,‘n
v

David Keyes, Applied Mathematics & Computational Science
Director, Extreme Computing Research Center (ECRC)

King Abdullah University of Science and Technology

david.keyes@kaust.edu.sa

Numerous!

+ architecture, applications, algorithms, programming models &
systems software, etc., form an interconnected ecosystem

+ algorithms/software are in the middle — spanning diverging
requirements in architectures (which “want” more uniformity) and
applications (which “want” more irregularity)

To Rick Stevens’ dinner talk last night on convergence

To architecture presentations:
o Intel, NVIDIA, IBM

To programming models presentations:
¢ MPI, OpenMP, Open ACC, OCCA, UPC++, Legion, kokkos, etc.

To other “Track 4 algorithms presentations:
¢ Almgren, Demmel, Dongarra, FASTMath team, CEED team

“A good player plays where the puck is, while a great

player skates to wheyzer it puck is going to be.”

A\
!

Aspiration for this talk

To paraphrase Gretzsky:

“Algorithms for where

architectures are going to be”

Outline

Architectural and applications trends

+ limitations of our current software infrastructure for
numerical simulation at exascale

Four algorithmic imperatives

+ for extreme scale, tomorrow and today

Four sets of “bad news, good news”

Four widely applicable strategies

Four sample “points of light”

+ contributions to a new algorithmic infrastructure

Architectural trends

Clock rates cease to increase while arithmetic
capability continues to increase through
concurrency (flooding of cores)

Memory storage capacity increases, but fails to
keep up with arithmetic capability per core

Transmission capability — memory BW and
network BW — increases, but fails to keep up
with arithmetic capability per core

Mean time between hardware errors shortens

= Billions of

$L€EY

of scientific software worldwide hangs in the
balance until our algorithmic infrastructure
evolves to span the architecture-applications

g4p

Architectural background
www.exascale.org/iesp
EXASCALE ROADMAP1.0

SOFTWARE PROJECT

The International Exascale
Software Roadmap

J. Dongarra, P. Beckman, et

al., International Journal of

Jack Dongarra Alok Choudhary Sanjay Kale Matthias Mueller Bob Sugar
Pete Beckman Sudip Dosanjh Richard Kenway Wolfgang Nagel Shinji Sumimoto .
Terry Moore Thom Dunning David Keyes Hiroshi Nakashima William Tang H h P f C t
Patrick Aerts Sandro Fiore Bill Kramer Michael E. Papka John Taylor lg er Orm an Ce Ompu er
Giovanni Aloisio Al Geist Jesus Labarta Dan Reed Rajeev Thakur
Jean-Claude Andre Bill Gropp Alain Lichnewsky Mitsuhisa Sato Anne Trefethen * *
David Barkai Robert Harrison Thomas Lippert Ed Seidel Mateo Valero App ll Ca tl OnS 2 5 : 3 - 6 O 2 O 1 1 .
Jean-Yves Berthou Mark Hereld Bob Lucas John Shalf Aad van der Steen 2
Taisuke Boku Michael Heroux Barney Maccabe David Skinner Jeffrey Vetter
Bertrand Braunschweig Adolfy Hoisie Satoshi Matsuoka Marc Snir Peg Williams
Franck Cappello Koh Hotta Paul Messina Thomas Sterling Robert Wisniewski
Barbara Chapman Yutaka Ishikawa Peter Michielse Rick Stevens Kathy Yelick
Xuebin Chi Fred Johnson Bernd Mohr Fred Streitz

]
SPONSORS % “NR Ie=9) “E"‘”
6‘4
e h % B INRIA
€DF

) | . £
A GeEnc S ° s FRERE i¥ L
i NVIDIA. RIKEN *

Uptake from IESP meetings

® While obtaining the next order of magnitude of performance,
we need another order of performance efficiency

o target: 50 Gigaflop/s/W, today typically ~ 5 Gigaflop/s/W

® Processor clocks may be slowed and speeded

+ may be scheduled, based on phases with different requirements,
or may be dynamic, from power capping or thermal monitoring

+ makes per-node performance rate unreliable
® Required reduction in power per flop and per byte may make
computing and moving data less reliable

¢ circuit elements will be smaller and subject to greater physical
noise per signal, with less space redundancy and/or time
redundancy for resilience in the hardware

+ more errors may need to be caught and corrected in software

Today’s power costs per operation

Operation approximate energy cost

DP floating point multiply-add 100 pJ

DP DRAM read-to-register 4800 pJ magnitude
DP word transmit-to-neighbor 7500 pJ lfﬁﬁ!fl rac::)
DP word transmit-across-system 9000 pJ "

A pico (10-12) of something done exa (10!3) times per second
is a mega (10%)-somethings per second
o 100 pJ at 1 Eflop/s is 100 MW (for the flop/s only!)
o 1 MW-year costs about $1M ($0.12/KW-hr x 8760 hr/yr)
" We “use” 1.4 KW continuously, so 100MW is 71,000 people

c/o J. Shalf (LBNL)

Why exa- is different

Dennard’s MOSFET scaling (1972) ends
before Moore’s Law (1965) ends

Table 1
Scaling Results for Circuit Performance

Device or Circuit Parameter Scaling Factor
Device dimension ., L, W 1/x
Doping concentration N, K
Voltage V 1/x
Current 1 1/«
Capacitance €4/t 1/x
Delay time/circuit VC/I
Power dissipation/circuit V/
Power density VI/A y X
Table 2 Robert Dennard, IBM
Scaling Results for Interconnection Lines (inventOr of DRAM, 1966)
Parameter Scalmg Factor Eventua"y processing is
Line resistance, B, = pL/Wt K

Normalized voltage drop IR./V limited by tra nsmission,
Line response time E,C
Line current density I /A as known for 4.5 decades

Abstract exascale node architecture

~

(Low Capacity, High Bandwidth)

4)

3D Stacked (High Capacity,
Memory Low Bandwidth)

—~c—-—~ VA (——— -
Thin Cores / Accelerators

Integrated NIC
for Off-Chip
Communication

c/o J. Ang et al. (2014), Abstract Machine Models and Proxy Architectures for Exascale Computing

Architectural resources to balance

Processing cores

+ heterogeneous (CPUs, MICs, GPUs, FPGA:s....)

Memory

«+ hierarchical (registers, caches, DRAM, flash,

stacked, ...)
+ partially reconfigurable
Intra-node network
+ nonuniform bandwidth and latency
Inter-node network

+ nonuniform bandwidth and latency

For performance
tuning:

Which resource
is limiting, as a
function of
time?

o Communication-avoiding algorithms

+ exploit extra memory to achieve theoretical
lower bound on communication volume

e Synchronization-avoiding algorithms

+ perform extra flops between global reductions
or exchanges to require fewer global operations

o High-order discretizations

+ perform more flops per degree of freedom
(DOF) to store and manipulate fewer DOFKs

Node-based “weak scaling” is routine;
thread-based “strong scaling” is the game

e An exascale configuration: 1 million 1000-way 1GHz nodes

e Expanding the number of nodes (processor-memory units)
beyond 10° would not be a serious threat to algorithms that
lend themselves to well-amortized precise load balancing

+ provided that the nodes are performance reliable

o Real challenge is usefully expanding the number of cores
sharing memory on a node to 103

+ must be done while memory and memory bandwidth per node expand
by (at best) ten-fold less (basically “strong” scaling)

+ don’t need to wait for full exascale systems to experiment in this
regime — the contest is being waged on individual shared-memory
nodes today

T
h
.
e .

=
¥

QualComm

The challenge

Centric 2400

NVIDIA
P100

']"I|l|“|c‘.

it

qapd iy

“

v LT e
Power8

e
T I LA A
-

Intel
Knights Landing

Don’t need to wait for full exascale
systems to experiment in this regime...

x16 (I/0 x16 (I/0 x4 (DMI

Integrated I/0 (1I0) [3 x PCle Gen3 links]

x86 CORE x86 CORE X86 CORE x86 CORE
- 2-wide, out-of-order by oy 2-wide, out-of-order 2-wide, out-of-order e e 2-wide, out-of-order -
z Atom, 14 nm Silvermont | _wiic [Nl _wic | Atom, 14 nm Silvermont Atom, 14 nm Silvermont | _ wre wie | Atom, 14 nm Silvermont Z
& pFE n beErs ey oy &
2 ; ; % % o e ; % ; % < % ; ; ; o s ; ; ; % |
3 5. |t s. s 5.t s. d =
] 23| | 22 - 23| | 22 H
a2 3 az I az a2
a 3 o i E] 2

-
x86 CORE x86 CORE x86 CORE x86 CORE
2-wide, out-of-order - Sy 2-wide, out-of-ord 2-wide, out-of-ord s Ty 2-wide, out-of-order
Atom, 14 nm Silvermont Witte =) Write Atom, 14 nm Sil Atom, 14 nm Silvermont Wette =) Weite Atom, 14 nm Silvermont S h t f I t I
- —y el P — Ranard -
s — == b — Hl = s chematic or Inte
3 ; } % % e o ; % % ; ; } % } e e ; } ; ; z .
g |1 S |1 2 X Phi KNL b
7 23 sz < 23 sz I 2] e 0 n I
3 1< i 1<] 3
£ 3 8 5 3 8 2
2 4 M. Farhan, KAUST
>
7S 1
tvt vt viv 1
x86 CORE X86 CORE x86 CORE x86 CORE
2-wide, out-of-order Sy Sy 2-wide, out-of-ord 2-wide, out-of-ord Sy . 2-wide, out-of-order
Atom, 14 nm Silvermont | e, MW _wie | Atom, 14nm Silvermont Atom, 14 nm Silvermont | _were . NS _wie | Atom, 14 nm Silvermont
Toyes el oty Toyes. el oibyier

< A A P A Z
] =3 5t =3 S =
@ 1 Es o 1 Es ~ [
2 Mz
a a
a a

MISC

The main contest is already being waged on individual
shared-memory nodes

Two decades of evolution
1997 2017

| THUNBE.R O

ASCI Re at Sandia Cavium ThunderXZ
1.3 TF/s, 850 KW ~ 1.1 TF/s, ~0.2 KW

3.5 orders of

Supercomputer in a node

System Peak DP Peak Power Power
Efficiency
TFlop/ S GFlop/s/Watt

ASCI Red 0.0015
ThunderX2 1.1 0.20 5.5

Cavium

Supercomputer in a node

System Peak DP Peak Power Power
Efficiency
TFlop/ S GFlop/s/Watt

ASCI Red 0.0015
ThunderX2 1.1 0.20 5.5*
Cavium
Knights Landing 3.5 0.26 14
Intel
P100 Pascal 53 0.30 18
NVIDIA
Taihu Light 125,000 15,000 8.3
CAS
Exascale System 1 (00,000 20,000 50
(~2021)

* 8 memory channels in Cavium ARM vs. 6 for Intel KNL

How are most scientific simulations
implemented at the petascale today?

o Iterative methods based on data decomposition and
message-passing
+ data structures are distributed
+ each individual processor works on a subdomain of the original

+ exchanges information with other processors that own data with
which it interacts causally, to evolve in time or to establish
equilibrium

+ computation and neighbor communication are both fully
parallelized and their ratio remains constant in weak scaling

e The programming model is BSP/SPMD/CSP

+ Bulk Synchronous Programming Three decades of
+ Single Program, Multiple Data stability in
+ Communicating Sequential Processes programming model

Bulk Synchronous

Parallelism

Leslie Valian, .R.S., N.A.S.
2010 Turing Award Winner

Bridoin
Mo dgl fmg
parallel

Uomputatio

The success of the von Neumann model of
sequential computation is attributable to the
fact that it is an cfficicnt bridge between software and hardware: high-level languages
can be efficiently compiled on to this model; yet it can be efficiently implemented in
hardware. The author argues that an analogous bridge between software and hardware
is required for parallel computation if that is to become as widely used. This article
introduces the bulk-synchronous parallel (BSP) model as a candidate for this role, and
gives results quantifying its efficiency both in implementing high-level language
features and algorithms, as well as in being implemented in hardware.

AR
Leslie G. Valiant

Comm. of the ACM, 1990

BSP parallelism w/ domain decomposition

rows assigned
to proc *“2” { Az |

Partitioning of the grid
induces block structure on
the system matrix

(Jacobian)

BSP has an impressive legacy

By the Gordon Bell Prize, performance on real applications (e.g.,
mechanics, materials, petroleum reservoirs, etc.) has improved
more than a million times in two decades. Simulation cost per

performance has improved by nearly a million times.

srebew Gigaflop/s
Performance dJ@livered to
Year applications
1988 1
1998 1,020
2008 1,350,000

corinfel Cost per
Performance delive rEd
Year Gigaflop/s
1989 $2,500,000
1999 $6,900
2009 58

Riding exponentials

e Proceeded steadily for decades from giga- (1988)
to tera- (1998) to peta- (2008) with

+ same BSP programming model

+ same assumptions about who (hardware, systems
software, applications software, etc.) is responsible for

what (resilience, performance, processor mapping,
etc.)

+ same classes of algorithms (cf. 25 yrs. of Gordon Bell
Prizes)

e Scientific computing now at a crossroads with
respect to extreme scale

Extrapolating exponentials eventually fails

o Exa- is qualitatively different and looks more
difficult

+ but we once said that about message passing

o Core numerical analysis and scientific
computing will confront exascale to maintain
relevance

+ potentially big gains in colonizing exascale for science
and engineering

+ Nnot a “distraction,” but an intellectual stimulus

+ the journey will be as fun as the destination ©

Main challenge going forward for BSP

o Almost all “good” algorithms in linear algebra,
differential equations, integral equations, signal
analysis, etc., like to globally synchronize — and
frequently!

+ Inner products, norms, pivots, fresh residuals are “addictive”
idioms
+ tends to hurt efficiency beyond 100,000 processors

+ can be fragile for smaller concurrency, as well, due to

algorithmic load imbalance, hardware performance variation,
etc.

o Concurrency is heading into the billions of cores

+ already 10 million on the most powerful system today

Applications background

www.exascale.org/bdec

BIG DATA AND
EXTREME-SCALE
COMPUTING

Big Data and Extreme
Computing: Pathways to
Convergence

J. Dongarra, P. Beckman, et
al., downloadable in draft
form at URL above

Successor to The International
Exascale Software Roadmap, by
many of the same authors and
new authors from big data

Challenge for applications:
merging software for 3'¢ and 4" paradigms

Figure 1. Data analytics and computing ecosystem compared.

1
Application Level Mahout, R, and Applications : Applications and Community Codes
|
_____ 1
1
Hive Pig Sqoop Elume : FORTRAN, C, C++, and IDEs
1
g’ i
g Map-Reduce Storm : Domain-specific Libraries
Application Level 1
] Z|
8 2|
o |8 Hbase BigTable ol B el et Numerical and Dot
Middlewareand & 3 (key-value store) X Tools Libraries (such as lggpnl%
Management %’ § 1
= 1
o} System
3) ! |Lustre (Parallel Batch Scheduler Monitoring
é HDFS (Hadoop File System) : File System) (such as SLURM) Tools
= 1
>
‘J” e 1
Virtual Machines and Cloud Services !
| (optional) :
System Software | | B 1
1
:
1
""" 1
1
l -
Ethernet Local Node Commodity X86 Infiniband + X86 Racks +
Cluster Hardware Switches Storage Racks X Ewgg?‘%ts NSédhé “§[%?§agle A c%gllejz?a%r S
1
1
Data Analytics Ecosystem Computational Science Ecosystem

c/o Reed & Dongarra, Comm. ACM, July 2015

Interactions between application archetypes
Increasingly, there is scientific opportunity in pipelining
=» Convergence is ripe

- To Simulation | To Analytics

q Simulation
3" provides —

4th Analytics
@ provides —
a

Learning
4th provides —

(b)

Interactions between application archetypes
Increasingly, there is scientific opportunity in pipelining
=» Convergence is ripe

- To Simulation | To Analytics

q Simulation
3" provides —

th Analytics Steering in high
4 provides dimensional L
(a) parameter space;

In situ processing

Learning Smart data

4th provides compression;
Replacement of

(b) models with learned
— functions

Interactions between application archetypes
Increasingly, there is scientific opportunity in pipelining
=» Convergence is ripe

- To Simulation | To Analytics

Simulation Data for

Physics-based training,
“regularization” augmenting
real-world data

3rd provides —

th Analytics Steering in high
4 provides dimensional L
(a) parameter space;

In situ processing

Learning Smart data

4th provides compression;
Replacement of

(b) models with learned
- functions

Interactions between application archetypes
Increasingly, there is scientific opportunity in pipelining
=» Convergence is ripe

- To Simulation | To Analytics

Simulation Data for
31‘d provides . Physics-based training,
“regularization” augmenting
real-world data
4th Analytics Steering in high
provides dimensional L Feature vectors
(a) parameter space; for training
In situ processing
th Learlonng cg::a;zsds?zi. Imputation of
4 provides P ’ missing data; —

(b)

Replacement of
models with learned
functions

Detection and
classification

w Four algorithmic imperatives

e Reduce synchrony (in frequency and/or span)
o Reside “high” on the memory hierarchy
+ as close as possible to the processing elements

e Increase SIMT/SIMD-style shared-memory
concurrency

e Build in resilience (“algorithm-based fault
tolerance” or ABFT) to arithmetic/memory
faults or lost/delayed messages

4

Bad news/good news {/

e Must explicitly control more of the data
motion

*

carries the highest energy and time cost in the exascale
computational environment

e More opportunities to control the vertical
data motion

*

*

horizontal data motion under control of users already

but vertical replication into caches and registers was
(until recently) mainly scheduled and laid out by
hardware and runtime systems, mostly invisibly to users

Bad news/good news {/

Use of uniform high precision in nodal bases on aense grias
may decrease, to save storage and bandwidth

¢ representation of a smooth function in a hierarchical basis or on
sparse grids requires fewer bits than storing its nodal values, for
equivalent accuracy

We may compute and communicate “deltas” between states

rather than the full state quantities

+ as when double precision was once expensive (e.g., iterative correction
in linear algebra)

+ ageneralized “combining network” node or a smart memory
controller may remember the last address and the last value, and
forward just the delta

Equidistributing errors properly to minimize resource use
will lead to innovative error analyses in numerical analysis

Q Bad news/good news {/

e Fully deterministic algorithms may be regarded as too

synchronization-vulnerable

+ rather than wait for missing data, we may predict it using various
means and continue

+ we do this with increasing success in problems without models
(“big data”)
¢ should be fruitful in problems coming from continuous models

o ‘“apply machine learning to the simulation machine”

e Arich numerical analysis of algorithms that make use of
statistically inferred “missing” quantities may emerge

+ future sensitivity to poor predictions can often be estimated

+ numerical analysts will use statistics, signal processing, ML, etc.

w Bad news/good news i/

e Fully hardware-reliable executions may be regarded as too
costly

e Algorithmic-based fault tolerance (ABFT) will be cheaper
than hardware and OS-mediated reliability

¢ developers will partition their data and their program units into
two sets

= asmall set that must be done reliably (with today’s standards for
memory checking and IEEE ECC)

= alarge set that can be done fast and unreliably, knowing the
errors can be either detected, or their effects rigorously bounded

e Many examples in direct and iterative linear algebra

e Anticipated by Von Neumann, 1956 (“Synthesis of reliable
organisms from unreliable components”)

Algorithmic philosophy

Algorithms must span a widening gulf ...

adaptive
algorithms

@A austere
architectures

ambitious g <
applications

A full employment program
for algorithm developers ©

What will exascale algorithms look like?

o For weak scaling, must szart with algorithms with
optimal asymptotic order, OV log? N)
e Some optimal hierarchical algorithms
+ Fast Fourier Transform (1960°s)
+ Multigrid (1970°s)
+ Fast Multipole (1980°s)

+ Sparse Grids (1990°s)
+ ‘H matrices (2000’s)

+ Randomized algorithms (2010’s)

“With great computational power comes great
algorithmic responsibility.” — Longfe1 Gao

Required software

Model-related Development-related Production-related
+ Geometric modelers , Configuration systems ¢ Dynamic resource
* M.esher.s + Source-to-source management
¢ DISC.I'.GUZGI'S translators ¢ Dynamic performance
+ Compilers optimization
« Simulators + Authenticators
+ Random no. generators ¢ Messaging systems ¢ L/O systems
» Subgridscale physics & Debuggers ¢ Visualization systems
+ Uncertainty « Profilers + Workflow controllers
quantlﬁ.catlon | v Frameworks
o Dynamic load balancing | High-end computers come Data mi
o Graphs and with little of this. Mostis [* ata Tinets
combinatorial algs. contributed by the user + Fault monitoring,

+ Compression community. reporting, and recovery

Midpoint: recap of algorithmic agenda

e New formulations with
+ reduced synchronization and communication

= less frequent and/or less global

+ reside high on the memory hierarchy

= greater arithmetic intensity (flops per byte moved into and out of
registers and upper cache)

+ greater SIMT/SIMD-style thread concurrency for
accelerators

+ algorithmic resilience to various types of faults
e Quantification of trades between limited resources

o Plus all of the exciting analytical agendas that exascale is
meant to exploit

+ “post-forward” problems: optimization, data assimilation,
parameter inversion, uncertainty quantification, etc.

w Four widely applicable strategies

e Employ dynamic runtime systems based on

directed acyclic task graphs (DAGsS)

+ e.g., ADLB, Argo, Charm++, HPX, kokkos, Legion,
OmpSs, Quark, STAPL, StarPU

o Exploit data sparsity of hierarchical low-
rank type

+ meet the “curse of dimensionality” with the “blessing of
low rank”

e Employ high-order discretizations

o Code to the architecture, but present an
abstract API

o Advantages

+ remove artifactual synchronizations in the form
of subroutine boundaries

+ remove artifactual orderings in the form of pre-
scheduled loops

+ €Xpose more concurrency
o Disadvantages
+ pay overhead of managing task graph

+ potentially lose some memory locality

Reducing over-ordering and synchronization
through datatlow, ex.: generalized eigensolver

Ax = ABx
Operation Explanation LAPACK routine name
@ B=LxLT" Cholesky factorization POTRF
©@ C=L"1xAxLT application of triangular factors SYGST
or HEGST
© T=QT xCxQ tridiagonal reduction SYEVD or HEEVD
Q Tx= Mx QR iteration STERF
o O
@ @
® >
© D
® ©
S @
O ©
© @
@ D
D S

Loop nests and subroutine calls, with their
over-orderings, can be replaced with DAGs

e Diagram shows a
datatlow ordering of the
steps of a 4x4 symmetric
generalized eigensolver

e Nodes are tasks, color-
coded by type, and edges
are data dependencies

e Time is vertically
downward

e Wide is good; short is
good

CRCNCNCRCRCNCNCRCRONCRCNCRCRORCNCRORORCNCRCRONG

Loops can be
overlapped
in time

Green, blue and magenta
symbols represent tasks in
separate loop bodies with
dependences from an
adaptive optics
computation

Zoo

96999@99699@@@@@@@9999@@9@@@@9

)
O E

B- c/o H. Ltaief (KAUST):&D.

DAG-based safte out-of-order execution

Tasks from 3 loops of optical
“reconstructor” pipeline are
executed together

) \LJ; |] AU N | / } \\\ |

B c/o H. Ltaief (KAUST) & D. Gratadour (OdP)

Hierarchically low-rank operators

o Advantages

+ shrink memory footprints to live higher on the
memory hierarchy

= higher means quick access
+ reduce operation counts
+ tune work to accuracy requirements
= ¢.g., preconditioner versus solver
o Disadvantages
+ pay cost of compression

+ not all operators compress well

* [Hackbusch, 1999] : off-diagonal blocks of typical
differential and integral operators have low effective rank

* By exploiting low rank, £, memory requirements and
operation counts approach optimal in matrix dimension 7:
— polynomial in £
— lin-log in n
— constants carry the day

® Such hierarchical representations navigate a compromise
— fewer blocks of larger rank (“weak admissibility”) or

— more blocks of smaller rank (“strong admissibility”)

© —{
< N
o
- -
—{
< | ~
13! ——— .
oo — N ™M
S - —
p I I
— — N M 10 © I~
- e
o ™
| N
o0 a0 O
2 T T © N3 S0
p—
o o
-l Tles 7 O Sl— —~ 0O
m 424 00 SR N0 m
s T T 0 NS0 0 <
E — D~ QO 00|t M AN —
2_ .
. X
A___“ — |00

Recursive construction of an H-matrix

]]

v |c/o W. Boukaram & G. Turkiyyah (KAUST)

“Standard (strong)” vs. “weak” admissibility

%&1- %
rf-:;; th:
T i
S ’h'-‘h
| "-’f;‘%z@ i
i i
1 II-I- Fh
-
G N i
i i
L ﬂ%]
& &
i i

strong admissibility weak admissibility

After Hackbusch, et al., 2003

Employ high-order discretizations
o Advantages

+ shrink memory footprints to live higher on the
memory hierarchy

= higher means shorter latency

+ increase arithmetic intensity
+ reduce operation counts
o Disadvantages

+ high-order operators less suited to some solvers

= e.g., algebraic multigrid, H-matrices®

* but see Gatto & Hesthaven, Dec 2016, on H for hp FEM

Performance effects of order in CFD

Helmholtz solve in spectral element code for
Incompressible Navier-Stokes

B Intel MKL - GFLOPS B Nek/mxm - GFLOPS B LIBXSMM - GFLOPS I LIBXSMM (NTS) - GFLOPS
e Intel MKL - GB/s e Nek /mxm - GB/s s LIBXSMM - GB/s e | IBXSMM (NTS) - GB/s
400 - - 120
- 100
300 1 0
g.! i)
S 200 + 60 @
™ O
? 100 [
- 20
0 - 0
10 12 14 16 18
element size _
fourth order thirty-second

e For all element sizes, LIBXSMM offer the best performance order
e for order <= 16, the difference is small because the computation are memory
bandwidth bound
e for for order <= 16, a boost is possible with the non-temporal stores (101.6 GiB/s)
e for order > 16, LIBXSMM ~ 2x is faster then Nek’'s mxm_std and up to 40% faster
than Intel MKL

c/o Hutchinson et al. (2016) ISC’16

Runtime efftects of order in CFD

Accuracy versus execution time as a function of order
Single-mode Rayleigh-Taylor instability

2-12

T T
4': 32. 1 : 1 1 1

2-14

|7 - Hl,
N
o

224 I I 1 I
2?2 23 24 2° 26 27 28 2°
Cost (core hr)

c/o Hutchinson et al. (2016) ISC’16

o Advantages

« tiling and recursive subdivision create large
numbers of small problems suitable for batched
operations on GPUs and MICs

m reduce call overheads

= polyalgorithmic approach based on block size

+ non-temporal stores, coalesced memory accesses,
double-buffering, etc. reduce sensitivity to memory

o Disadvantages
+ code is more complex

+ code is architecture-specific at the bottom

Amdahl asks: where do the cycles go?

® Dominant consumers in applications that occupy
major supercomputer centers are:

¢ Linear algebra on dense symmetric/Hermitian matrices
m Hamiltonians (Schroedinger) in chemistry/materials
m Hessians in optimization
B Schur complements in linear elasticity, Stokes & saddle points

H covariance matrices in statistics

¢ Poisson solves

m highest order operator in many PDEs in fluid and solid
mechanics, E&M, DFT, MD, etc.

m diffusion, gravitation, electrostatics, incompressibility,
equilibrium, Helmholtz, image processing — even analysis of
graphs

Mapping algorithms to drivers

PhD thesis topics in the Extreme Computing Research Center at
KAUST must address at least one of the four algorithmic drivers

—

< Reduce Increase Increase Algorithmic New
Student Algorithm/Kernel ~%ronization Intensity Concurrency RLilien‘c}‘ Capabilities
Abdelfattah BLAS2 X X
Abduljabbar FMM X X X
AlFarhan Unstruct. PDEs X X
AlHarthi BEM X X X
AlOnazi Multigrid X X X
Boukaram H-BLAS X X
Charara BLAS2/3 X X
Chavez H-Schur X X
Ibeid FMM precond. X X X
Liu Nonlinear precond. X X X
Malas Stencil eval. X X
Peng Non-neg. mat. fact. X X
Sukkari Eigen/SVD X X

Examples being developed at KAUST’s

Extreme Computing Research Center

QDWH-SVD, a 4-year-old SVD algorithm that performs more flops but
beats state-of-the-art on MICs and GPUs and distributed memory systems

KBLAS, a library that improves upon or fills holes in L2/L.3 BLAS for
GPUs and MICs, including batched and hierarchically low-rank routines

BDDC, a linear preconditioner that performs extra local flops on interfaces
for low condition number guarantee in high-contrast elliptic problems

FMM(¢), a 31-year-old O(NV) solver for potential problems, used in low
accuracy as a FEM preconditioner and scaled out on MICs and GPUs

ACR(¢), a new spin on 52-year-old cyclic reduction that recursively uses H
matrices on Schur complements to reduce O(/V?) complexity to O(V log>N)

M/ASPIN, nonlinear preconditioners that replace most of the globally
synchronized steps of Newton iteration with asynchronous local problems

NekBox, a MIC-optimized version of CFD code Nek5000 that uses
extremely high-order schemes to minimize runtime to a given accuracy

QDWH*-EVD/SVD

+ DAG-based dataflow tile algorithms for
(eigen- and) singular value decomposition

¢ Reduces synchrony)

<+ Increases SIMT-style c8nc-ur1;ency through
* recursion ¢ 5

+* Employs,Chameleon tile library and StarPU
dynantic runtime system

>l<QR—based Pynamically Weighfed Halley iteration from *

Stable and Efficient Spectral Divide and Conquer Algorithms for the Symmetric
Eigenvalue Decomposition and the SVD, ,
Y. Nakatsukasa & N. Higham,glsc (2013) -

Asynms Task-Bdsed Polar Decompositioﬁ on Massively Parallel Systems,
kkari, H. Ltaief, M. Faverge & D. Keyes, IEEE TPDS (2017)

Obtain SVD from a polar decomposition:

polar sym eigen

A=UH H=VZV*
> A=UVIV*=UZV*

QDWH iteration is a recursive divide-and-conquer
method, backward stable
Based on vendor-optimized Kkernels, i.e., Cholesky/QR
factorizations and GEMM
Complexity:

(10+2/3) n? for well-conditioned system, 43n° for ill

10000
1000 |
@
(O]
2 100 |
|_
1

QDWH-SVD

576 nodes of 64-core Intel KNL (cache/quadrant mode)

—%— > e

*—
o

e Tk b

ScalLAPACK PDGESVD, lil conditioned matrix =3€= |

10 |

ScaLAPACK QDWH + ScaLAPACK EIG DG, Ill conditioned matrix =2 1
ScaLAPACK QDWH + ELPA EIG DC, lll conditioned matrix —X— :
ScaLAPACK QDWH + ScaLAPACK EIG DC, Well conditioned matrix
ScaLAPACK PDGESVD, Well conditioned matrix *)(
ScaLAPACKIQDWH + ELPA EIG DC, Well conditioned matrlix " *

\M) : Y \S)
<> S oS & P
cS av N N "V

Matrix size

fastest dense SVD

~c/o D. Sukkari & H. Ltaief (KAUST) SukKkari et al., Best papers, Europar’16

available: https://github.com/ecrc/qdwh.git

QDWH-SVD

1152 nodes of 32-core Intel Haswell (cache/quadrant mode)

10000 f '

1000 |- e e ilm
.l e R
é 100 x AL BRI "*'" UCEE “x“ i lx" "

ScalLAPACK PDGESVD, lll conditioned matrix =€
10 ScaLAPACK QDWH + ScalLAPACK EIG DG, Il conditioned matrix 1
: ScaLAPACK QDWH + ELPA EIG DC, lll conditioned matrix —X—]
ScaLAPACK QDWH + ScaLAPACK EIG DC, Well conditioned matrix -
ScaLAPACK PDGESVD, Well conditioned matrix = %
ScaLAPACK QDWH + ELPA EIG DC, Well conditioned matrix -

Q Q N »° >°
D) Q) N o o
o Q’q;\ N4 R \q;?/

S,

Matrix size

Is being integrated into Cray’s LibSci w/A. Esposito (Cray)
Extensions underway to Zolotarev’s method w/Y. Nakatsukasa (Oxford)

c/o D. Sukkari & H. Ltaief (KAUST) SukKkari et al., Best papers, Europar’16

- available: https://github.com/ecrc/qdwh.git

QDWH-SVD, taskified

O R
i I

> It QR iteration

IO T
118 IR
il B

‘“.‘iljmﬁ“ =TT >)nd QR iteration
> 3 QR iteration

1!
UL 701 Y
IHES PEHIEDED WL
W0 L (1

III il 1

> 15t Cholesky iteration
> 2nd Cholesky iteration
> 3rd Cholesky iteration

NI
JLITOUE A
N FRB

min: 0

[
1
T i
0
LTV
IHImIH i

it > Three QR iterations

AT T
i
I

|
LTl T T 1
(B i |
A AL i
LB TR SRR [
(AT il
TR) I il 11
LEEHIE T I B
e i

> Three Cholesky iterations

1l
1 11

Sukkari et al., IEEE TDPS’17

c/o D. Sukkari, H. Ltaief (KAUST) & M. Faverge (INRIA

10000

1000

100

Time (s)

10

0.1

QDWH-SVD, taskified
on hybrid architecture

32-cores Intel Intel Haswell + 8 NVIDIA K80s

MKL-QDWH ——
Elemental-SVD+GEMM ———
Elemental-QDWH —¥—
MKL-SVD+GEMM —x—
Chameleon-QDWH ——
Chameleon-QDWH-8xK80 —5—

b | Q | | % | q/ | b | Q b(
S B ® & LSS I
SRS & B &S
& P ¥ PP PP

q/bg ¥
NN

©
A

> &
& 9
AN

> AN £ O W™
» A ©) Q; X
e & ¥ o

&5‘7/

| |
J 0 S X P
o o o AW

o>
\
Matrix Size

B >
& J
3 S

e ¢ v

™
\Qq’ N

x10

é ﬁg c/o D. Sukkari, H. Ltaief (KAUST) & M. Faverge (INRIA)

Gflop/s

4500

4000

3500

3000

2500

2000

1500

QDWH-SVD, taskified
on various architectures

NVIDIA 4xP100 —+— -
NVIDIA 8xK80 —%— //
Intel KNL —K—
Intel Haswell —<—
Intel Broadwell —H—

AN

IBM Power8 —— // />

Matrix Size

c/o D. Sukkari, H. Ltaief (KAUST) & M. Faverge (INRIA)

Tile Low-rank Cholesky

¢+ Alow-rank, but flat (not hierarchical) first step,
towards expanding capability for large dense
symmetric problems, e.g., covarianee matrices
.

‘. Reduces synchrony * e
<~ Increases S.IMT-style,.cﬁncurrency

- .Employs OpenMP tasi{iﬁcation pragmas and

HLibPro on individual tiles’

ExaGeoStat: A High Performance Unified Frameworkfor
Geostatistics on Manycor® Systems

S. Abdulah, H. Ltaief, Y. Sun, M. Gentop & D. Keyes
“ TDPS (2017, submitted)

Large dense symmetric systems arise as
covariance matrices in spatial statistics

Climate and weather applications have many
measurements located regularly or irregularly in a
region; prediction is needed at other locations

Modeled as realization of Gaussian or Matern spatial
random field, with parameters to be fit

Leads to evaluating the log-likelihood function
involving a large dense (but data sparse) covariance

0(6) = —%sz—l(e)z _ %log|2(0)\

1.0

0.8

0.6

0.4

0.2

0.0

Synthetic and practical examples

362 measured points and
38 target points irregularly
distributed in unit square

Global temperature
data on sphere

LAPACK DPOTRF

* Classical algorithm (1990s) involves BLAS L2 panel
updates and BLAS L3 trailing matrix updates

UPDATE

UPDATE

(a) First step. (b) Second step. (c) Third step.

PLASMA/CHAMELEON DPOTRF

* Tile algorithm (PLASMA, FLAME, 2010s) involves
mostly BLAS L3 operations within tiles scheduled
with a DAG

ROOOEOEEEO0OO

Tile operations
for TLR version of Cholesky

DPOTRF: The kernel performs the Cholesky factorization of a diagonal (lower
triangular) tile. It is similar to DPOTREF since the diagonal tiles are dense.

DTRSM: The operation applies an update to an off-diagonal low-rank tile of the input
matrix, resulting from factorization of the diagonal tile above it and overrides
it with the final elements of the output matrix: V{; x) = V(;) X D(;,lk). The
operation is a triangular solve.

DSYRK: The kernel applies updates to a diagonal (lower triangular) tile of the input
matrix, resulting from factorization of the low-rank tiles to the left of it:

— Dy — . T , T \T SR
D jy = .DO‘/) (Uijh) X V(i,k)) X (U(j k) X V(i,k)) . The operation is a
symmetric rank-k update.

DGEMM: The operation applies updates to an off-diagonal low-rank tile of the input
matrix, resulting from factorization of the low-rank tiles to the left of it. The
operation involves two QR factorizations, one reduced SVD (depending on the
rank and/or the accuracy parameter) and two matrix-matrix multiplications.

Data-sparse operations for Cholesky variants

—]
: Dense

[| T | t“eS

— L L

| D

L3 - = = Den
C v [v [e Q0 el [e |
-

-

(2
. (l
3 I Vie b
3 | [N
. I " |
Ve ey LS I|"" LA le.
:| .-" | X
e O I Y TN 02 G (55
j ;| - | Dy

Fixed ranks Fixed accuracy

Preconditioners Variable ranks

Performance oriented Dense/Sparse Direct Solvers

1

= | | Veu | Uy [

Even “brute force” tilings pay otft
(block low-rank without hierarchy)

42

28

37

28

42

37

28

28

30

26

26

17

174 37

42

76

38

37

42

28

29

37

31

28

25

27

42

27

173

76

42

=l

37

28

30

24

1024 175 174 77 42 28

1751024 78 174 174 42

174 78 1024 173 37 27

77 174 173 1024 77 37

37 28

76 38

42 27

173 42

77 1024 174 173 77

37 174 1024 78 175

42

37

173

77

30

25

173 173 78 1024 174 37

42 77 175 174 1024 24

77 30 25 37 24 174

174 37 30 77 38 174 1024 77 175 174

37 26 23 24

42 27 26
76 37
38 37 42
37 28 28

31 28 29

37 30

174 78

77 175

42 38

38 43

37

42

76

174

37

30

77

38

28 28 30

28 29 37

42 37 37

37 42 76

26 27 42

23 26 37

30 37 174

24 30 78

174 77 42

174 77 1024 174 37

77

42

28

37

28

175

174

42

76

38

174 1024 77

26

31

28

38

37

42

77

175

28

42

28

37

37 77 1024 175

28 37 1751024 77 174

42 173 174 77 1024 174

29 42 76 174 174 1024

26

28

30

37

28

28

42

38

37

76

42

173

174

17

25

24

31

28

29

38

43

28

38

29

42

76

Covariance Matrix of
dimension 16384 in 16 X16
blocks of 1024 X1024 each

10°
101
101
10°
10°

107

10° }
101}
10-13 i

10'15 |

10"

— (1212) |
— (3/8:58) |
— (1/4;3/4)
— (0;1)

0 260 460 660 860 10|00

Compressibility of four typical blocks, for
Frobenius accuracy of 10°

clo H. Ltaief & K. Akbudak (KAUST)

Tile low-rank Cholesky, time per backsolve

oo TLR - HEMA; dpot,f T O S
B FUlbrank - MKL- o2 S
* - Fuli rank - PLASMA : L e T :
1000 | :j - :':::i::::::::::'i:.: b e e dp ,:.'-":':—j Tt TS

100 |- o :::':%:::'::::'::%:‘:.: et llre e

Time (s)

Matrix size

On 2-socket 18-core Intel Haswell @ 2.3GHz

OpenMP pragmas for taskification and accuracy of 10-°

clo H. Ltaief & K. Akbudak (KAUST)

Distributed memory TLR Cholesky

(preliminary implementation)

| —#%— ScalAPACK - 16 nodes
—&@— HICMA - 16 nodes

6X

improvement
over
10% 1 ScaLAPACK
z
=

10"

60000 80000 100000 120000 140000 160000 180000 200000 220000
Matrix size

On 16 nodes of 2-socket 16-core Intel Haswell (@ 2.3GHz

ﬁ e‘ clo H. Ltaief & K. Akbudak (KAUST)

<>

¢

KBLAS

Subset of L2/L3 BLAS targeting GPU and Intel
MIC . =
<. GEMY, SYMV, TRSM, TRMM

Reduces communicatioh and increases concurrency
in these memory BW hound operations .

’ ‘Batched BLAS for small sizes on GPUs

s+ TRSM, TRMM, SYRK, POTRF, POTRS, POSV
TRTRI, LAUUM, POTRI, POTI '

Recursive formulation :
Employs vendor-optimized L?I BLAS underneath
> :

“ ACM TOMS (2016), CCPE (2016,2017)

Recursively defined
KBLAS operations
for symmetric systems

A1 X1 = a By RecTRSM
TRSM : AX = aB RecTRSM: { By = a By — Ay By GEMM
| A3 X, = B, RecTRSM
- - B, = a AT B RecTRMM
TRMM :B=a AT B RecTRMM: { B;=aAl By +B; GEMM
. | By=a A B, RecTRMM
By = aAAl + BB RecSYRK
SYRK : B= aAAT + BB RecSYRK: { By = aA,AT + BB, GEMM
| Bs = aAsA} +fB; RecSYRK
(A =L LT RecPOTRF
POTRF:A=LLT RecPOTRF: | ‘17~ ReclROM
A = —Ay Al + A4 RecSYRK
| As=L3 LI RecPOTRF

c/o A. Charara & H. Ltaief (KAUST)

[N

KBLAS DTRMM

1300
— 1200 AT AT ACKATTATEALE AL AVE ALS ALE AVE ALE ALH ALE AL AVh ALY ALE ALE AL ARh AVE AU ALE AY
2 1100 ' o= P
S 1000 - 5.5X
Ll 900
S 800 == Theo-Peak
8 200 cuBLAS_DGEMM
= cuBLAS (OOP)
£ 600
E oo == KBLAS (IP)
ch_) 400 =C= cuBLAS (IP)
o
300
200
100
0 ‘b'b‘lbl%'Q'%'b"b"b' ‘bb‘ > "L Q‘L'b‘lﬁl‘b'Qlfb'b"bl‘b'Q
R R SRR R AT NI ",\‘b,\é’ 2 '\° KON '\“' F 0 P 5, o 5

Matrix Dimension

c/o A. Charara & H. Ltaief (KAUST) Charara et al., Best papers, Europar’16

available: https://github.com/ecrc/kblas

1.8X
for tall
skinny
case

= = Theo-Peak *<>* cuBLAS _ DGEMM

== KBLAS (Square) == cuBLAS (Square)
0 - KBLAS (rows X 512) == cuBLAS (rows X 51 2)
» a0 \) ™ 6 O O © \)
PR ,19@43’ ,56\(1',56" SIS 6“1'6&(» A> 693’ ,\\'°‘b,@‘*’ \&'\Q P 4 Q‘l?‘ '\&‘f" ,(\'\ e Q,gb"q' ‘b"' ¥ %Q;bb

Matrix Dimension

c/o A. Charara & H. Ltaief (KAUST) Charara et al., Best papers, Europar’16

available: https://github.com/ecrc/kblas

KBLAS in cuBLAS
(currently 8.0)

(;":? DEVELOPER CUDA TOOLKIT DOCUMENTATION
nviniA ZONE

CUDA Toolkit v8.0
cuBLAS
> 1. Introduction
1> 2. Using the cuBLAS AP e Portions of the SGEMM, DGEMM, CGEMM and ZGEMM library routines were written by Vasily Volkov of the University of

California.
[>3. Using the CUBLASXT API
. ¢ Portions of the SGEMM, DGEMM and ZGEMM library routines were written by Davide Barbieri of the University of Rome
[> A. Using the cuBLAS Legacy API

C. Acknowledgements

NVIDIA would like to thank the following individuals and institutions for their contributions:

Tor Vergata.
B. CUBLAS Fortran Bindings e Portions of the DGEMM and SGEMM library routines optimized for Fermi architecture were developed by the University
C. Acknowledgements = of Tennessee. Subsequently, several other routines that are optimized for the Fermi architecture have been derived

from these initial DGEMM and SGEMM implementations.
¢ The substantial optlmlzauons of the STRSV, DTRSY, CTRSV and ZTRSV library routmes were developed by Jonathan Hogg
of The Science a achno p O CSUDSEqUETTUY; 50 oF iang of the STRSM, DTRSM,
CFRSM and RSM have been degiver=fes TRSV implementations.
e Substantial optimizations of the ibrary routines were developed by Ahmad Abdelfattah, David Keyes
and Hatem Ltaief of King Abdull? cience and Technology (KAUST).

* Substantial optimizations of the ibrary routines were developed by Ali Charara, David Keyes and
Hatem Ltaief of King Abdullah University ence and Technology (KAUST).

c/o A. Abdelfattah (ICL, KAUST'15), A. Charara & H. Ltaief (KAUST)

[

. ?' Extending KBLAS
KBLAS to batched execution
e Batched BLAS workshop:

*

e Problem:
+ L2 BLAS individually of low arithmetic intensity
+ memory latency overheads

o Redesign the legacy BLAS API

launch thousands of small BLAS kernels simultaneously
increase device occupancy

remove API/kernel launch overheads

extend the recursive formulation

o Driven by scientific data-sparse applications
+ computational statistics and astronomy

+ Schur complement in sparse direct solvers and BDDC
preconditioning

*
*
*
*

Batched operations

[
'
]
'
'
' -
' ',‘
"
1] -
'O
' -
] e”®
'9
-
- ~
* -~
-~
-~
.~
~
-~
-
-
-~
-
-
-~
-~
/

ﬂ c/o Jacob Kurzak (ICL, U Tennessee)

W KBLAS
K;L{S Example: Batched POTRF

Nested recursion
e Convert into batch of large GEMMs

Minimize data transfer

Enhance data locality

Increase arithmetic intensity

Recursive
Batch POTRF
Recursive

b Batch TRSM
b Recursive
Batch SYRK

b Recursive

Batch POTRF

c/o A. Charara & H. Ltaief (KAUST)

Batched KBLAS
performance comparisons

512 512
256 256
: 12
Single i 12
K40 64 64
=32 : N
MKL 2 x5 /- cuBLAS-DGEMM 252 -
(on =i = = 16 &
78-core &) == KBLAS-DTRSM > J /- cuBLAS-DGEMM
/ == cuBLAS-DTRSM 8 / <= KBLAS-DTRMM
4
Broadwell) / 0= MAGMA-D