compiles and runs on multiple architectures,

I obtains performant memory access patterns across
architectures,

I can leverage architecture-specific features where possible.

Kokkos: performance portability across manycore architectures.

GPU Tech Conf, May 8-11, 2017 10/87

Important Point: Performance Portability

Important Point

There’s a difference between portability and
performance portability.

Example: implementations may target particular architectures and
may not be thread scalable.

(e.g., locks on CPU won’t scale to 100,000 threads on GPU)

Goal: write one implementation which:

I compiles and runs on multiple architectures,

I obtains performant memory access patterns across
architectures,

I can leverage architecture-specific features where possible.

Kokkos: performance portability across manycore architectures.

GPU Tech Conf, May 8-11, 2017 10/87

Important Point: Performance Portability

Important Point

There’s a difference between portability and
performance portability.

Example: implementations may target particular architectures and
may not be thread scalable.

(e.g., locks on CPU won’t scale to 100,000 threads on GPU)

Goal: write one implementation which:

I compiles and runs on multiple architectures,

I obtains performant memory access patterns across
architectures,

I can leverage architecture-specific features where possible.

Kokkos: performance portability across manycore architectures.

GPU Tech Conf, May 8-11, 2017 11/87

Concepts for threaded data
parallelism

Learning objectives:

I Terminology of pattern, policy, and body.

I The data layout problem.

GPU Tech Conf, May 8-11, 2017 12/87

Concepts: Patterns, Policies, and Bodies

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

total += dot(left[element][qp], right[element][qp]);

}

elementValues[element] = total;

}

Terminology:

I Pattern: structure of the computations
for, reduction, scan, task-graph, ...

I Execution Policy: how computations are executed
static scheduling, dynamic scheduling, thread teams, ...

I Computational Body: code which performs each unit of
work; e.g., the loop body

⇒ The pattern and policy drive the computational body.

GPU Tech Conf, May 8-11, 2017 12/87

Concepts: Patterns, Policies, and Bodies

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

total += dot(left[element][qp], right[element][qp]);

}

elementValues[element] = total;

}

Terminology:

I Pattern: structure of the computations
for, reduction, scan, task-graph, ...

I Execution Policy: how computations are executed
static scheduling, dynamic scheduling, thread teams, ...

I Computational Body: code which performs each unit of
work; e.g., the loop body

⇒ The pattern and policy drive the computational body.

Pattern Policy

B
o
d
y

GPU Tech Conf, May 8-11, 2017 13/87

Threading “Parallel for”

What if we want to thread the loop?

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

total += dot(left[element][qp], right[element][qp]);

}

elementValues[element] = total;

}

(Change the execution policy from “serial” to “parallel.”)

OpenMP is simple for parallelizing loops on multi-core CPUs,
but what if we then want to do this on other architectures?

Intel MIC and NVIDIA GPU and AMD Fusion and ...

GPU Tech Conf, May 8-11, 2017 13/87

Threading “Parallel for”

What if we want to thread the loop?

#pragma omp parallel for

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

total += dot(left[element][qp], right[element][qp]);

}

elementValues[element] = total;

}

(Change the execution policy from “serial” to “parallel.”)

OpenMP is simple for parallelizing loops on multi-core CPUs,
but what if we then want to do this on other architectures?

Intel MIC and NVIDIA GPU and AMD Fusion and ...

GPU Tech Conf, May 8-11, 2017 13/87

Threading “Parallel for”

What if we want to thread the loop?

#pragma omp parallel for

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

total += dot(left[element][qp], right[element][qp]);

}

elementValues[element] = total;

}

(Change the execution policy from “serial” to “parallel.”)

OpenMP is simple for parallelizing loops on multi-core CPUs,
but what if we then want to do this on other architectures?

Intel MIC and NVIDIA GPU and AMD Fusion and ...

GPU Tech Conf, May 8-11, 2017 14/87

“Parallel for” on a GPU via pragmas

Option 1: OpenMP 4.0

#pragma omp target data map (...)

#pragma omp teams num_teams (...) num_threads (...) private (...)

#pragma omp distribute

for (element = 0; element < numElements; ++ element) {

total = 0

#pragma omp parallel for

for (qp = 0; qp < numQPs; ++qp)

total += dot(left[element][qp], right[element][qp]);

elementValues[element] = total;

}

Option 2: OpenACC

#pragma acc parallel copy (...) num_gangs (...) vector_length (...)

#pragma acc loop gang vector

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp)

total += dot(left[element][qp], right[element][qp]);

elementValues[element] = total;

}

GPU Tech Conf, May 8-11, 2017 14/87

“Parallel for” on a GPU via pragmas

Option 1: OpenMP 4.0

#pragma omp target data map (...)

#pragma omp teams num_teams (...) num_threads (...) private (...)

#pragma omp distribute

for (element = 0; element < numElements; ++ element) {

total = 0

#pragma omp parallel for

for (qp = 0; qp < numQPs; ++qp)

total += dot(left[element][qp], right[element][qp]);

elementValues[element] = total;

}

Option 2: OpenACC

#pragma acc parallel copy (...) num_gangs (...) vector_length (...)

#pragma acc loop gang vector

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp)

total += dot(left[element][qp], right[element][qp]);

elementValues[element] = total;

}

GPU Tech Conf, May 8-11, 2017 15/87

Portable, but not performance portable

A standard thread parallel programming model
may give you portable parallel execution
if it is supported on the target architecture.

But what about performance?

Performance depends upon the computation’s
memory access pattern.

GPU Tech Conf, May 8-11, 2017 15/87

Portable, but not performance portable

A standard thread parallel programming model
may give you portable parallel execution
if it is supported on the target architecture.

But what about performance?

Performance depends upon the computation’s
memory access pattern.

GPU Tech Conf, May 8-11, 2017 16/87

Problem: memory access pattern

#pragma something , opencl , etc.

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

for (i = 0; i < vectorSize; ++i) {

total +=

left[element * numQPs * vectorSize +

qp * vectorSize + i] *

right[element * numQPs * vectorSize +

qp * vectorSize + i];

}

}

elementValues[element] = total;

}

Memory access pattern problem: CPU data layout reduces GPU
performance by more than 10X.

Important Point

For performance the memory access pattern
must depend on the architecture.

GPU Tech Conf, May 8-11, 2017 16/87

Problem: memory access pattern

#pragma something , opencl , etc.

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

for (i = 0; i < vectorSize; ++i) {

total +=

left[element * numQPs * vectorSize +

qp * vectorSize + i] *

right[element * numQPs * vectorSize +

qp * vectorSize + i];

}

}

elementValues[element] = total;

}

Memory access pattern problem: CPU data layout reduces GPU
performance by more than 10X.

Important Point

For performance the memory access pattern
must depend on the architecture.

GPU Tech Conf, May 8-11, 2017 16/87

Problem: memory access pattern

#pragma something , opencl , etc.

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

for (i = 0; i < vectorSize; ++i) {

total +=

left[element * numQPs * vectorSize +

qp * vectorSize + i] *

right[element * numQPs * vectorSize +

qp * vectorSize + i];

}

}

elementValues[element] = total;

}

Memory access pattern problem: CPU data layout reduces GPU
performance by more than 10X.

Important Point

For performance the memory access pattern
must depend on the architecture.

GPU Tech Conf, May 8-11, 2017 17/87

Kokkos overview

How does Kokkos address performance portability?

Kokkos is a productive, portable, performant, shared-memory
programming model.

I is a C++ library, not a new language or language extension.

I supports clear, concise, thread-scalable parallel patterns.

I lets you write algorithms once and run on many architectures
e.g. multi-core CPU, NVidia GPU, Xeon Phi, ...

I minimizes the amount of architecture-specific
implementation details users must know.

I solves the data layout problem by using multi-dimensional
arrays with architecture-dependent layouts

GPU Tech Conf, May 8-11, 2017 18/87

Data parallel patterns

Learning objectives:

I How computational bodies are passed to the Kokkos runtime.

I How work is mapped to cores.

I The difference between parallel for and
parallel reduce.

I Start parallelizing a simple example.

GPU Tech Conf, May 8-11, 2017 19/87

Using Kokkos for data parallel patterns (0)

Data parallel patterns and work

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex) {

atomForces[atomIndex] = calculateForce (... data ...);

}

Kokkos maps work to cores

I each iteration of a computational body is a unit of work.

I an iteration index identifies a particular unit of work.

I an iteration range identifies a total amount of work.

Important concept: Work mapping

You give an iteration range and computational body (kernel)
to Kokkos, Kokkos maps iteration indices to cores and then
runs the computational body on those cores.

GPU Tech Conf, May 8-11, 2017 19/87

Using Kokkos for data parallel patterns (0)

Data parallel patterns and work

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex) {

atomForces[atomIndex] = calculateForce (... data ...);

}

Kokkos maps work to cores

I each iteration of a computational body is a unit of work.

I an iteration index identifies a particular unit of work.

I an iteration range identifies a total amount of work.

Important concept: Work mapping

You give an iteration range and computational body (kernel)
to Kokkos, Kokkos maps iteration indices to cores and then
runs the computational body on those cores.

GPU Tech Conf, May 8-11, 2017 19/87

Using Kokkos for data parallel patterns (0)

Data parallel patterns and work

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex) {

atomForces[atomIndex] = calculateForce (... data ...);

}

Kokkos maps work to cores

I each iteration of a computational body is a unit of work.

I an iteration index identifies a particular unit of work.

I an iteration range identifies a total amount of work.

Important concept: Work mapping

You give an iteration range and computational body (kernel)
to Kokkos, Kokkos maps iteration indices to cores and then
runs the computational body on those cores.

GPU Tech Conf, May 8-11, 2017 20/87

Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?

As functors or function objects, a common pattern in C++.

Quick review, a functor is a function with data. Example:

struct ParallelFunctor {

...

void operator ()(a work assignment) const {

/* ... computational body ... */

...

};

GPU Tech Conf, May 8-11, 2017 20/87

Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?

As functors or function objects, a common pattern in C++.

Quick review, a functor is a function with data. Example:

struct ParallelFunctor {

...

void operator ()(a work assignment) const {

/* ... computational body ... */

...

};

GPU Tech Conf, May 8-11, 2017 20/87

Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?

As functors or function objects, a common pattern in C++.

Quick review, a functor is a function with data. Example:

struct ParallelFunctor {

...

void operator ()(a work assignment) const {

/* ... computational body ... */

...

};

GPU Tech Conf, May 8-11, 2017 21/87

Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

ParallelFunctor functor;

Kokkos :: parallel_for(numberOfIterations , functor);

and work items are assigned to functors one-by-one:

struct Functor {

void operator ()(const size_t index) const {...}

}

Warning: concurrency and order

Concurrency and ordering of parallel iterations is not guaranteed
by the Kokkos runtime.

GPU Tech Conf, May 8-11, 2017 21/87

Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

ParallelFunctor functor;

Kokkos :: parallel_for(numberOfIterations , functor);

and work items are assigned to functors one-by-one:

struct Functor {

void operator ()(const size_t index) const {...}

}

Warning: concurrency and order

Concurrency and ordering of parallel iterations is not guaranteed
by the Kokkos runtime.

GPU Tech Conf, May 8-11, 2017 21/87

Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

ParallelFunctor functor;

Kokkos :: parallel_for(numberOfIterations , functor);

and work items are assigned to functors one-by-one:

struct Functor {

void operator ()(const size_t index) const {...}

}

Warning: concurrency and order

Concurrency and ordering of parallel iterations is not guaranteed
by the Kokkos runtime.

GPU Tech Conf, May 8-11, 2017 21/87

Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

ParallelFunctor functor;

Kokkos :: parallel_for(numberOfIterations , functor);

and work items are assigned to functors one-by-one:

struct Functor {

void operator ()(const size_t index) const {...}

}

Warning: concurrency and order

Concurrency and ordering of parallel iterations is not guaranteed
by the Kokkos runtime.

GPU Tech Conf, May 8-11, 2017 22/87

Using Kokkos for data parallel patterns (4)

How is data passed to computational bodies?

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex) {

atomForces[atomIndex] = calculateForce(... data ...);

}

struct AtomForceFunctor {

...

void operator ()(const size_t atomIndex) const {

atomForces[atomIndex] = calculateForce(... data ...);

}

...

}

How does the body access the data?

Important concept

A parallel functor body must have access to all the data it needs
through the functor’s data members.

GPU Tech Conf, May 8-11, 2017 22/87

Using Kokkos for data parallel patterns (4)

How is data passed to computational bodies?

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex) {

atomForces[atomIndex] = calculateForce(... data ...);

}

struct AtomForceFunctor {

...

void operator ()(const size_t atomIndex) const {

atomForces[atomIndex] = calculateForce(... data ...);

}

...

}

How does the body access the data?

Important concept

A parallel functor body must have access to all the data it needs
through the functor’s data members.

GPU Tech Conf, May 8-11, 2017 23/87

Using Kokkos for data parallel patterns (5)

Putting it all together: the complete functor:

struct AtomForceFunctor {

ForceType _atomForces;

AtomDataType _atomData;

void operator ()(const size_t atomIndex) const {

_atomForces[atomIndex] = calculateForce(_atomData);

}

}

Q/ How would we reproduce serial execution with this functor?

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex){

atomForces[atomIndex] = calculateForce(data);

}

AtomForceFunctor functor(atomForces , data);

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex){

functor(atomIndex);

}

GPU Tech Conf, May 8-11, 2017 23/87

Using Kokkos for data parallel patterns (5)

Putting it all together: the complete functor:

struct AtomForceFunctor {

ForceType _atomForces;

AtomDataType _atomData;

void operator ()(const size_t atomIndex) const {

_atomForces[atomIndex] = calculateForce(_atomData);

}

}

Q/ How would we reproduce serial execution with this functor?

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex){

atomForces[atomIndex] = calculateForce(data);

}

AtomForceFunctor functor(atomForces , data);

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex){

functor(atomIndex);

}

S
er

ia
l

GPU Tech Conf, May 8-11, 2017 23/87

Using Kokkos for data parallel patterns (5)

Putting it all together: the complete functor:

struct AtomForceFunctor {

ForceType _atomForces;

AtomDataType _atomData;

void operator ()(const size_t atomIndex) const {

_atomForces[atomIndex] = calculateForce(_atomData);

}

}

Q/ How would we reproduce serial execution with this functor?

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex){

atomForces[atomIndex] = calculateForce(data);

}

AtomForceFunctor functor(atomForces , data);

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex){

functor(atomIndex);

}

S
er

ia
l

F
u

n
ct

o
r

GPU Tech Conf, May 8-11, 2017 24/87

Using Kokkos for data parallel patterns (6)

The complete picture (using functors):

1. Defining the functor (operator+data):

struct AtomForceFunctor {

ForceType _atomForces;

AtomDataType _atomData;

AtomForceFunctor(atomForces , data) :

_atomForces(atomForces) _atomData(data) {}

void operator ()(const size_t atomIndex) const {

_atomForces[atomIndex] = calculateForce(_atomData);

}

}

2. Executing in parallel with Kokkos pattern:
AtomForceFunctor functor(atomForces , data);

Kokkos :: parallel_for(numberOfAtoms , functor);

GPU Tech Conf, May 8-11, 2017 25/87

Using Kokkos for data parallel patterns (7)

Functors are tedious ⇒ C++11 Lambdas are concise

atomForces already exists

data already exists

Kokkos :: parallel_for(numberOfAtoms ,

[=] (const size_t atomIndex) {

atomForces[atomIndex] = calculateForce(data);

}

);

A lambda is not magic, it is the compiler auto-generating a
functor for you.

Warning: Lambda capture and C++ containers

For portability to GPU a lambda must capture by value [=].
Don’t capture containers (e.g., std::vector) by value because it will
copy the container’s entire contents.

GPU Tech Conf, May 8-11, 2017 25/87

Using Kokkos for data parallel patterns (7)

Functors are tedious ⇒ C++11 Lambdas are concise

atomForces already exists

data already exists

Kokkos :: parallel_for(numberOfAtoms ,

[=] (const size_t atomIndex) {

atomForces[atomIndex] = calculateForce(data);

}

);

A lambda is not magic, it is the compiler auto-generating a
functor for you.

Warning: Lambda capture and C++ containers

For portability to GPU a lambda must capture by value [=].
Don’t capture containers (e.g., std::vector) by value because it will
copy the container’s entire contents.

GPU Tech Conf, May 8-11, 2017 25/87

Using Kokkos for data parallel patterns (7)

Functors are tedious ⇒ C++11 Lambdas are concise

atomForces already exists

data already exists

Kokkos :: parallel_for(numberOfAtoms ,

[=] (const size_t atomIndex) {

atomForces[atomIndex] = calculateForce(data);

}

);

A lambda is not magic, it is the compiler auto-generating a
functor for you.

Warning: Lambda capture and C++ containers

For portability to GPU a lambda must capture by value [=].
Don’t capture containers (e.g., std::vector) by value because it will
copy the container’s entire contents.

GPU Tech Conf, May 8-11, 2017 26/87

parallel for examples

How does this compare to OpenMP?

for (size_t i = 0; i < N; ++i) {

/* loop body */

}

#pragma omp parallel for

for (size_t i = 0; i < N; ++i) {

/* loop body */

}

parallel_for(N, [=] (const size_t i) {

/* loop body */

});

Important concept

Simple Kokkos usage is no more conceptually difficult than
OpenMP, the annotations just go in different places.

S
er

ia
l

O
p

en
M

P
K

o
k

ko
s

GPU Tech Conf, May 8-11, 2017 27/87

Scalar integration (0)

Riemann-sum-style numerical integration:

y =

∫ upper

lower
function(x) dx

wikipedia

GPU Tech Conf, May 8-11, 2017 27/87

Scalar integration (0)

Riemann-sum-style numerical integration:

y =

∫ upper

lower
function(x) dx

wikipedia

double totalIntegral = 0;

for (size_t i = 0; i < numberOfIntervals; ++i) {

const double x =

lower + (i/numberOfIntervals) * (upper - lower);
const double thisIntervalsContribution = function(x);
totalIntegral += thisIntervalsContribution;

}

totalIntegral *= dx;

GPU Tech Conf, May 8-11, 2017 27/87

Scalar integration (0)

Riemann-sum-style numerical integration:

y =

∫ upper

lower
function(x) dx

wikipedia

double totalIntegral = 0;

for (size_t i = 0; i < numberOfIntervals; ++i) {

const double x =

lower + (i/numberOfIntervals) * (upper - lower);
const double thisIntervalsContribution = function(x);
totalIntegral += thisIntervalsContribution;

}

totalIntegral *= dx;

How would we parallelize it?

GPU Tech Conf, May 8-11, 2017 27/87

Scalar integration (0)

Riemann-sum-style numerical integration:

y =

∫ upper

lower
function(x) dx

wikipedia

double totalIntegral = 0;

for (size_t i = 0; i < numberOfIntervals; ++i) {

const double x =

lower + (i/numberOfIntervals) * (upper - lower);
const double thisIntervalsContribution = function(x);
totalIntegral += thisIntervalsContribution;

}

totalIntegral *= dx;

How would we parallelize it?

Pattern?
Policy?

B
o
d
y?

GPU Tech Conf, May 8-11, 2017 28/87

Scalar integration (1)

An (incorrect) attempt:

double totalIntegral = 0;

Kokkos :: parallel_for(numberOfIntervals ,

[=] (const size_t index) {

const double x =

lower + (index/numberOfIntervals) * (upper - lower);

totalIntegral += function(x);},

);

totalIntegral *= dx;

First problem: compiler error; cannot increment totalIntegral
(lambdas capture by value and are treated as const!)

GPU Tech Conf, May 8-11, 2017 29/87

Scalar integration (2)

An (incorrect) solution to the (incorrect) attempt:

double totalIntegral = 0;

double * totalIntegralPointer = &totalIntegral;

Kokkos :: parallel_for(numberOfIntervals ,

[=] (const size_t index) {

const double x =

lower + (index/numberOfIntervals) * (upper - lower);

*totalIntegralPointer += function(x);},

);

totalIntegral *= dx;

Second problem: race condition

step thread 0 thread 1

0 load

1 increment load

2 write increment

3 write

GPU Tech Conf, May 8-11, 2017 29/87

Scalar integration (2)

An (incorrect) solution to the (incorrect) attempt:

double totalIntegral = 0;

double * totalIntegralPointer = &totalIntegral;

Kokkos :: parallel_for(numberOfIntervals ,

[=] (const size_t index) {

const double x =

lower + (index/numberOfIntervals) * (upper - lower);

*totalIntegralPointer += function(x);},

);

totalIntegral *= dx;

Second problem: race condition

step thread 0 thread 1

0 load

1 increment load

2 write increment

3 write

GPU Tech Conf, May 8-11, 2017 30/87

Scalar integration (3)

Root problem: we’re using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with OpenMP?
double finalReducedValue = 0;

#pragma omp parallel for reduction(+: finalReducedValue)

for (size_t i = 0; i < N; ++i) {

finalReducedValue += ...

}

How will we do this with Kokkos?
double finalReducedValue = 0;

parallel_reduce(N, functor , finalReducedValue);

GPU Tech Conf, May 8-11, 2017 30/87

Scalar integration (3)

Root problem: we’re using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with OpenMP?
double finalReducedValue = 0;

#pragma omp parallel for reduction(+: finalReducedValue)

for (size_t i = 0; i < N; ++i) {

finalReducedValue += ...

}

How will we do this with Kokkos?
double finalReducedValue = 0;

parallel_reduce(N, functor , finalReducedValue);

GPU Tech Conf, May 8-11, 2017 30/87

Scalar integration (3)

Root problem: we’re using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with OpenMP?
double finalReducedValue = 0;

#pragma omp parallel for reduction(+: finalReducedValue)

for (size_t i = 0; i < N; ++i) {

finalReducedValue += ...

}

How will we do this with Kokkos?
double finalReducedValue = 0;

parallel_reduce(N, functor , finalReducedValue);

GPU Tech Conf, May 8-11, 2017 30/87

Scalar integration (3)

Root problem: we’re using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with OpenMP?
double finalReducedValue = 0;

#pragma omp parallel for reduction(+: finalReducedValue)

for (size_t i = 0; i < N; ++i) {

finalReducedValue += ...

}

How will we do this with Kokkos?
double finalReducedValue = 0;

parallel_reduce(N, functor , finalReducedValue);

GPU Tech Conf, May 8-11, 2017 31/87

Scalar integration (4)

Example: Scalar integration

double totalIntegral = 0;

#pragma omp parallel for reduction(+: totalIntegral)

for (size_t i = 0; i < numberOfIntervals; ++i) {

totalIntegral += function (...);

}

double totalIntegral = 0;

parallel_reduce(numberOfIntervals ,

[=] (const size_t i, double & valueToUpdate) {

valueToUpdate += function (...);

},

totalIntegral);

I The operator takes two arguments: a work index and a value
to update.

I The second argument is a thread-private value that is
managed by Kokkos; it is not the final reduced value.

O
p

en
M

P
K

o
k

ko
s

GPU Tech Conf, May 8-11, 2017 32/87

Scalar integration (5)

Warning: Parallelism is NOT free

Dispatching (launching) parallel work has non-negligible cost.

Simplistic data-parallel performance model: Time = α + β∗N
P

I α = dispatch overhead

I β = time for a unit of work

I N = number of units of work

I P = available concurrency

Speedup = P ÷
(

1 + α∗P
β∗N

)
I Should have α ∗ P � β ∗ N
I All runtimes strive to minimize launch overhead α

I Find more parallelism to increase N

I Merge (fuse) parallel operations to increase β

GPU Tech Conf, May 8-11, 2017 32/87

Scalar integration (5)

Warning: Parallelism is NOT free

Dispatching (launching) parallel work has non-negligible cost.

Simplistic data-parallel performance model: Time = α + β∗N
P

I α = dispatch overhead

I β = time for a unit of work

I N = number of units of work

I P = available concurrency

Speedup = P ÷
(

1 + α∗P
β∗N

)
I Should have α ∗ P � β ∗ N
I All runtimes strive to minimize launch overhead α

I Find more parallelism to increase N

I Merge (fuse) parallel operations to increase β

GPU Tech Conf, May 8-11, 2017 32/87

Scalar integration (5)

Warning: Parallelism is NOT free

Dispatching (launching) parallel work has non-negligible cost.

Simplistic data-parallel performance model: Time = α + β∗N
P

I α = dispatch overhead

I β = time for a unit of work

I N = number of units of work

I P = available concurrency

Speedup = P ÷
(

1 + α∗P
β∗N

)
I Should have α ∗ P � β ∗ N
I All runtimes strive to minimize launch overhead α

I Find more parallelism to increase N

I Merge (fuse) parallel operations to increase β

GPU Tech Conf, May 8-11, 2017 33/87

Scalar integration (6)

Results: illustrates simple speedup model = P ÷
(

1 + α∗P
β∗N

)

 0.01

 0.1

 1

 10

 100

 1000

 100 1000 10000 100000 1x106 1x107 1x108

sp
ee

du
p

ov
er

 s
er

ia
l [

-]

number of intervals [-]

Kokkos speedup over serial: Scalar Integration

Kokkos Cuda K40
Kokkos OpenMP KNC
Kokkos OpenMP SNB
Native OpenMP SNB

Unity

N
o

te
:

lo
g

sc
a

le

GPU Tech Conf, May 8-11, 2017 34/87

Recurring Exercise: Inner Product

Exercise: Inner product < y ,A ∗ x >

Details:

I y is Nx1, A is NxM, x is Mx1

I We’ll use this exercise throughout the tutorial

GPU Tech Conf, May 8-11, 2017 35/87

Exercise #1: include, initialize, finalize Kokkos

The first step in using Kokkos is to include, initialize, and finalize:

#include <Kokkos_Core.hpp >

int main(int argc , char** argv) {

/* ... do any necessary setup (e.g., initialize MPI) ... */

Kokkos :: initialize(argc , argv);

/* ... do computations ... */

Kokkos :: finalize ();

return 0;

}

(Optional) Command-line arguments:

--kokkos-threads=INT
total number of threads

(or threads within NUMA region)

--kokkos-numa=INT number of NUMA regions

--kokkos-device=INT device (GPU) ID to use

GPU Tech Conf, May 8-11, 2017 36/87

Exercise #1: Inner Product, Flat Parallelism on the CPU

Exercise: Inner product < y ,A ∗ x >

Details:

I Location: ~/GTC2017/Exercises/01/

I Look for comments labeled with “EXERCISE”

I Need to include, initialize, and finalize Kokkos library

I Parallelize loops with parallel for or parallel reduce

I Use lambdas instead of functors for computational bodies.

I For now, this will only use the CPU.

GPU Tech Conf, May 8-11, 2017 37/87

Exercise #1: logistics

Compiling for CPU

cd ~/ GTC2017/Exercises /01/ Begin

gcc using OpenMP (default) and Serial back -ends

make -j [KOKKOS_DEVICES=OpenMP ,Serial]

Running on CPU with OpenMP back-end

Set OpenMP affinity

export OMP_NUM_THREADS =8

export GOMP_CPU_AFFINITY =0-8

Print example command line options:

./01 _Exercise.host -h

Run with defaults on CPU

./01 _Exercise.host

Run larger problem

./01 _Exercise.host -S 26

Things to try:

I Vary number of threads

I Vary problem size

I Vary number of rows (-N ...)

GPU Tech Conf, May 8-11, 2017 38/87

Exercise #1 results

 0

 20

 40

 60

 80

 100

 120

 140

 1 10 100 1000 10000 100000 1x106 1x107 1x108 1x109

B
an

dw
id

th
 (

G
B

/s
)

number of rows

<y,Ax> Exercise01, fixed problem size

KNC
HSW

GPU Tech Conf, May 8-11, 2017 39/87

Basic capabilities we haven’t covered

I Customizing parallel reduce data type and reduction
operator

e.g., minimum, maximum, ...

I parallel scan pattern for exclusive and inclusive prefix sum

I Using tag dispatch interface to allow non-trivial functors to
have multiple “operator()” functions.

very useful in large, complex applications

GPU Tech Conf, May 8-11, 2017 40/87

Section Summary

I Simple usage is similar to OpenMP, advanced features are
also straightforward

I Three common data-parallel patterns are parallel for,
parallel reduce, and parallel scan.

I A parallel computation is characterized by its pattern, policy,
and body.

I User provides computational bodies as functors or lambdas
which handle a single work item.

GPU Tech Conf, May 8-11, 2017 41/87

Views

Learning objectives:

I Motivation behind the View abstraction.

I Key View concepts and template parameters.

I The View life cycle.

GPU Tech Conf, May 8-11, 2017 42/87

View motivation

Example: running daxpy on the GPU:

double * x = new double[N]; // also y

parallel_for(N, [=] (const size_t i) {

y[i] = a * x[i] + y[i];

});

struct Functor {

double *_x , *_y, a;

void operator ()(const size_t i) {

_y[i] = _a * _x[i] + _y[i];

}

};

Problem: x and y reside in CPU memory.

Solution: We need a way of storing data (multidimensional arrays)
which can be communicated to an accelerator (GPU).

⇒ Views

L
a

m
b

d
a

F
u

n
ct

o
r

GPU Tech Conf, May 8-11, 2017 42/87

View motivation

Example: running daxpy on the GPU:

double * x = new double[N]; // also y

parallel_for(N, [=] (const size_t i) {

y[i] = a * x[i] + y[i];

});

struct Functor {

double *_x , *_y, a;

void operator ()(const size_t i) {

_y[i] = _a * _x[i] + _y[i];

}

};

Problem: x and y reside in CPU memory.

Solution: We need a way of storing data (multidimensional arrays)
which can be communicated to an accelerator (GPU).

⇒ Views

L
a

m
b

d
a

F
u

n
ct

o
r

GPU Tech Conf, May 8-11, 2017 42/87

View motivation

Example: running daxpy on the GPU:

double * x = new double[N]; // also y

parallel_for(N, [=] (const size_t i) {

y[i] = a * x[i] + y[i];

});

struct Functor {

double *_x , *_y, a;

void operator ()(const size_t i) {

_y[i] = _a * _x[i] + _y[i];

}

};

Problem: x and y reside in CPU memory.

Solution: We need a way of storing data (multidimensional arrays)
which can be communicated to an accelerator (GPU).

⇒ Views

L
a

m
b

d
a

F
u

n
ct

o
r

GPU Tech Conf, May 8-11, 2017 43/87

Views (0)

View abstraction

I A lightweight C++ class with a pointer to array data and a
little meta-data,

I that is templated on the data type (and other things).

High-level example of Views for daxpy using lambda:

View <double*, ...> x(...) , y(...);

... populate x, y...

parallel_for(N, [=] (const size_t i) {

// Views x and y are captured by value (copy)

y(i) = a * x(i) + y(i);

});

Important point

Views are like pointers, so copy them in your functors.

GPU Tech Conf, May 8-11, 2017 43/87

Views (0)

View abstraction

I A lightweight C++ class with a pointer to array data and a
little meta-data,

I that is templated on the data type (and other things).

High-level example of Views for daxpy using lambda:

View <double*, ...> x(...) , y(...);

... populate x, y...

parallel_for(N, [=] (const size_t i) {

// Views x and y are captured by value (copy)

y(i) = a * x(i) + y(i);

});

Important point

Views are like pointers, so copy them in your functors.

GPU Tech Conf, May 8-11, 2017 44/87

Views (1)

View overview:

I Multi-dimensional array of 0 or more dimensions
scalar (0), vector (1), matrix (2), etc.

I Number of dimensions (rank) is fixed at compile-time.

I Arrays are rectangular, not ragged.

I Sizes of dimensions set at compile-time or runtime.
e.g., 2x20, 50x50, etc.

Example:

View <double ***> data("label", N0 , N1, N2); 3 run, 0 compile

View <double **[N2]> data("label", N0, N1); 2 run, 1 compile

View <double *[N1][N2]> data("label", N0); 1 run, 2 compile

View <double[N0][N1][N2]> data("label"); 0 run, 3 compile

Note: runtime-sized dimensions must come first.

GPU Tech Conf, May 8-11, 2017 44/87

Views (1)

View overview:

I Multi-dimensional array of 0 or more dimensions
scalar (0), vector (1), matrix (2), etc.

I Number of dimensions (rank) is fixed at compile-time.

I Arrays are rectangular, not ragged.

I Sizes of dimensions set at compile-time or runtime.
e.g., 2x20, 50x50, etc.

Example:

View <double ***> data("label", N0 , N1, N2); 3 run, 0 compile

View <double **[N2]> data("label", N0, N1); 2 run, 1 compile

View <double *[N1][N2]> data("label", N0); 1 run, 2 compile

View <double[N0][N1][N2]> data("label"); 0 run, 3 compile

Note: runtime-sized dimensions must come first.

GPU Tech Conf, May 8-11, 2017 45/87

Views (2)

View life cycle:

I Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

I Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

I Reference counting is used for automatic deallocation.

I They behave like shared ptr

Example:
View <double*> a("a", N0), b("b", N0);

a = b;

View <double*> c(b);

a(0) = 1;

b(0) = 2;

c(0) = 3;

print a(0)

What gets printed?
3.0

GPU Tech Conf, May 8-11, 2017 45/87

Views (2)

View life cycle:

I Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

I Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

I Reference counting is used for automatic deallocation.

I They behave like shared ptr

Example:
View <double*> a("a", N0), b("b", N0);

a = b;

View <double*> c(b);

a(0) = 1;

b(0) = 2;

c(0) = 3;

print a(0)

What gets printed?

3.0

GPU Tech Conf, May 8-11, 2017 45/87

Views (2)

View life cycle:

I Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

I Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

I Reference counting is used for automatic deallocation.

I They behave like shared ptr

Example:
View <double*> a("a", N0), b("b", N0);

a = b;

View <double*> c(b);

a(0) = 1;

b(0) = 2;

c(0) = 3;

print a(0)

What gets printed?
3.0

GPU Tech Conf, May 8-11, 2017 46/87

Exercise #2: Inner Product, Flat Parallelism on the CPU, with Views

I Location: ~/GTC2017/Exercises/02/

I Assignment: Change data storage from arrays to Views.

I Compile and run on CPU, and then on GPU with UVM

make -j KOKKOS_DEVICES=OpenMP # CPU -only using OpenMP

make -j KOKKOS_DEVICES=Cuda \

KOKKOS_CUDA_OPTIONS=force_uvm ,enable_lambda

Run exercise

./02 _Exercise.host -S 26

./02 _Exercise.cuda -S 26

Note the warnings , set appropriate environment variables

I Vary problem size: -S #

I Vary number of rows: -N #

I Vary repeats: -nrepeat #

I Compare performance of CPU vs GPU

GPU Tech Conf, May 8-11, 2017 47/87

Advanced features we haven’t covered

I Memory space in which view’s data resides; covered next.

I deep copy view’s data; covered later.
Note: Kokkos never hides a deep copy of data.

I Layout of multidimensional array; covered later.

I Memory traits; covered later.

I Subview: Generating a view that is a “slice” of other
multidimensional array view; will not be covered today.

GPU Tech Conf, May 8-11, 2017 48/87

Execution and Memory spaces

Execution and Memory Spaces

Learning objectives:

I Heterogeneous nodes and the space abstractions.

I How to control where parallel bodies are run, execution
space.

I How to control where view data resides, memory space.

I How to avoid illegal memory accesses and manage data
movement.

I The need for Kokkos::initialize and finalize.

I Where to use Kokkos annotation macros for portability.

GPU Tech Conf, May 8-11, 2017 49/87

Execution spaces (0)

Thought experiment: Consider this code:

MPI_Reduce (...);

FILE * file = fopen (...);

runANormalFunction (... data ...);

Kokkos :: parallel_for(numberOfSomethings ,

[=] (const size_t somethingIndex) {

const double y = ...;

// do something interesting

}

);

I Where will section 1 be run? CPU? GPU?

I Where will section 2 be run? CPU? GPU?

I How do I control where code is executed?

⇒ Execution spaces

se
ct
io
n
1

se
ct
io
n
2

GPU Tech Conf, May 8-11, 2017 49/87

Execution spaces (0)

Thought experiment: Consider this code:

MPI_Reduce (...);

FILE * file = fopen (...);

runANormalFunction (... data ...);

Kokkos :: parallel_for(numberOfSomethings ,

[=] (const size_t somethingIndex) {

const double y = ...;

// do something interesting

}

);

I Where will section 1 be run? CPU? GPU?

I Where will section 2 be run? CPU? GPU?

I How do I control where code is executed?

⇒ Execution spaces

se
ct
io
n
1

se
ct
io
n
2

GPU Tech Conf, May 8-11, 2017 49/87

Execution spaces (0)

Thought experiment: Consider this code:

MPI_Reduce (...);

FILE * file = fopen (...);

runANormalFunction (... data ...);

Kokkos :: parallel_for(numberOfSomethings ,

[=] (const size_t somethingIndex) {

const double y = ...;

// do something interesting

}

);

I Where will section 1 be run? CPU? GPU?

I Where will section 2 be run? CPU? GPU?

I How do I control where code is executed?

⇒ Execution spaces

se
ct
io
n
1

se
ct
io
n
2

GPU Tech Conf, May 8-11, 2017 50/87

Execution spaces (1)

Execution Space
a homogeneous set of cores and an execution mechanism

(i.e., “place to run code”)

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator

Execution spaces: Serial, Threads, OpenMP, Cuda, ...

GPU Tech Conf, May 8-11, 2017 51/87

Execution spaces (2)

MPI_Reduce (...);

FILE * file = fopen (...);

runANormalFunction (... data ...);

Kokkos :: parallel_for(numberOfSomethings ,

[=] (const size_t somethingIndex) {

const double y = ...;

// do something interesting

}

);

I Where will Host code be run? CPU? GPU?
⇒ Always in the host process

I Where will Parallel code be run? CPU? GPU?
⇒ The default execution space

I How do I control where the Parallel body is executed?
Changing the default execution space (at compilation),
or specifying an execution space in the policy.

H
o
st

P
ar
al
le
l

GPU Tech Conf, May 8-11, 2017 51/87

Execution spaces (2)

MPI_Reduce (...);

FILE * file = fopen (...);

runANormalFunction (... data ...);

Kokkos :: parallel_for(numberOfSomethings ,

[=] (const size_t somethingIndex) {

const double y = ...;

// do something interesting

}

);

I Where will Host code be run? CPU? GPU?
⇒ Always in the host process

I Where will Parallel code be run? CPU? GPU?
⇒ The default execution space

I How do I control where the Parallel body is executed?
Changing the default execution space (at compilation),
or specifying an execution space in the policy.

H
o
st

P
ar
al
le
l

GPU Tech Conf, May 8-11, 2017 51/87

Execution spaces (2)

MPI_Reduce (...);

FILE * file = fopen (...);

runANormalFunction (... data ...);

Kokkos :: parallel_for(numberOfSomethings ,

[=] (const size_t somethingIndex) {

const double y = ...;

// do something interesting

}

);

I Where will Host code be run? CPU? GPU?
⇒ Always in the host process

I Where will Parallel code be run? CPU? GPU?
⇒ The default execution space

I How do I control where the Parallel body is executed?
Changing the default execution space (at compilation),
or specifying an execution space in the policy.

H
o
st

P
ar
al
le
l

GPU Tech Conf, May 8-11, 2017 51/87

Execution spaces (2)

MPI_Reduce (...);

FILE * file = fopen (...);

runANormalFunction (... data ...);

Kokkos :: parallel_for(numberOfSomethings ,

[=] (const size_t somethingIndex) {

const double y = ...;

// do something interesting

}

);

I Where will Host code be run? CPU? GPU?
⇒ Always in the host process

I Where will Parallel code be run? CPU? GPU?
⇒ The default execution space

I How do I control where the Parallel body is executed?
Changing the default execution space (at compilation),
or specifying an execution space in the policy.

H
o
st

P
ar
al
le
l

GPU Tech Conf, May 8-11, 2017 52/87

Execution spaces (3)

Changing the parallel execution space:

parallel_for(

RangePolicy < Execut ionSpace >(0, numberOfIntervals),

[=] (const size_t i) {

/* ... body ... */

});

parallel_for(

numberOfIntervals , // == RangePolicy <>(0, numberOfIntervals)

[=] (const size_t i) {

/* ... body ... */

});

Requirements for enabling execution spaces:
I Kokkos must be compiled with the execution spaces enabled.

I Execution spaces must be initialized (and finalized).

I Functions must be marked with a macro for non-CPU spaces.

I Lambdas must be marked with a macro for non-CPU spaces.

D
ef

a
u

lt
C

u
st

o
m

GPU Tech Conf, May 8-11, 2017 52/87

Execution spaces (3)

Changing the parallel execution space:

parallel_for(

RangePolicy < Execut ionSpace >(0, numberOfIntervals),

[=] (const size_t i) {

/* ... body ... */

});

parallel_for(

numberOfIntervals , // == RangePolicy <>(0, numberOfIntervals)

[=] (const size_t i) {

/* ... body ... */

});

Requirements for enabling execution spaces:
I Kokkos must be compiled with the execution spaces enabled.

I Execution spaces must be initialized (and finalized).

I Functions must be marked with a macro for non-CPU spaces.

I Lambdas must be marked with a macro for non-CPU spaces.

D
ef

a
u

lt
C

u
st

o
m

GPU Tech Conf, May 8-11, 2017 53/87

Execution spaces (5)

Kokkos function and lambda portability annotation macros:

Function annotation with KOKKOS INLINE FUNCTION macro
s t r u c t P a r a l l e l F u n c t o r {

KOKKOS INLINE FUNCTION
doub l e h e l p e r F un c t i o n (con s t s i z e t s) con s t { . . .}
KOKKOS INLINE FUNCTION
vo i d op e r a t o r () (con s t s i z e t i nd e x) con s t {

h e l p e r Fun c t i o n (i nd ex) ;
}

}
// Where kokkos d e f i n e s :
#d e f i n e KOKKOS INLINE FUNCTION i n l i n e /∗ #i f CPU−on l y ∗/
#d e f i n e KOKKOS INLINE FUNCTION i n l i n e d e v i c e h o s t /∗ #i f CPU+Cuda ∗/

Lambda annotation with KOKKOS LAMBDA macro (requires CUDA 8.0)

Kokkos : : p a r a l l e l f o r (numbe rO f I t e r a t i on s ,
KOKKOS LAMBDA (cons t s i z e t i nd e x) { . . . }) ;

// Where kokkos d e f i n e s :
#d e f i n e KOKKOS LAMBDA [=] /∗ #i f CPU−on l y ∗/
#d e f i n e KOKKOS LAMBDA [=] d e v i c e /∗ #i f CPU+Cuda ∗/

GPU Tech Conf, May 8-11, 2017 53/87

Execution spaces (5)

Kokkos function and lambda portability annotation macros:

Function annotation with KOKKOS INLINE FUNCTION macro
s t r u c t P a r a l l e l F u n c t o r {

KOKKOS INLINE FUNCTION
doub l e h e l p e r F un c t i o n (con s t s i z e t s) con s t { . . .}
KOKKOS INLINE FUNCTION
vo i d op e r a t o r () (con s t s i z e t i nd e x) con s t {

h e l p e r Fun c t i o n (i nd ex) ;
}

}
// Where kokkos d e f i n e s :
#d e f i n e KOKKOS INLINE FUNCTION i n l i n e /∗ #i f CPU−on l y ∗/
#d e f i n e KOKKOS INLINE FUNCTION i n l i n e d e v i c e h o s t /∗ #i f CPU+Cuda ∗/

Lambda annotation with KOKKOS LAMBDA macro (requires CUDA 8.0)

Kokkos : : p a r a l l e l f o r (numbe rO f I t e r a t i on s ,
KOKKOS LAMBDA (cons t s i z e t i nd e x) { . . . }) ;

// Where kokkos d e f i n e s :
#d e f i n e KOKKOS LAMBDA [=] /∗ #i f CPU−on l y ∗/
#d e f i n e KOKKOS LAMBDA [=] d e v i c e /∗ #i f CPU+Cuda ∗/

GPU Tech Conf, May 8-11, 2017 54/87

Memory Space Motivation

Memory space motivating example: summing an array

View <double*> data("data", size);

for (size_t i = 0; i < size; ++i) {

data(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce(

RangePolicy <SomeExampleExecutionSpace >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: Where is the data stored? GPU memory? CPU
memory? Both?

⇒ Memory Spaces

GPU Tech Conf, May 8-11, 2017 54/87

Memory Space Motivation

Memory space motivating example: summing an array

View <double*> data("data", size);

for (size_t i = 0; i < size; ++i) {

data(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce(

RangePolicy <SomeExampleExecutionSpace >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: Where is the data stored? GPU memory? CPU
memory? Both?

⇒ Memory Spaces

GPU Tech Conf, May 8-11, 2017 54/87

Memory Space Motivation

Memory space motivating example: summing an array

View <double*> data("data", size);

for (size_t i = 0; i < size; ++i) {

data(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce(

RangePolicy <SomeExampleExecutionSpace >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: Where is the data stored? GPU memory? CPU
memory? Both?

⇒ Memory Spaces

GPU Tech Conf, May 8-11, 2017 54/87

Memory Space Motivation

Memory space motivating example: summing an array

View <double*> data("data", size);

for (size_t i = 0; i < size; ++i) {

data(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce(

RangePolicy <SomeExampleExecutionSpace >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: Where is the data stored? GPU memory? CPU
memory? Both?

⇒ Memory Spaces

GPU Tech Conf, May 8-11, 2017 55/87

Memory spaces (0)

Memory space:
explicitly-manageable memory resource

(i.e., “place to put data”)

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator

GPU Tech Conf, May 8-11, 2017 56/87

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

I View<double***,MemorySpace> data(...);

I Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more

I Each execution space has a default memory space, which is
used if Space provided is actually an execution space

I If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

GPU Tech Conf, May 8-11, 2017 56/87

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

I View<double***,MemorySpace> data(...);

I Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more

I Each execution space has a default memory space, which is
used if Space provided is actually an execution space

I If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

GPU Tech Conf, May 8-11, 2017 56/87

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

I View<double***,MemorySpace> data(...);

I Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more

I Each execution space has a default memory space, which is
used if Space provided is actually an execution space

I If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

GPU Tech Conf, May 8-11, 2017 56/87

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

I View<double***,MemorySpace> data(...);

I Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more

I Each execution space has a default memory space, which is
used if Space provided is actually an execution space

I If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

GPU Tech Conf, May 8-11, 2017 56/87

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

I View<double***,MemorySpace> data(...);

I Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more

I Each execution space has a default memory space, which is
used if Space provided is actually an execution space

I If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

GPU Tech Conf, May 8-11, 2017 57/87

Memory spaces (2)

Example: HostSpace

View <double**, HostSpace> hostView (... constructor arguments ...);

Example: CudaSpace

View <double**, CudaSpace> view (... constructor arguments ...);

GPU Tech Conf, May 8-11, 2017 57/87

Memory spaces (2)

Example: HostSpace

View <double**, HostSpace> hostView (... constructor arguments ...);

Example: CudaSpace

View <double**, CudaSpace> view (... constructor arguments ...);

GPU Tech Conf, May 8-11, 2017 58/87

Execution and Memory spaces (0)

Anatomy of a kernel launch:

1. User declares views, allocating.

2. User instantiates a functor with views.

3. User launches parallel something:
I Functor is copied to the device.
I Kernel is run.
I Copy of functor on the device is released.

View <int*, Cuda > dev (...);

parallel_for(N,

[=] (int i) {

dev(i) = ...;

});

Note: no deep copies of array data are performed;
views are like pointers.

GPU Tech Conf, May 8-11, 2017 59/87

Execution and Memory spaces (1)

Example: one view

View <int*, Cuda > dev;

parallel_for(N,

[=] (int i) {

dev(i) = ...;

});

GPU Tech Conf, May 8-11, 2017 60/87

Execution and Memory spaces (2)

Example: two views

View <int*, Cuda > dev;

View <int*, Host > host;

parallel_for(N,

[=] (int i) {

dev(i) = ...;

host(i) = ...;

});

GPU Tech Conf, May 8-11, 2017 60/87

Execution and Memory spaces (2)

Example: two views

View <int*, Cuda > dev;

View <int*, Host > host;

parallel_for(N,

[=] (int i) {

dev(i) = ...;

host(i) = ...;

});

GPU Tech Conf, May 8-11, 2017 61/87

Execution and Memory spaces (3)

Example (redux): summing an array with the GPU

(failed) Attempt 1: View lives in CudaSpace

View <double*, CudaSpace> array("array", size);

for (size_t i = 0; i < size; ++i) {

array(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce(

RangePolicy < Cuda >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += array(index);

},

sum);

GPU Tech Conf, May 8-11, 2017 61/87

Execution and Memory spaces (3)

Example (redux): summing an array with the GPU

(failed) Attempt 1: View lives in CudaSpace

View <double*, CudaSpace> array("array", size);

for (size_t i = 0; i < size; ++i) {

array(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce(

RangePolicy < Cuda >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += array(index);

},

sum);

fault

GPU Tech Conf, May 8-11, 2017 62/87

Execution and Memory spaces (4)

Example (redux): summing an array with the GPU

(failed) Attempt 2: View lives in HostSpace

View <double*, HostSpace> array("array", size);

for (size_t i = 0; i < size; ++i) {

array(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce(

RangePolicy < Cuda >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += array(index);

},

sum);

What’s the solution?
I CudaUVMSpace

I CudaHostPinnedSpace (skipping)

I Mirroring

GPU Tech Conf, May 8-11, 2017 62/87

Execution and Memory spaces (4)

Example (redux): summing an array with the GPU

(failed) Attempt 2: View lives in HostSpace

View <double*, HostSpace> array("array", size);

for (size_t i = 0; i < size; ++i) {

array(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce(

RangePolicy < Cuda >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += array(index);

},

sum);

What’s the solution?
I CudaUVMSpace

I CudaHostPinnedSpace (skipping)

I Mirroring

illegal access

GPU Tech Conf, May 8-11, 2017 62/87

Execution and Memory spaces (4)

Example (redux): summing an array with the GPU

(failed) Attempt 2: View lives in HostSpace

View <double*, HostSpace> array("array", size);

for (size_t i = 0; i < size; ++i) {

array(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce(

RangePolicy < Cuda >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += array(index);

},

sum);

What’s the solution?
I CudaUVMSpace

I CudaHostPinnedSpace (skipping)

I Mirroring

illegal access

GPU Tech Conf, May 8-11, 2017 63/87

Execution and Memory spaces (5)

CudaUVMSpace

View <double*,

CudaUVMSpace> array;

array = ... from file ...

double sum = 0;

parallel_reduce(N,

[=] (int i,

double & d) {

d += array(i);

},

sum);

Cuda runtime automatically handles data movement,
at a performance hit.

GPU Tech Conf, May 8-11, 2017 64/87

Views, Spaces, and Mirrors

Important concept: Mirrors

Mirrors are views of equivalent arrays residing in possibly different
memory spaces.

Mirroring schematic

typedef Kokkos ::View <double**, Space> ViewType;

ViewType view (...);

ViewType ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i e w (view);

GPU Tech Conf, May 8-11, 2017 64/87

Views, Spaces, and Mirrors

Important concept: Mirrors

Mirrors are views of equivalent arrays residing in possibly different
memory spaces.

Mirroring schematic

typedef Kokkos ::View <double**, Space> ViewType;

ViewType view (...);

ViewType ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i e w (view);

GPU Tech Conf, May 8-11, 2017 65/87

Mirroring pattern

1. Create a view’s array in some memory space.
typedef Kokkos ::View <double*, Space> ViewType;

ViewType view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

ViewType ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i e w (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for(

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

GPU Tech Conf, May 8-11, 2017 65/87

Mirroring pattern

1. Create a view’s array in some memory space.
typedef Kokkos ::View <double*, Space> ViewType;

ViewType view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

ViewType ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i e w (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for(

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

GPU Tech Conf, May 8-11, 2017 65/87

Mirroring pattern

1. Create a view’s array in some memory space.
typedef Kokkos ::View <double*, Space> ViewType;

ViewType view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

ViewType ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i e w (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for(

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

GPU Tech Conf, May 8-11, 2017 65/87

Mirroring pattern

1. Create a view’s array in some memory space.
typedef Kokkos ::View <double*, Space> ViewType;

ViewType view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

ViewType ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i e w (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for(

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

GPU Tech Conf, May 8-11, 2017 65/87

Mirroring pattern

1. Create a view’s array in some memory space.
typedef Kokkos ::View <double*, Space> ViewType;

ViewType view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

ViewType ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i e w (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for(

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

GPU Tech Conf, May 8-11, 2017 65/87

Mirroring pattern

1. Create a view’s array in some memory space.
typedef Kokkos ::View <double*, Space> ViewType;

ViewType view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

ViewType ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i e w (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for(

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

GPU Tech Conf, May 8-11, 2017 66/87

Mirrors of Views in HostSpace

What if the View is in HostSpace too? Does it make a copy?

typedef Kokkos ::View <double*, Space> ViewType;

ViewType view("test", 10);

ViewType ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i e w (view);

I create mirror view allocates data only if the host process
cannot access view’s data, otherwise hostView references the
same data.

I create mirror always allocates data.

I Reminder: Kokkos never performs a hidden deep copy.

GPU Tech Conf, May 8-11, 2017 67/87

Exercise #3: Flat Parallelism on the GPU, Views and Host Mirrors

Details:

I Location: ~/GTC2017/Exercises/03/

I Add HostMirror Views and deep copy

I Make sure you use the correct view in initialization and Kernel

Compile for CPU

make -j KOKKOS_DEVICES=OpenMP

Compile for GPU (we do not need UVM anymore)

make -j KOKKOS_DEVICES=Cuda

Run on GPU

./03 _Exercise.cuda -S 26

Things to try:

I Vary problem size and number of rows (-S ...; -N ...)

I Change number of repeats (-nrepeat ...)

I Compare behavior of CPU vs GPU

GPU Tech Conf, May 8-11, 2017 68/87

View and Spaces Section Summary

I Data is stored in Views that are “pointers” to
multi-dimensional arrays residing in memory spaces.

I Views abstract away platform-dependent allocation,
(automatic) deallocation, and access.

I Heterogenous nodes have one or more memory spaces.

I Mirroring is used for performant access to views in host and
device memory.

I Heterogenous nodes have one or more execution spaces.

I You control where parallel code is run by a template
parameter on the execution policy, or by compile-time
selection of the default execution space.

GPU Tech Conf, May 8-11, 2017 69/87

Managing memory access patterns
for performance portability

Learning objectives:

I How the View’s Layout parameter controls data layout.

I How memory access patterns result from Kokkos mapping
parallel work indices and layout of multidimensional array data

I Why memory access patterns and layouts have such a
performance impact (caching and coalescing).

I See a concrete example of the performance of various memory
configurations.

GPU Tech Conf, May 8-11, 2017 70/87

Example: inner product (0)

Kokkos :: parallel_reduce(

RangePolicy <ExecutionSpace >(0, N),

KOKKOS_LAMBDA (const size_t row , double & valueToUpdate) {

double thisRowsSum = 0;

for (size_t entry = 0; entry < M; ++entry) {

thisRowsSum += A(row , entry) * x(entry);

}

valueToUpdate += y(row) * thisRowsSum;

}, result);

Driving question: How should A be laid out in memory?

GPU Tech Conf, May 8-11, 2017 70/87

Example: inner product (0)

Kokkos :: parallel_reduce(

RangePolicy <ExecutionSpace >(0, N),

KOKKOS_LAMBDA (const size_t row , double & valueToUpdate) {

double thisRowsSum = 0;

for (size_t entry = 0; entry < M; ++entry) {

thisRowsSum += A(row , entry) * x(entry);

}

valueToUpdate += y(row) * thisRowsSum;

}, result);

Driving question: How should A be laid out in memory?

GPU Tech Conf, May 8-11, 2017 71/87

Example: inner product (1)

Layout is the mapping of multi-index to memory:

LayoutLeft

in 2D, “column-major”

LayoutRight

in 2D, “row-major”

GPU Tech Conf, May 8-11, 2017 72/87

Layout

Important concept: Layout

Every View has a multidimensional array Layout set at
compile-time.

View <double ***, Layout , Space > name (...);

I Most-common layouts are LayoutLeft and LayoutRight.
LayoutLeft: left-most index is stride 1.
LayoutRight: right-most index is stride 1.

I If no layout specified, default for that memory space is used.
LayoutLeft for CudaSpace, LayoutRight for HostSpace.

I Layouts are extensible: ˜50 lines

I Advanced layouts: LayoutStride, LayoutTiled, ...

GPU Tech Conf, May 8-11, 2017 72/87

Layout

Important concept: Layout

Every View has a multidimensional array Layout set at
compile-time.

View <double ***, Layout , Space > name (...);

I Most-common layouts are LayoutLeft and LayoutRight.
LayoutLeft: left-most index is stride 1.
LayoutRight: right-most index is stride 1.

I If no layout specified, default for that memory space is used.
LayoutLeft for CudaSpace, LayoutRight for HostSpace.

I Layouts are extensible: ˜50 lines

I Advanced layouts: LayoutStride, LayoutTiled, ...

GPU Tech Conf, May 8-11, 2017 73/87

Exercise #4: Inner Product, Flat Parallelism

Details:

I Location: ~/GTC2017/Exercises/04/

I Replace ‘‘N’’ in parallel dispatch with RangePolicy<ExecSpace>

I Add MemSpace to all Views and Layout to A

I Experiment with the combinations of ExecSpace, Layout to view
performance

Things to try:

I Vary problem size and number of rows (-S ...; -N ...)

I Change number of repeats (-nrepeat ...)

I Compare behavior of CPU vs GPU

I Compare using UVM vs not using UVM on GPUs

I Check what happens if MemSpace and ExecSpace do not match.

GPU Tech Conf, May 8-11, 2017 74/87

Exercise #4: Inner Product, Flat Parallelism

1 64 4K 256K 16M

N

0

100

200

300

400

B
an

d
w

id
th

 (
G

B
/s

)

KNL Right

KNL Left
HSW Right

HSW Left
K40 Right

K40 Left
Titan X Right

Titan X Left

<y|Ax> Exercise 04 (Layout)
KNL: Xeon Phi 68c; HSW: Dual Xeon Haswell 2x16c; K40: Nvidia K40 / Titan X Pascal GPU

Why?

GPU Tech Conf, May 8-11, 2017 75/87

Caching and coalescing (0)

Thread independence:

operator ()(const size_t index , double & valueToUpdate) {

const double d = _data(index);

valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?

I CPU threads are independent.
i.e., threads may execute at any rate.

I GPU threads are synchronized in groups (of 32).
i.e., threads in groups must execute instructions together.

In particular, all threads in a group (warp) must finished their loads
before any thread can move on.

So, how many cache lines must be fetched before threads can
move on?

GPU Tech Conf, May 8-11, 2017 75/87

Caching and coalescing (0)

Thread independence:

operator ()(const size_t index , double & valueToUpdate) {

const double d = _data(index);

valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?

I CPU threads are independent.
i.e., threads may execute at any rate.

I GPU threads are synchronized in groups (of 32).
i.e., threads in groups must execute instructions together.

In particular, all threads in a group (warp) must finished their loads
before any thread can move on.

So, how many cache lines must be fetched before threads can
move on?

GPU Tech Conf, May 8-11, 2017 75/87

Caching and coalescing (0)

Thread independence:

operator ()(const size_t index , double & valueToUpdate) {

const double d = _data(index);

valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?

I CPU threads are independent.
i.e., threads may execute at any rate.

I GPU threads are synchronized in groups (of 32).
i.e., threads in groups must execute instructions together.

In particular, all threads in a group (warp) must finished their loads
before any thread can move on.

So, how many cache lines must be fetched before threads can
move on?

GPU Tech Conf, May 8-11, 2017 75/87

Caching and coalescing (0)

Thread independence:

operator ()(const size_t index , double & valueToUpdate) {

const double d = _data(index);

valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?

I CPU threads are independent.
i.e., threads may execute at any rate.

I GPU threads are synchronized in groups (of 32).
i.e., threads in groups must execute instructions together.

In particular, all threads in a group (warp) must finished their loads
before any thread can move on.

So, how many cache lines must be fetched before threads can
move on?

GPU Tech Conf, May 8-11, 2017 75/87

Caching and coalescing (0)

Thread independence:

operator ()(const size_t index , double & valueToUpdate) {

const double d = _data(index);

valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?

I CPU threads are independent.
i.e., threads may execute at any rate.

I GPU threads are synchronized in groups (of 32).
i.e., threads in groups must execute instructions together.

In particular, all threads in a group (warp) must finished their loads
before any thread can move on.

So, how many cache lines must be fetched before threads can
move on?

GPU Tech Conf, May 8-11, 2017 76/87

Caching and coalescing (1)

CPUs: few (independent) cores with separate caches:

GPUs: many (synchronized) cores with a shared cache:

GPU Tech Conf, May 8-11, 2017 76/87

Caching and coalescing (1)

CPUs: few (independent) cores with separate caches:

GPUs: many (synchronized) cores with a shared cache:

GPU Tech Conf, May 8-11, 2017 77/87

Caching and coalescing (2)

Important point

For performance, accesses to views in HostSpace must be cached,
while access to views in CudaSpace must be coalesced.

Caching: if thread t’s current access is at position i,
thread t’s next access should be at position i+1.

Coalescing: if thread t’s current access is at position i,
thread t+1’s current access should be at position i+1.

Warning

Uncoalesced access in CudaSpace greatly reduces performance
(more than 10X)

Note: uncoalesced read-only, random access in CudaSpace is okay
through Kokkos const RandomAccess views (more later).

GPU Tech Conf, May 8-11, 2017 77/87

Caching and coalescing (2)

Important point

For performance, accesses to views in HostSpace must be cached,
while access to views in CudaSpace must be coalesced.

Caching: if thread t’s current access is at position i,
thread t’s next access should be at position i+1.

Coalescing: if thread t’s current access is at position i,
thread t+1’s current access should be at position i+1.

Warning

Uncoalesced access in CudaSpace greatly reduces performance
(more than 10X)

Note: uncoalesced read-only, random access in CudaSpace is okay
through Kokkos const RandomAccess views (more later).

GPU Tech Conf, May 8-11, 2017 77/87

Caching and coalescing (2)

Important point

For performance, accesses to views in HostSpace must be cached,
while access to views in CudaSpace must be coalesced.

Caching: if thread t’s current access is at position i,
thread t’s next access should be at position i+1.

Coalescing: if thread t’s current access is at position i,
thread t+1’s current access should be at position i+1.

Warning

Uncoalesced access in CudaSpace greatly reduces performance
(more than 10X)

Note: uncoalesced read-only, random access in CudaSpace is okay
through Kokkos const RandomAccess views (more later).

GPU Tech Conf, May 8-11, 2017 78/87

Mapping indices to cores (0)

Consider the array summation example:

View <double*, Space> data("data", size);

... populate data ...

double sum = 0;

Kokkos :: parallel_reduce(

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: is this cached (for OpenMP) and coalesced (for Cuda)?

Given P threads, which indices do we want thread 0 to handle?

Contiguous:
0, 1, 2, ..., N/P

Strided:
0, N/P, 2*N/P, ...

CPU GPU
Why?

GPU Tech Conf, May 8-11, 2017 78/87

Mapping indices to cores (0)

Consider the array summation example:

View <double*, Space> data("data", size);

... populate data ...

double sum = 0;

Kokkos :: parallel_reduce(

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: is this cached (for OpenMP) and coalesced (for Cuda)?

Given P threads, which indices do we want thread 0 to handle?

Contiguous:
0, 1, 2, ..., N/P

Strided:
0, N/P, 2*N/P, ...

CPU GPU
Why?

GPU Tech Conf, May 8-11, 2017 78/87

Mapping indices to cores (0)

Consider the array summation example:

View <double*, Space> data("data", size);

... populate data ...

double sum = 0;

Kokkos :: parallel_reduce(

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: is this cached (for OpenMP) and coalesced (for Cuda)?

Given P threads, which indices do we want thread 0 to handle?

Contiguous:
0, 1, 2, ..., N/P

Strided:
0, N/P, 2*N/P, ...

CPU GPU
Why?

GPU Tech Conf, May 8-11, 2017 79/87

Mapping indices to cores (1)

Iterating for the execution space:

operator ()(const size_t index , double & valueToUpdate) {

const double d = _data(index);

valueToUpdate += d;

}

As users we don’t control how indices are mapped to threads, so
how do we achieve good memory access?

Important point

Kokkos maps indices to cores in contiguous chunks on CPU
execution spaces, and strided for Cuda.

GPU Tech Conf, May 8-11, 2017 79/87

Mapping indices to cores (1)

Iterating for the execution space:

operator ()(const size_t index , double & valueToUpdate) {

const double d = _data(index);

valueToUpdate += d;

}

As users we don’t control how indices are mapped to threads, so
how do we achieve good memory access?

Important point

Kokkos maps indices to cores in contiguous chunks on CPU
execution spaces, and strided for Cuda.

GPU Tech Conf, May 8-11, 2017 80/87

Mapping indices to cores (2)

Rule of Thumb

Kokkos index mapping and default layouts provide efficient access
if iteration indices correspond to the first index of array.

Example:

View <double ***, ...> view (...);

...

Kokkos :: parallel_for(... ,

KOKKOS_LAMBDA (const size_t workIndex) {

...

view (..., ... , workIndex) = ...;

view (... , workIndex , ...) = ...;

view(workIndex , ... , ...) = ...;

});

...

GPU Tech Conf, May 8-11, 2017 81/87

Example: inner product (2)

Important point

Performant memory access is achieved by Kokkos mapping parallel
work indices and multidimensional array layout appropriately for
the architecture.

Analysis: row-major (LayoutRight)

I HostSpace: cached (good)

I CudaSpace: uncoalesced (bad)

GPU Tech Conf, May 8-11, 2017 81/87

Example: inner product (2)

Important point

Performant memory access is achieved by Kokkos mapping parallel
work indices and multidimensional array layout appropriately for
the architecture.

Analysis: row-major (LayoutRight)

I HostSpace: cached (good)

I CudaSpace: uncoalesced (bad)

GPU Tech Conf, May 8-11, 2017 81/87

Example: inner product (2)

Important point

Performant memory access is achieved by Kokkos mapping parallel
work indices and multidimensional array layout appropriately for
the architecture.

Analysis: row-major (LayoutRight)

I HostSpace: cached (good)

I CudaSpace: uncoalesced (bad)

GPU Tech Conf, May 8-11, 2017 82/87

Example: inner product (3)

Important point

Performant memory access is achieved by Kokkos mapping parallel
work indices and multidimensional array layout optimally for the
architecture.

Analysis: column-major (LayoutLeft)

I HostSpace: uncached (bad)

I CudaSpace: coalesced (good)

GPU Tech Conf, May 8-11, 2017 82/87

Example: inner product (3)

Important point

Performant memory access is achieved by Kokkos mapping parallel
work indices and multidimensional array layout optimally for the
architecture.

Analysis: column-major (LayoutLeft)

I HostSpace: uncached (bad)

I CudaSpace: coalesced (good)

GPU Tech Conf, May 8-11, 2017 83/87

Example: inner product (4)

Analysis: Kokkos architecture-dependent

View <double**, Execut ionSpace > A(N, M);

parallel_for(RangePolicy < Execut ionSpace >(0, N),

... thisRowsSum += A(j, i) * x(i);

(a) OpenMP (b) Cuda

I HostSpace: cached (good)

I CudaSpace: coalesced (good)

GPU Tech Conf, May 8-11, 2017 84/87

Example: inner product (5)

Layout performance, revisited

1 64 4K 256K 16M

N

0

100

200

300

400

B
an

d
w

id
th

 (
G

B
/s

)

KNL Right

KNL Left
HSW Right

HSW Left
K40 Right

K40 Left
Titan X Right

Titan X Left

<y|Ax> Exercise 04 (Layout)
KNL: Xeon Phi 68c; HSW: Dual Xeon Haswell 2x16c; K40: Nvidia K40 / Titan X Pascal GPU

cached

coalesced

coalesced

cached

uncached
uncoalesced

GPU Tech Conf, May 8-11, 2017 85/87

Memory Access Pattern Summary

I Every View has a Layout set at compile-time through a
template parameter.

I LayoutRight and LayoutLeft are most common.

I Views in HostSpace default to LayoutRight and Views in
CudaSpace default to LayoutLeft.

I Layouts are extensible and flexible.

I For performance, memory access patterns must result in
caching on a CPU and coalescing on a GPU.

I Kokkos maps parallel work indices and multidimensional array
layout for performance portable memory access patterns.

I There is nothing in OpenMP, OpenACC, or OpenCL to manage
layouts.
⇒ You’ll need multiple versions of code or pay the
performance penalty.

GPU Tech Conf, May 8-11, 2017 86/87

Conclusion

Kokkos capabilities NOT covered today, only 2 hours

I Atomic operations and their scalability

I Multidimensional range policy (heirarchical pattern)

I Thread-team policy (hierarchical pattern) with intra-team
shared memory

CUDA grid-block parallelism, but easier and portable

I Dynamic directed acyclic graph (DAG) of tasks pattern

I Plugging in customized multdimensional array data layout
e.g., arbitrarily strided, heirarchical tiling

GPU Tech Conf, May 8-11, 2017 87/87

Conclusion: Takeaways

I For portability: OpenMP, OpenACC, ... or Kokkos.

I Only Kokkos obtains performant memory access patterns via
architecture-aware arrays and work mapping.

i.e., not just portable, performance portable.

I With Kokkos, simple things stay simple (parallel-for, etc.).
i.e., it’s no more difficult than OpenMP.

I Advanced performance-optimizing patterns are simpler
with Kokkos than with native versions.

i.e., you’re not missing out on advanced features.

