
HPC I/O for Computational Scientists:
I/O Transformations

Presented to 

ATPESC 2017 Participants

Rob Latham and Phil Carns
Mathematics and Computer Science Division
Argonne National Laboratory

Q Center, St. Charles, IL (USA)
8/4/2017



ATPESC 2017, July 30 – August 11, 20172

First some background: 
How flat files are stored on many servers and disks

• Single file example: ckpoint43.h5

• File is split (under the covers) into 
multiple blocks

• Those blocks are then striped across a 
subset of servers

• Each server then stores it’s block on a 
collection of disks

• Most optimizations focus on making 
better use of servers in parallel

I/O

Persistent data sets

Network

S0 S1 S2 S3

Servers

Disks

B
0

B
1

B
2



ATPESC 2017, July 30 – August 11, 20173

Policy details for striping files

• Mira: happens automatically, and large 
files will use every server

• Theta/Cori: by default, each file will be 
stored on a single server

– You can tune this setting for large files that 
will be accessed in parallel

– See Darshan hands-on scripts (later today) 
for examples

– Example: “lfs setstripe -c -1” on a directory 
to widely stripe all new files in directory

I/O

Persistent data sets

Network

S0 S1 S2 S3

Servers

Disks

B
0

B
1

B
2



ATPESC 2017, July 30 – August 11, 20174

Managing Concurrent Access

Files are treated like global shared memory regions. Locks are used 
to manage concurrent access:

• Files are broken up into lock units

– Unit boundaries are dictated by the storage system, regardless of access pattern

• Clients obtain locks on units that they will access before I/O occurs

• Enables caching on clients as well (as long as client has a lock, it knows its cached 
data is valid)

• Locks are reclaimed from clients when others desire access 

If an access touches any data in 

a lock unit, the lock for that 

region must be obtained before 

access occurs.

4



ATPESC 2017, July 30 – August 11, 20175

Implications of Locking in Concurrent Access

5



ATPESC 2017, July 30 – August 11, 20176

I/O Transformations

Software between the application and the file system performs 
transformations, primarily to improve performance.

Process 0 Process 1 Process 2

File foo

Process

Folder fo

File data.

File index

� Goals of transformations:
– Reduce number of operations to PFS 

(avoiding latency)

– Avoid lock contention 

(increasing level of concurrency)

– Hide number of clients 

(more on this later)

� With “transparent” transformations, 

data ends up in the same locations 

in the file as it would have been 

normally
– i.e., the file system is still aware of the 

actual data organization

When we think about I/O 

transformations, we consider the 

mapping of data between application 

processes and locations in file.

6



ATPESC 2017, July 30 – August 11, 20177

I/O Transformations

Software between the application and the file system performs 
transformations, primarily to improve performance.

Process 0 Process 1 Process 2

File foo

Process

Folder fo

File data.

File index

� We will tour through a few examples 

of data transformations in the 

following slides

� The important thing to remember is 

that software already exists to do 

these things for you in HDF5, 

PnetCDF, ADIOS, and MPI-IO

� If you find yourself replicating these 

optimizations by hand, look around 

to see if you can find an off-the-shelf 

solution

When we think about I/O 

transformations, we consider the 

mapping of data between application 

processes and locations in file.

7



ATPESC 2017, July 30 – August 11, 20178

Reducing Number of Operations

Because most operations go over multiple networks, I/O to a PFS 
incurs more latency than with a local FS. Data sieving is a technique 
to address I/O latency by combining operations:

• When reading, application process reads a large region holding all 
needed data and pulls out what is needed

• When writing, three steps required (below)

• Somewhat counter-intuitive: do extra I/O to avoid contention

Step 1: Data in region to be 

modified are read into intermediate 

buffer (1 read).

Step 2: Elements to be written to 

file are replaced in intermediate 

buffer.

Step 3: Entire region is written back 

to storage with a single write 

operation.

8



ATPESC 2017, July 30 – August 11, 20179

Avoiding Lock Contention
We can reorder data among processes to avoid lock 
contention. Two-phase I/O splits I/O into a data reorganization 
phase and an interaction with the storage system (two-phase write 
depicted):

• Data exchanged between processes to match file layout

• 0th phase determines exchange schedule (not shown)

Phase 1: Data are exchanged between processes 

based on organization of data in file.

Phase 2: Data are written to file (storage servers) 

with large writes, no contention.

9



ATPESC 2017, July 30 – August 11, 201710

Two-Phase I/O Algorithms
(or, You don’t want to do this yourself…)

For more information, see W.K. Liao and A. Choudhary, “Dynamically 

Adapting File Domain Partitioning Methods for Collective 

I/O Based on Underlying Parallel File System Locking Protocols,” 

SC2008, November, 2008.

10

Today’s systems also choose aggregators 
that are “closest” to storage



ATPESC 2017, July 30 – August 11, 201711

S3D Turbulent Combustion Code

• S3D is a turbulent combustion application using a 

direct numerical simulation solver from Sandia 

National Laboratory

• Checkpoints consist of four global arrays

– 2 3-dimensional

– 2 4-dimensional

– 50x50x50 fixed

subarrays

Thanks to Jackie Chen (SNL), Ray Grout (SNL), and 

Wei-Keng Liao (NWU) for providing the S3D I/O 

benchmark, Wei-Keng Liao for providing this diagram, 

C. Wang, H. Yu, and K.-L. Ma of UC Davis for image.

11



ATPESC 2017, July 30 – August 11, 201712

Impact of Transformations on S3D I/O

• Testing with PnetCDF output to single file, three configurations, 16 processes

– All MPI-IO optimizations (collective buffering and data sieving) disabled

– Independent I/O optimization (data sieving) enabled

– Collective I/O optimization (collective buffering, a.k.a. two-phase I/O) enabled

Coll. Buffering and 

Data Sieving Disabled

Data Sieving Enabled Coll. Buffering

Enabled (including

Aggregation)

POSIX writes 102,401 81 5

POSIX reads 0 80 0

MPI-IO writes 64 64 64

Unaligned in file 102,399 80 4

Total written (MB) 6.25 87.11 6.25

Runtime (sec) 1443 11 6.0

Avg. MPI-IO time per 

proc (sec)

1426.47 4.82 0.60

12

Application did the same
thing in every case



ATPESC 2017, July 30 – August 11, 201713

Transformations in the I/O Forwarding Step

Compute nodes I/O forwarding nodes (or I/O 

gateways) shuffle data between 

compute nodes and external 

resources, including storage. 

Storage nodes

External 

network
Disk arrays

13



ATPESC 2017, July 30 – August 11, 201714

Transformations in the I/O Forwarding Step

Another way of transforming data access by clients is by 
introducing new hardware: I/O forwarding nodes.

• I/O forwarding nodes (e.g., on Mira) serve a number of functions:

– Bridge between internal and external networks

– Run PFS client software, allowing lighter-weight solutions internally

– Perform I/O operations on behalf of multiple clients

– Transparently transform data on its way to and from the file system

• On Theta, Lnet routers fill a similar role

– Bridge networks

– Shape and route I/O traffic for storage system

14



ATPESC 2017, July 30 – August 11, 201715

Transformations in the I/O Forwarding Step

The transformations can take many forms:

• Performing one file open on behalf of many processes

• Combining small accesses into larger ones

• Caching data

• Redirecting requests through shorter network routes

15



ATPESC 2017, July 30 – August 11, 201716

“Not So Transparent” Transformations

Some transformations result in file(s) with different data 
organizations than the user requested.

• Observation: if processes are writing to different files, then 
they will not have lock conflicts

• What if we convert writes to the same file into writes to different files?

– Need a way to group these files together

– Need a way to track what we put where

– Need a way to reconstruct on reads

• Or alternatively, data could be stored in a different type of storage 
system entirely (not a file system)

16



ATPESC 2017, July 30 – August 11, 201717

“Not So Transparent” Transformations

Example: PnetCDF subfiling

• Translates a single data set into 
multiple underlying files

Example: HDF5 vol plugins

• Abstraction layer that can map 
an HDF5 data set to multiple 
files or even to completely 
different storage targets

17



ATPESC 2017, July 30 – August 11, 201718

Why not just write a file per process?

File per process vs. shared file access as function of job size on 

Intrepid Blue Gene/P system

18

Sometimes this is the fastest 
strategy, but becomes 
increasingly hard to sustain at 
scale.



ATPESC 2017, July 30 – August 11, 201719

I/O transformation summary

Historically, the storage data model has been the POSIX file 
model, and the PFS has been responsible for managing it.

• Transparent transformations work within these limitations

• When data model libraries are used:

– Transforms can take advantage of more knowledge

• e.g., dimensions of multidimensional datasets

– Doesn’t matter so much whether there is a single file underneath

– Or in what order the data is stored

– As long as portability is maintained

• Single stream of bytes in a file is inconvenient for parallel access

– Future designs might provide a different underlying model

19



ATPESC 2017, July 30 – August 11, 201720

Takeaways

• Parallel file systems provide the underpinnings of HPC I/O solutions

• Data model libraries provide alternative data models for applications

– PnetCDF and HDF5 will both be discussed in detail later in the day

• Characteristics of PFSes lead to the need for transformations in order 
to achieve high performance

– Implemented in a number of different software layers

– Some preserving file organization, others breaking it

• The down side: proliferation of layers complicates performance 
debugging

– We’ll address this topic later in the day

20



ATPESC 2017, July 30 – August 11, 201721

Next up!

• This presentation provided an overview of transformations in the 
HPC I/O stack

• The next presentation will walk through an example application case 
study for a first-hand look at how to program for HPC I/O


