
Scalable HDF5

Quincey Koziol
ATPESC
August 4, 2017
koziol@lbl.gov

Why HDF5?

• Have you ever asked yourself:
– How will I deal with one-file-per-processor in the

petascale era?
– Do I need to be an “MPI and Lustre pro” to do my

research?
– Where is my checkpoint file?

• HDF5 hides all complexity so you can
concentrate on Science
– Optimized I/O to single shared file

Goal

• Introduce you to HDF5
– HDF5 Overview
– Data Management Overview
– Managing HDF5 Data

WHAT IS HDF5?

What is HDF5?

• HDF5	==	Hierarchical	Data	Format,	v5

• Open	file	format
– Designed	for	high	volume	or	complex	data

• Open	source	software
– Works	with	data	in	the	format

• An	extensible	data	model
– Structures	for	data	organization	and	specification

HDF5 is like …

HDF5 is designed …

• for high volume and/or complex data

• for every size and type of system (portable)

• for flexible, efficient storage and I/O

• to enable applications to evolve in their use
of HDF5 and to accommodate new models

• to support long-term data preservation

HDF5 Ecosystem

Fi
le
	F
or
m
at

Li
br
ar
y

Da
ta
	M

od
el

Do
cu
m
en

ta
tio

n
…

Supporters

…
To
ol
s

HDF5 DATA MODEL

HDF5 File

lat	lon	temp
12	|		23	|		3.1
15	|		24	|		4.2
17	|		21	|		3.6An HDF5 file is a

container that
holds data objects.

HDF5 Data Model

File

Dataset Link

Group

Attribute Dataspace

DatatypeHDF5
Objects

HDF5 Dataset

• HDF5 datasets organize and contain data elements.
• HDF5	datatype	describes	individual	data	elements.
• HDF5	dataspace	describes	the	logical	layout	of	the	data	elements.

Integer: 32-bit, LE

HDF5 Datatype

Multi-dimensional array of
identically typed data elements

Specifications for single data
element and array dimensions

3

Rank

Dim[2] = 7

Dimensions

Dim[0] = 4
Dim[1] = 5

HDF5 Dataspace

HDF5 Dataspace

• Describes the logical layout of the elements in an
HDF5 dataset
– NULL

• no elements
– Scalar

• single element
– Simple array (most common)

• multiple elements organized in a
rectangular array

– rank = number of dimensions
– dimension sizes = number of elements in each dimension
– maximum number of elements in each dimension

» may be fixed or unlimited

Extreme Scale Computing Argonne

HDF5 Dataspace
Two roles:

Dataspace contains spatial information
– Rank and dimensions
– Permanent part of dataset

definition

Partial I/0: Dataspace describes application’s data buffer
and data elements participating in I/O

Rank	=	2
Dimensions	=	4x6

Rank	=	1
Dimension	=	10

HDF5 Datatypes

• Describe individual data elements in an HDF5
dataset

• Wide range of datatypes supported
– Integer
– Float
– Enum
– Array
– User-defined (e.g., 13-bit integer)
– Variable-length types (e.g., strings, vectors)
– Compound (similar to C structs)
– More …

Extreme Scale Computing HDF5

HDF5 Dataset

Dataspace: Rank = 2
Dimensions = 5 x 3

Datatype: 32-bit Integer

3

5

12

HDF5 Dataset with Compound Datatype

uint16 char int32 2x3x2 array of float32
Compound
Datatype:

Dataspace: Rank = 2
Dimensions = 5 x 3

3

5

VVV
V		V		V
V		V		V

How are data elements stored?

Chunked

Chunked &
Compressed

Better access time
for subsets;
extendible

Improves storage
efficiency,
transmission speed

Contiguous
(default)

Data elements
stored physically
adjacent to each
other

Buffer in memory Data in the file

HDF5 Attributes

• Typically contain user metadata
• Have a name and a value
• Attributes “decorate” HDF5 objects
• Value is described by a datatype and a

dataspace
• Analogous to a dataset, but do not support

partial I/O operations; nor can they be
compressed or extended

HDF5 File

lat	lon	temp
12	|		23	|		3.1
15	|		24	|		4.2
17	|		21	|		3.6An HDF5 file is a

smart container
that holds data
objects.

HDF5 Groups and Links

lat	lon	temp
12	|		23	|		3.1
15	|		24	|		4.2
17	|		21	|		3.6

Experiment	Notes:
Serial	Number:	99378920
Date:	3/13/09
Configuration:	Standard	3

/

SimOutViz

HDF5 groups
and links
organize
data objects.

Every HDF5 file
has a root group

Parameters
10;100;1000

Timestep
36,000

HDF5 SOFTWARE

HDF5 Home Page

HDF5	home	page:		http://hdfgroup.org/HDF5/
– Latest	release:	HDF5	1.10.0	(1.10.1	coming	May	2017)

HDF5	source	code:
– Written	in	C,	and	includes	optional	C++,	Fortran	APIs,	and	High	

Level	APIs
– Contains	command-line	utilities	(h5dump,	h5repack,	h5diff,	..)	and	

compile	scripts
HDF5	pre-built	binaries:

– When	possible,	include	C,	C++,	Fortran,	and	High	Level	libraries.		
Check	./lib/libhdf5.settings	file.

– Built	with	and	require	the	SZIP	and	ZLIB	external	libraries

Useful Tools For New Users

h5dump:
Tool to “dump” or display contents of HDF5 files

h5cc, h5c++, h5fc:
Scripts to compile applications

HDFView:
Java browser to view HDF5 files
http://www.hdfgroup.org/hdf-java-html/hdfview/

HDF5 Examples (C, Fortran, Java, Python, Matlab, …)
https://www.hdfgroup.org/HDF5/examples/

HDF5 PROGRAMMING MODEL AND
API

HDF5 Software Layers & Storage

HDF5	File	
Format File Split	

Files

File	on	
Parallel	
Filesystem

Other

I/O	Drivers

Virtual	File	
Layer Posix	

I/O
Split	
Files MPI	I/O Custom

Internals Memory	
Mgmt

Datatype	
Conversion Filters Chunked	

Storage
Version	

Compatibility
and	so	on…

Language
Interfaces

C,	Fortran,	C++

HDF5	Data	Model	Objects
Groups,	Datasets,	Attributes,	…

Tunable	Properties
Chunk	Size,	I/O	Driver,	…	

HD
F5
	L
ib
ra
ry

St
or
ag
e

netCDF-4High	Level
APIs

HDFview

Ap
ps h5dump

Java	Interface
H5Part

API

The General HDF5 API

• C, Fortran, Java, C++, and .NET bindings
• IDL, MATLAB, Python (H5Py, PyTables)
• C routines begin with prefix: H5?

? is a character corresponding to the type of object
the function acts on

Example Functions:

H5D : Dataset interface e.g., H5Dread
H5F : File interface e.g., H5Fopen
H5S : dataSpace interface e.g., H5Sclose

The HDF5 API

• For flexibility, the API is extensive
ü 300+ functions

• This can be daunting… but there is hope
üA few functions can do a lot
üStart simple
üBuild up knowledge as more features are needed

Victorinox
Swiss	Army	
Cybertool 34

General Programming Paradigm

• Object is opened or created
• Object is accessed, possibly many times
• Object is closed

• Properties of object are optionally defined
üCreation properties (e.g., use chunking storage)
üAccess properties

Basic Functions

H5Fcreate (H5Fopen) create (open) File

H5Screate_simple/H5Screatecreate dataSpace

H5Dcreate (H5Dopen) create (open) Dataset

H5Dread, H5Dwrite access Dataset

H5Dclose close Dataset

H5Sclose close dataSpace

H5Fclose close File

Other Common Functions

DataSpaces: H5Sselect_hyperslab (Partial I/O)
H5Sselect_elements (Partial I/O)
H5Dget_space

DataTypes: H5Tcreate, H5Tcommit, H5Tclose
H5Tequal, H5Tget_native_type

Groups: H5Gcreate, H5Gopen, H5Gclose

Attributes: H5Acreate, H5Aopen_name,
H5Aclose, H5Aread, H5Awrite

Property lists: H5Pcreate, H5Pclose
H5Pset_chunk, H5Pset_deflate

PARALLEL HDF5
Tools

Terminology

• DATA	è problem-size	data,	e.g.,	large	arrays
• METADATA	– is	an	overloaded	term
• In	this	presentation:

• Metadata	“=“	HDF5	metadata

– For	each	piece	of	application	metadata,	there	are	many	
associated	pieces	of	HDF5	metadata

– There	are	also	other	sources	of	HDF5	metadata

Why Parallel HDF5?

• Take	advantage	of	high-performance	parallel	I/O	
while	reducing	complexity
– Add	a	well-defined	layer	to	the	I/O	stack
– Keep	the	dream	of	a	single	or	a	few	shared	files	alive
– “Friends	don’t	let	friends	use	one	file	per	process!”

• Make	performance	portable

What We’ll Cover Here

• Parallel	vs.	serial	HDF5
• Implementation	layers
• HDF5	files	(=	composites	of	data	&	metadata)	in	a	
parallel	file	system

• PHDF5	I/O	modes:	collective	vs.	independent
• Data	and	metadata	I/O

What We Won’t Cover

• Consistency	semantics
• Metadata	server
• Virtual	Object	Layer	(VOL)
• Automatic	tuning
• Single	Writer	Multiple-Reader	(SWMR)
• Virtual	Datasets	(VDS)
• BigIO
• …

Come	see	me	this	evening	or	after	the	presentation!

(MPI-)Parallel vs. Serial HDF5
• PHDF5	allows	multiple	MPI	processes	in	an	MPI	
communicator	to	perform	I/O	to	a	single	HDF5	file

• Uses	a	standard	parallel	I/O	interface	(MPI-IO)
• Portable	to	different	platforms
• PHDF5	files	ARE	HDF5	files	conforming	to	the	HDF5	
file	format	specification

• The	PHDF5	API	consists	of:
– The	standard	HDF5	API
– A	few	extra	knobs	and	calls
– A	parallel	“etiquette”

• Bottom	line:	PHDF5	is	as	user-friendly	as	HDF5.

Standard HDF5 “Skeleton”
H5Fcreate	(H5Fopen)			 create	(open)	File

H5Screate_simple/H5Screate create	dataSpace

H5Dcreate	(H5Dopen) create	(open)	Dataset

H5Dread,	H5Dwrite access	Dataset

H5Dclose close	Dataset

H5Sclose close	dataSpace

H5Fclose close	File

PHDF5 Implementation Layers
HDF5 Application

Compute node Compute node Compute node

HDF5 Library

MPI Library

HDF5 file on Parallel File System

Switch network + I/O servers

Disk architecture and layout of data on disk

Example of a PHDF5 C Program
A	parallel	HDF5	program	has	a	few	extra	calls

MPI_Init(&argc, &argv);

fapl_id = H5Pcreate(H5P_FILE_ACCESS);
H5Pset_fapl_mpio(fapl_id, comm, info);
file_id = H5Fcreate(FNAME,…, fapl_id);
space_id = H5Screate_simple(…);
dset_id = H5Dcreate(file_id, DNAME, H5T_NATIVE_INT,

space_id,…);
xf_id = H5Pcreate(H5P_DATASET_XFER);
H5Pset_dxpl_mpio(xf_id, H5FD_MPIO_COLLECTIVE);
status = H5Dwrite(dset_id, H5T_NATIVE_INT, …, xf_id…);

MPI_Finalize();

PHDF5 Etiquette

• PHDF5	opens	a	shared	file	with	an	MPI	communicator
• Returns	a	file	handle
• All	future	access	to	the	file	via	that	file	handle
• All	processes	must	participate	in	collective	PHDF5	APIs
• Different	files	can	be	opened	via	different	communicators
• All	HDF5	APIs	that	modify	structural	metadata	are	collective!	

(file	ops.,	object	structure	and	life-cycle)

https://www.hdfgroup.org/HDF5/doc/RM/CollectiveCalls.html

Parallel HDF5 tutorial examples

• For	simple	examples	how	to	write	different	data	
patterns	see

http://www.hdfgroup.org/HDF5/Tutor/parallel.html

HDF5	Overview	@	UC	Berkeley

April	26,	
2017

In a Parallel File System

File Dataset data

OST 1 OST 2 OST 3 OST 4

The file is striped over multiple “disks” (Lustre OSTs) depending on the
stripe size and stripe count with which the file was created.

And it gets worse before it gets better…

Contiguous Storage

• Metadata	header	separate	from	dataset	data
• Data	stored	in	one	contiguous	block	in	HDF5	file

Application memoryMetadata cache
Dataset header

………….
Datatype

Dataspace
………….

Attributes
…

File

Dataset data

Dataset data

Chunked Storage
• Dataset	data	is	divided	into	equally	sized	blocks	
(chunks).

• Each	chunk	is	stored	separately	as	a	contiguous	block	
in	HDF5	file.

Application memory

Metadata cache
Dataset	header

………….
Datatype

Dataspace
………….

Attributes
…

File

Dataset data

A DC Bheader Chunk
index

Chunk
index

A B C D

In a Parallel File System

File A DC B

OST 1 OST 2 OST 3 OST 4

The file is striped over multiple OSTs depending on the stripe size and stripe
count with which the file was created.

header Chunk
index

Collective vs. Independent I/O
• MPI	definition	of	collective	calls:

– All	processes	of	the	communicator	must	participate	in	calls	
in	the	right	order.

• Process1 Process2
• call	A();	call	B(); call	A();	call	B();		**right**
• call	A();	call	B(); call	B();	call	A();		**wrong**

• Independent	means	not	collective	J
• Collective	is	not	necessarily	synchronous,	nor	must	it	
require	communication

• Neither	mode	is	preferable	a	priori.

Collective	I/O	è attempt	to	combine	multiple	smaller	
independent	I/O	ops	into	fewer	larger	ops.

Data and Metadata I/O

Data

• Problem-sized
• I/O	can	be	independent	or	

collective
• Improvement	targets:

– Avoid	unnecessary	I/O
– I/O	frequency
– Layout	on	disk

• Different	I/O	strategies	for	
chunked	layout

– Aggregation	and	balancing
– Alignment

Metadata

• Small
• Reads	can	be	independent	or	

collective	
• All	modifying	I/O	must	be	

collective
• Improvement	targets:

– Metadata	design
– Use	the	latest	library	version,	if	

possible
– Metadata	cache

• In	desperate	cases,	take	
control	of	evictions

Don’t Forget: It’s a Multi-layer Problem

DIAGNOSTICS AND INSTRUMENTATION
Tools

A Textbook Example

User	report:

• Independent	data	
transfer	mode	is	much	
slower	than	the	
collective	data	transfer	
mode

• Data	array	is	tall	and	
thin:	230,000	rows	by	6	
columns

:
:
:

230,000 rows
:
:
:

Symptoms
Writing	to	one	dataset

– 4	MPI	processes	è 4	columns
– Datatype	is	8-byte	floats	(doubles)
– 4	processes	x	1000	rows	x	8	bytes	=	32,000	bytes

% mpirun -np 4 ./a.out 1000
ØExecution	time:	1.783798	s.

% mpirun -np 4 ./a.out 2000
ØExecution	time:	3.838858	s.	(linear	scaling)

• 2	sec.	extra	for	1000	more	rows	=	32,000	bytes.
Whopping	speed	of	16KB/sec	èWay	too	slow!!!

“Poor Man’s Debugging”

• Build	a	version	of	PHDF5	with	
• ./configure --enable-debug --enable-parallel

…

• This	allows	the	tracing	of	MPIO	I/O	calls	in	the	HDF5	
library	such	as	MPI_File_read_xx and	
MPI_File_write_xx

• Don’t	forget	to	% setenv H5FD_mpio_Debug “rw”

• You’ll	get	something	like	this…

Independent and Contiguous
% setenv H5FD_mpio_Debug ’rw’
% mpirun -np 4 ./a.out 1000 #	Indep.;	contiguous.
in H5FD_mpio_write mpi_off=0 size_i=96
in H5FD_mpio_write mpi_off=0 size_i=96
in H5FD_mpio_write mpi_off=0 size_i=96
in H5FD_mpio_write mpi_off=0 size_i=96
in H5FD_mpio_write mpi_off=2056 size_i=8
in H5FD_mpio_write mpi_off=2048 size_i=8
in H5FD_mpio_write mpi_off=2072 size_i=8
in H5FD_mpio_write mpi_off=2064 size_i=8
in H5FD_mpio_write mpi_off=2088 size_i=8
in H5FD_mpio_write mpi_off=2080 size_i=8
…
• A	total	of	4000	of	these	8	bytes	writes	==	32,000	bytes.

Plenty of Independent and Small Calls

Diagnosis:

• Each	process	writes	one	
element	of	one	row,	
skips	to	next	row,	writes	
one	element,	and	so	on.

• Each	process	issues	
230,000	writes	of	8	
bytes	each.

:
:
:

230,000 rows
:
:
:

Chunked by Column
% setenv H5FD_mpio_Debug ’rw’
% mpirun -np 4 ./a.out 1000 #	Indep.,	Chunked	by	column.
in H5FD_mpio_write mpi_off=0 size_i=96
in H5FD_mpio_write mpi_off=0 size_i=96
in H5FD_mpio_write mpi_off=0 size_i=96
in H5FD_mpio_write mpi_off=0 size_i=96
in H5FD_mpio_write mpi_off=3688 size_i=8000
in H5FD_mpio_write mpi_off=11688 size_i=8000
in H5FD_mpio_write mpi_off=27688 size_i=8000
in H5FD_mpio_write mpi_off=19688 size_i=8000
in H5FD_mpio_write mpi_off=96 size_i=40
in H5FD_mpio_write mpi_off=136 size_i=544
in H5FD_mpio_write mpi_off=680 size_i=120
in H5FD_mpio_write mpi_off=800 size_i=272
…

• Execution	time:	0.011599	s.

Use Collective Mode or Chunked Storage

Remedy:

• Collective	I/O	will	
combine	many	small	
independent	calls	into	
few	but	bigger	calls

• Chunks	of	columns	
speeds	up	too

:
:
:

230,000 rows
:
:
:

Collective vs. independent write

0

100

200

300

400

500

600

700

800

900

1000

0.25 0.5 1 1.88 2.29 2.75

Se
co

nd
s

to
 w

rit
e

Data size in MBs

Independent write
Collective write

Back Into the Real World…

• Two	kinds	of	tools:
– I/O	benchmarks	for	measuring	a	system’s	I/O	capabilities
– I/O	profilers	for	characterizing	applications’	I/O	behavior

• Two	examples:
– h5perf	(in	the	HDF5	source	code	distro)
– Darshan (from	Argonne	National	Laboratory)

• Profilers	have	to	compromise	between
– A	lot	of	detail	è large	trace	files	and	overhead
– Aggregation	è loss	of	detail,	but	low	overhead

I/O Patterns

h5perf(_serial)

• Measures	performance	of	a	filesystem	for	different	
I/O	patterns	and	APIs

• Three	File	I/O	APIs	for	the	price	of	one!
– POSIX	I/O	(open/write/read/close…)
– MPI-I/O	(MPI_File_{open,write,read,close})
– HDF5	(H5Fopen/H5Dwrite/H5Dread/H5Fclose)

• An	indication	of	I/O	speed	ranges	and	HDF5	
overheads

• Expectation	management…

A Serial Run

Minimum

Average

Maximum
0

50

100

150

200

250

300

350

400

450

500

POSIX HDF5
POSIX

HDF5
POSIX

HDF5
POSIX

HDF5

Write

Write	Open-Close
Read

Read	Open-Close

M
B/
s

h5perf_serial,	3	iterations,	1	GB	dataset,	1	MB	transfer	buffer,
HDF5	dataset	contiguous	storage,	HDF5	SVN	trunk,	NCSA	BW

Minimum

Average

Maximum

A Parallel Run

Minimum
Average
Maximum

0

500

1000

1500

2000

2500

3000

3500

POSIX MPI-IO HDF5 POSIX MPI-IO HDF5 POSIX MPI-IO HDF5 POSIX MPI-IO HDF5

Write
Write	Open-Close

Read

Read	Open-Close

M
B/
s

h5perf,	3	MPI	processes,	3	iterations,	3	GB	dataset	(total),
1	GB	per	process,	1	GB	transfer	buffer,

HDF5	dataset	contiguous	storage,	HDF5	SVN	trunk,	NCSA	BW

Minimum

Average

Maximum

Darshan (ANL)

• Design	goals:
– Transparent	integration	with	user	environment
– Negligible	impact	on	application	performance

• Provides	aggregate	figures	for:
– Operation	counts	(POSIX,	MPI-IO,	HDF5,	PnetCDF)
– Datatypes	and	hint	usage
– Access	patterns:	alignments,	sequentiality,	access	size
– Cumulative	I/O	time,	intervals	of	I/O	activity

• Does	not	provide	I/O	behavior	over	time
• Excellent	starting	point,	maybe	not	your	final	stop

Darshan Sample Output

Source: NERSC

NCSA BW I/O SYSTEM
BASIC FACTS

Tools

NCSA BW I/O System 1

NCSA BW I/O System 2

NCSA BW I/O System Facts

• /scratch is	your	main	workhorse
– 22	PB	capacity,	~980	GB/s	aggregate	bandwidth

• Lustre parallel	file	system
– Servers	“=“	Object	Storage	Servers	(OSS)
– Disks	“=“	Object	Storage	Targets	(OST)
– Files	in	Lustre are	striped	across	a	configurable	number	of	
OSTs

– Default	values:	stripe	count	2,	stripe	size1MB
– /scratch has	1,440	OSTs	(160	max.	for	you)

Bottom Line: We can’t blame “the system” for poor I/O performance.

NCSA BW HDF5 Software Setup

• https://bluewaters.ncsa.illinois.edu/software-and-
packages

• HDF5	is	installed	on	BW
– cray-hdf5	xor cray-hdf5-parallel
– Up	to	version	1.8.17

• Darshan is	installed,	but	works	only	with	the	pre-
installed	I/O	libraries	(Still	a	good	start!)

• For	adventurers:
– HDF5	feature	branches
– HDF5	SVN	trunk	/	Git master

EXAMPLES

Standard Questions

• What	I/O	layers	are	involved	and	how	much	control	do	I	
have	over	them?

• Which	ones	do	I	tackle	in	which	order?
– Are	there	any	low-hanging	fruit?

• What’s	my	baseline	(for	each	layer)	and	what	are	my	
metrics?

• Which	tool(s)	will	give	me	the	information	I	need?
• When	do	I	stop?

• New	information	è New	answers	(maybe)	:	Need	to	
keep	an	open	mind!

VPIC
Examples

Reference:

Trillion	Particles,	120,000	cores,	and	350	TBs:
Lessons	Learned	from	a	Hero	I/O	Run	on	Hopper,
By	Suren	Byna (LBNL)	et	al.,	2015.

Layers

“Application I/O Structure”
• Total	control	over	all	layers
• Challenge:	large	output	files
• Metric:	write	speed	(throughput)
• Computationally	intensive	è Need	an	I/O	kernel
• H5Part	multiple	dataset	writes

• “Game	plan”:
– MPI-IO	/	Lustre tuning

• Low	hanging	fruit	(relatively)
• Pair	MPI	aggregators	with	Lustre OSTs
• Match	MPI-IO	buffer	sizes	and	Lustre stripe	size

– Worry	about	HDF5	(H5Part)

I/O Aggregation

Closing HDF5 File …

Q:	How	long	does	it	take	to	close/flush	an	HDF5	file?
A:	A	lot	longer	than	you	might	expect!

Feature	has	
not
been	released!

File Truncation (Today)

A call to H5Fflush or H5Fclose triggers a call to ftruncate (serial) or
MPI_File_set_size (parallel), which can be fairly expensive.

Userblock HDF5 Data

Base address EOA EOF

Unused

Userblock HDF5 Data

Base address EOA = EOF

Currently, only one number
is stored in the file and used
for error detection.

File Truncation (Tomorrow)

A call to H5Fflush or H5Fclose triggers both values (EOA, EOF) to be
saved in the file and no truncation takes place, IF the file was created
with the “avoid truncation” property set.

Userblock HDF5 Data

Base address EOA EOF

Unused

Userblock HDF5 Data

Base address EOA EOF

Unused

Caveat: Incompatible with older versions of the library. Requires HDF5
library version 1.10 or later.

Continue allocation
from here:

Multi-Dataset I/O - Motivation

• HDF5	accesses	elements	in	one	dataset	at	a	time
• Many	HPC	applications	access	data	in	multiple	
datasets	in	every	time	step

• Frequent	small-size	dataset	access	è Big	Trouble	
(≠Big	Data)

• Parallel	file	systems	tend	not	to	like	that.
• Idea:	Let	users	to	do	more	I/O	per	HDF5	call!
• Two	New	API	routines:

– H5Dread_multi()
– H5Dwrite_multi()

Not	a	new	idea:	PnetCDF has	
supported	that	for	some	time…

Sample Results

The	plot	shows	the	performance	
difference	between	using	a	single	
H5Dwrite()multiple	times	and	
using	H5Dwrite_multi() once	
on	30	chunked	datasets.

(On	Hopper	@	NERSC,	a	Cray	XE-6	
with	Lustre file	system)

CGNS
Examples

Reference:

Parallel	and	Large-scale	Simulation	Enhancements	to	CGNS,	By	Scot	Breitenfeld,	The	
HDF	Group,	2015.

CFD Standard

• CGNS	=	Computational	Fluid	Dynamics	(CFD)	General	
Notation	System

• An	effort	to	standardize	CFD	input	and	output	data	
including:
– Grid	(both	structured	and	unstructured),	flow	solution
– Connectivity,	boundary	conditions,	auxiliary	information.

• Two	parts:
– A	standard	format	for	recording	the	data
– Software	that	reads,	writes,	and	modifies	data	in	that	format.

• An	American	Institute	of	Aeronautics	and	Astronautics	
Recommended	Practice

CGNS Storage Evolution
• CGNS	data	was	originally	stored	in	ADF	(‘Advanced	Data	

Format’)
• ADF	lacks	parallel	I/O	or	data	compression	capabilities
• Doesn’t	have	HDF5’s	support	base	and	tools
• HDF5	superseded	ADF	as	the	official	storage	mechanism
• CGNS	introduced	parallel	I/O	APIs	w/	parallel	HDF5	in	

2013
• Poor	performance	of	the	new	parallel	APIs	in	most	

circumstances

• In	2014,	NASA	provided	funding	for	The	HDF	Group	with	
the	goal	to	improve	the	under-performing	parallel	
capabilities	of	the	CGNS	library.

CGNS Performance Problems

• Opening	an	existing	file
– CGNS	reads	the	entire	HDF5	file	structure, loading	a	lot	of	
(HDF5)	metadata

– Reads	occur	independently	on	ALL	ranks	competing	for	the	
same	metadata
è”Read	Storm”

• Closing	a	CGNS	file
– Triggers	HDF5	flush	of	a	large	amount	of	small	metadata	
entries

– Implemented	as	iterative,	independent	writes,	an	
unsuitable	workload	for	parallel	file	systems

Opening CGNS File …

BEFORE IMPROVEMENTS

AFTER IMPROVEMENTS

IMPRACTICAL

Metadata Read Storm Problem (I)

• All	metadata	“write”	operations	are	required	to	be	
collective:

if(0 == rank)
H5Dcreate(“dataset1”);

else if(1 == rank)
H5Dcreate(“dataset2”);

• Metadata read operations are not required to
be collective

O

/* All ranks have to call */
H5Dcreate(“dataset1”);
H5Dcreate(“dataset2”);

P

if(0 == rank)
H5Dopen(“dataset1”);

else if(1 == rank)
H5Dopen(“dataset2”);

/* All ranks have to call */
H5Dopen(“dataset1”);
H5Dopen(“dataset2”);

PP

Metadata Read Storm Problem (II)
• Metadata	read	operations	are	treated	by	the	library	
as	independent	read	operations.

• Consider	a	very	large	MPI	job	size	where	all	processes	
want	to	open	a	dataset	that	already	exists	in	the	file.

• All	processes
– Call	H5Dopen(“/G1/G2/D1”);
– Read	the	same	metadata	to	get	to	the	dataset	and	the	
metadata	of	the	dataset	itself

• IF	metadata	not	in	cache,	THEN	read	it	from	disk.

– Might	issue	read	requests	to	the	file	system	for	the	same	
small	metadata.

• è READ	STORM

Avoiding a Read Storm

• Hint	that	metadata	access	is	done	collectively
• A	property	on	an	access	property	list
• If	set	on	the	file	access	property	list,	then	all	
metadata	read	operations	will	be	required	to	be	
collective

• Can	be	set	on	individual	object	property	list	
• If	set,	MPI	rank	0	will	issue	the	read	for	a	metadata	
entry	to	the	file	system	and	broadcast	to	all	other	
ranks

Closing a CGNS File …

Write Metadata Collectively!

• Symptoms:	Many	users	reported	that	H5Fclose() is		
very	slow	and	doesn’t	scale	well	on	parallel	file	systems.

• Diagnosis:	HDF5	metadata	cache	issues	very	small	
accesses	(one	write	per	entry).	We	know	that	parallel	
file	systems	don’t	do	well	with	small	I/O	accesses.

• Solution:	Gather	up	all	the	entries	of	an	epoch,	create	
an	MPI	derived	datatype,	and	issue	a	single	collective	
MPI	write.

A Benchmark Problem
Computational	mesh	size:	~33	million	elements	and	~200	million	nodes

HDF5 Roadmap

• Concurrency
– Single-Writer / Multiple-

Reader (SWMR)
– Asynchronous I/O
– Internal threading

• Virtual Object Layer
• Virtual Datasets
• Query & Indexing
• Native HDF5

client/server

• Performance
• Scalable chunk indices
• Metadata aggregation

and Page buffering
• Variable-length

records
• Fault tolerance
• Parallel I/O
• I/O Autotuning

Extreme Scale Computing HDF5

Questions, Comments, Feedback?

Thank	You!

• Virtual	Object	Layer	(VOL)	integration	into	HDF5
• Caching	and	prefetching	– Data	Elevator	VOL
• Topology-aware	I/O	
• Asynchronous	I/O
• Independent	metadata	updates
• Workflow	supporting	features	– SWMR
• Querying	HDF5	data	and	metadata	
• Interoperability	with	other	file	formats	

• PnetCDF/netCDF,	ADIOS

• Maintenance	and	release	support
• ECP	engagement	w/	AD,	ST,	and	HT

• Consulting	and	performance	tuning	for	applications

ExaHDF5 – Features

95

ExaHDF5 – Development timeline

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Year 1 Year 3 Year 2

Async data I/O Design	 Prepare	
Release	

Development

Independent metadata updates Design	
Prepare	
Release	

Development

Full SWMR Design	 Prepare	
Release	Refine	

Development

Design	 Prepare	
Release	

Development
Querying HDF5 data and metadata Design	 Prepare	

Release	
Develop

Interoperability w/ ADIOS Design	 Refine	
Develop

Evaluate	
Prepare	
Release	

Develop Develop
and test

ECP Engagement Track application, ST, HT
requirements and changes

Release I/O mini-apps

Track application, ST, HT
requirements and changes

Release ECP I/O mini-apps

Track application, ST, HT
requirements and changes

Release ECP I/O mini-apps

Performance Infrastructure Concurrency Workflow Fault tolerance Productivity Legend: Integration
Public release
Dependency

Interoperability w/ netCDF Design	 Refine	
Develop Prepare	

Release	
Develop

Develop	and	test	Data	Elevator	
(DE)	write	caching	

Develop	and	test	Data	Elevator	(DE)	read	
caching	

NVRAM Caching and prefetching Refine	 Prepare	
Release	 Refine	 Prepare	

Release	

Virtual Object Layer (VOL) Refine	 Prepare	
Release	

Integrate	VOL	branch	into	HDF5	

Evaluate	and	design	topology-aware	
API	 Develop	topology-aware	API	Topology-aware parallel I/O Prepare	

Release	Refine	
Development

HDF5 maintenance and releases Support, performance
improvements

Support, performance
improvements

Support, performance
improvements

96

