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Accelerate	scien'fic	discovery	
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Machine	Learning	
Unsupervised	learning	 Supervised	learning	

Reinforcement	learning	 Op'miza'on	and	sta's'cs	
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Bias	variance	tradeoff	

•  Learning	algorithms	seek	to	reduce	bias	and	variance	in	a	different	way		
•  No	free	lunch:	no	single	algorithm	will	work	well	on	all	data	set	
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AutoMOMML:	Automa'c	Mul'-Objec've	
Modeling	with	Machine	Learning	
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Diverse	architectural	landscape	

Diverse	applica'on	landscape	

How	to	map?	

Mapping	problem	in	HPC	

14	



Performance	modeling	in	HPC	

•  Insights	on	important	knobs	that	impacts	performance	
•  Avoid	running	code	configura'on	on	the	target	machine	
•  Help	prune	large	search	spaces	in	performance	tuning	
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AutoMOMML	for	HPC	
Micro	kernels	characteris5cs	(inputs)	and	
outputs	(performance,	power,	energy)	

Applica5on	
characteris5cs		

Balaprakash	et	al.,	AutoMOMML:	Automa6c	Mul6-Objec6ve	Modeling	with	Machine	Learning,	2016	 16	



Balanced sampling 

§  Over-sampling	to	avoid	bias	in	the	training	points	
§  	Training	points	are	sampled	repeatedly	from	low-frequency	ranges	
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Input	importance	via	random	forest	

•  Random	forest’s	permuta5on	accuracy	for	input	importance	
•  Randomly	permute	the	values	of	a	parameter	to	check	the	impact		 18	



•  Recursive	feature	elimina'on		
•  RMSE	reduc'on	becomes	insignificant	ager	a	certain	number	of	inputs	

Model-based	input	selec'on	
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Hyperparameter	tuning	
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itera6ve	refinement	improves	model	performance	

Op>miza>on	

Performance	
metrics	

Promising	
configura>ons	

Unevaluated	parameter	configura'ons	

Evalua>on	



Model	selec'on	

•  t-test	establishes	different	model	combina'ons	based	on	given	output	 21	
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an order of 
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Relative importance
Moawad	et	al.,	Novel	large	scale	simula5on	process	to	support	DOT's	CAFE	modeling	system	2015,	2016		
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Restaurant	viola'on	in	Chicago		
Data Set Name  Data Set Size Number of Variables 

Business Licenses  470994 31 

 Food Inspections  97432 16  

Crime  27600 2 

Garbage Cart Complaints  27600 2 

Sanitation Complaints  27600 2 

Weather 1307 5 

 Sanitarian Information  67497 7 
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Restaurant	viola'on	in	Chicago		
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Restaurant	viola'on	in	Chicago		

Predict	viola'ons	7.8	days	in	advance	
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Thank	You	
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