
8/7/17 1

Adaptive Linear Solvers and Eigensolvers

Jack Dongarra
University of Tennessee

Oak Ridge National Laboratory
University of Manchester

Copy of slides at http://bit.ly/atpesc-2017-dongarra

July 30 – August 11, 2017

Dense Linear Algebra
• Common Operations

• A major source of large dense linear systems is problems involving the
solution of boundary integral equations.
• The price one pays for replacing three dimensions with two is that what started

as a sparse problem in O(n3) variables is replaced by a dense problem in O(n2).
• Dense systems of linear equations are found in numerous other applications,

including:
• airplane wing design;
• radar cross-section studies;
• flow around ships and other off-shore constructions;
• diffusion of solid bodies in a liquid;
• noise reduction; and
• diffusion of light through small particles.2

Ax = b; min
x

|| Ax − b ||; Ax = λx

8/7/17

Existing Math Software - Dense LA

http://www.netlib.org/utk/people/JackDongarra/la-sw.html

¨ LINPACK, EISPACK, LAPACK, ScaLAPACK
ØPLASMA, MAGMA 38/7/17

DLA Solvers

• We are interested in developing Dense Linear
Algebra Solvers

• Retool LAPACK and ScaLAPACK for multicore
and hybrid architectures

8/7/17
4

40 Years Evolving SW and Alg
Tracking Hardware Developments

Software/Algorithms follow hardware evolution in time

EISPACK (70’s)
(Translation of Algol)

Rely on
- Fortran, but row oriented

LINPACK (80’s)
(Vector operations)

Rely on
- Level-1 BLAS operations
- Column oriented

LAPACK (90’s)
(Blocking, cache friendly)

Rely on
- Level-3 BLAS operations

ScaLAPACK (00’s)
(Distributed Memory)

Rely on
- PBLAS Mess Passing

PLASMA (10’s)
New Algorithms
(many-core friendly)

Rely on
- DAG/scheduler
- block data layout
- some extra kernels

6

What do you mean by performance?
¨ What is a xflop/s?

Ø xflop/s is a rate of execution, some number of floating point operations per
second.
ØWhenever this term is used it will refer to 64 bit floating point operations and the

operations will be either addition or multiplication.
Ø Tflop/s refers to trillions (1012) of floating point operations per second and
Ø Pflop/s refers to 1015 floating point operations per second.

¨ What is the theoretical peak performance?
Ø The theoretical peak is based not on an actual performance from a benchmark

run, but on a paper computation to determine the theoretical peak rate of
execution of floating point operations for the machine.

Ø The theoretical peak performance is determined by counting the number of
floating-point additions and multiplications (in full precision) that can be
completed during a period of time, usually the cycle time of the machine.

Ø For example, an Intel Skylake processor at 2.1 GHz can complete 32 floating
point operations per cycle per core or a theoretical peak performance of 67.2
GFlop/s per core or 1.51 Tflop/s for the socket of 24 cores.

Peak Performance - Per Core

Floating point operations per cycle per core
Ê Most of the recent computers have FMA (Fused multiple add): (i.e.

x ←x + y*z in one cycle)
Ê Intel Xeon earlier models and AMD Opteron have SSE2

Ê 2 flops/cycle/core DP & 4 flops/cycle/core SP

Ê Intel Xeon Nehalem (’09) & Westmere (’10) have SSE4
Ê 4 flops/cycle/core DP & 8 flops/cycle/core SP

Ê Intel Xeon Sandy Bridge(’11) & Ivy Bridge (’12) have AVX
Ê 8 flops/cycle/core DP & 16 flops/cycle/core SP

Ê Intel Xeon Haswell (’13) & (Broadwell (’14)) AVX2
Ê 16 flops/cycle/core DP & 32 flops/cycle/core SP

Ê Xeon Phi (per core) is at 16 flops/cycle DP & 32 flops/cycle SP

Ê Intel Xeon Skylake (server) & KNL AVX 512
Ê 32 flops/cycle/core DP & 64 flops/cycle/core SP

Ê Skylake w/24 cores & Knight’s Landing w/68 cores

We
are
here

CPU Access Latencies in Clock Cycles

In 167 cycles can do 2672 DP Flops

Cycles

Cycles

Memory	transfer
• One	level	of	memory	model	on	my	laptop:

25.6	GB/sec

Cache
(6	MB)

CPU

Main	memory
(16	GB)

The	model	IS	simplified	(see	next	slide)	but	it	provides	an	upper	bound	on	
performance	as	well.	I.e.,	we	will	never	go	faster	than	what	the	model	predicts.	(
And,	of	course,	we	can	go	slower	…)

(Omitting	latency	here.)

56	GFLOP/sec/core	x	2	cores
Intel	iCore7	4850HQ

Haswell
Cycle	time	=	2.3	GHz
Turbo	Boost	=	3.5	GHz
3.5	GHz*16	flops/cycle	=	

56	Gflop/s	per	core	

8/7/17 9

FMA:	fused	multiply-add
α +	AXPY:

y x y

DOT:
y xT yα

for (j	=	0;	j	<	n;	j++)
y[i]	+=	a	*	x[i];

(without increment)

alpha =	0e+00;
for (j	=	0;	j	<	n;	j++)

alpha +=	x[i]	*	y[i];

(without increment)

n	MUL
n	ADD
2n	FLOP
n	FMA

n	MUL
n	ADD
2n	FLOP
n	FMA

Note:	It	is	reasonable	to	expect	the	one	loop	codes	shown	here	to	perform	as	well	as	
their	Level	1	BLAS	counterpart	(on	multicore	with	an	OpenMP pragma	for	example).	

The	true	gain	these	days	with	using	the	BLAS	is	(1)	Level	3	BLAS,	and	(2)	portability.

• Take	two	double	precision	vectors	x	and	y	of	size	
n=375,000.

• Data	size:	
– (375,000	double)	*	(8	Bytes	/	double)	=	3	MBytes
per	vector

(Two	vectors	fit	in	cache	(6	MBytes).	OK.)	

• Time	to	move	the	vectors	from	memory	to	cache:
– (6	MBytes)	/	(25.6	GBytes/sec)	=	0.23	ms

• Time	to	perform	computation	of	DOT:
– (2n	flops)	/	(56	Gflop/sec)	=	0.013	ms

DOT:
y xT yα

Vector	Operations	

total_time ≥ max	(time_comm ,	time_comp)
=	max	(0.23ms	,	0.01ms)	=	0.23ms

Performance	=	(2	x	375,000	flops)/.23ms	=	3.2	Gflop/s

Performance	for	DOT	≤	3.2	Gflop/s
Peak	is	56	Gflop/s

We	say	that	the	operation	is	communication	
bounded.	No	reuse	of	data.

Level	1,	2	and	3	BLAS

Level	2	BLAS		Matrix-Vector	operations

Level	1	BLAS		Matrix-Vector	operations

Level	3	BLAS		Matrix-Matrix	operations

C A C
B

α +	β

α +	AXPY:
y x y

DOT:
y xT yα

α +	GEMV:
y x y

A

GEMM:

2n	FLOPs
2n	memory references
AXPY:	2n	READ,	n	WRITE
DOT:			2n	READ

RATIO	Fl	Pt	Ops	to	Memory	Ops: 1:1

2n2 FLOPs
n2 memory references

RATIO	Fl	Pt	Ops	to	Memory	Ops: 2:1

2n3 FLOPs
3n2 memory references
3n2	READ,	n2	WRITE

RATIO	Fl	Pt	Ops	to	Memory	Ops: n:2

• Double	precision	matrix	A	and	vectors	x	and	y	of	
size	n=860.

• Data	size:	
– (8602 +	2*860	double)	*	(8	Bytes	/	double)	~	6	
MBytes

Matrix	and	two	vectors	fit	in	cache	(6	MBytes).

• Time	to	move	the	data	from	memory	to	cache:
– (6	MBytes)	/	(25.6	GBytes/sec)	=	0.23	ms

• Time	to	perform	computation	of	GEMV:
– (2n2 flops)	/	(56	Gflop/sec)	=	0.026	ms

α" +""GEMV:"
y" x" y"

A"

Matrix	- Vector	Operations	

total_time ≥ max	(time_comm ,	time_comp)
=	max	(0.23ms	,	0.026ms)	=	0.23ms

Performance	=	(2	x	8602 flops)/.23ms	=	6.4	Gflop/s

Performance	for	GEMV	≤	6.4	Gflop/s

Peak	is	56	Gflop/s

We	say	that	the	operation	is	communication	
bounded.	Very	little	reuse	of	data.

Performance for DOT ≤ 3.2 Gflop/s

• Take	two	double	precision	vectors	x	and	y	of	size	
n=500.

• Data	size:	
– (5002 double)	*	(8	Bytes	/	double)	=	2	MBytes per	
matrix

(Three	matrices	fit	in	cache	(6	MBytes).	OK.)	

• Time	to	move	the	matrices	in	cache:
– (6	MBytes)	/	(25.6	GBytes/sec)	=	0.23	ms

• Time	to	perform	computation	in	GEMM:
– (2n3	flops)	/	(56	Gflop/sec)	=	4.5	ms

C CBA
α +	βGEMM:

Matrix	Matrix	Operations
total_time ≥	max	(time_comm ,	time_comp)

=	max(0.23ms	,	4.46ms)	=	4.46ms
For	this	example,	communication	time	is	less	than	6%	of	the	computation	time.	

Performance	=	(2	x	500	3 flops)/4.5ms	=	55.5	Gflop/s
There	is	a	lots	of	data	reuse	in	a	GEMM;	2/3n	per	data	element.	Has	good	
temporal	locality.

If	we	assume	total_time ≈	time_comm +time_comp,	we	get	
Performance	for	GEMM	≈	55.5	Gflop/sec

Performance	for	DOT	≤	3.2	Gflop/s
Performance	for	GEMV	≤	6.4	Gflop/s

(Out	of	56	Gflop/sec	possible,	so	that	would	be	99%	peak	performance	efficiency.)

18

0

10

20

30

40

50

60

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Pe
rf
or
m
an

ce
	G
FL
O
P/
s

Matrix	(Vector)	Size	N	

dgemm	Level-3	BLAS
dgemv	Level-2	BLAS
daxpy	Level-1	BLAS

Level 1, 2 and 3 BLAS
1 core Intel Haswell i7-4850HQ, 2.3 GHz (Turbo Boost at 3.5 GHz);

Peak = 56 Gflop/s

1 core Intel Haswell i7-4850HQ, 2.3 GHz, Memory: DDR3L-1600MHz
6 MB shared L3 cache, and each core has a private 256 KB L2 and 64 KB L1.
The theoretical peak per core double precision is 56 Gflop/s per core.
Compiled with gcc and using Veclib

1.6 Gflop/s
3.4 Gflop/s

54 Gflop/s

Issues	

• Reuse	based	on	matrices	that	fit	into	cache.
• What	if	you	have	matrices	bigger	than	cache?

• Break	matrices	into	blocks	or	tiles	that	will	fit.

8/7/17 19

Issues	

• Reuse	based	on	matrices	that	fit	into	cache.
• What	if	you	have	matrices	bigger	than	cache?

• Break	matrices	into	blocks	or	tiles	that	will	fit.

8/7/17 20

LU Factorization in LINPACK (1970’s)

• Factor	one	column	at	a	time
– i_amax	and	_scal

• Update	each	column	of	trailing	matrix,	one	column	at	a	time
– _axpy

• Level	1	BLAS
• Bulk	synchronous

– Single	main	thread
– Parallel	work	in	BLAS
– “Fork-and-join”	model21

• Factor	panel	of	nb columns
– getf2,	unblocked	BLAS-2	code

• Level	3	BLAS	update	block-row	of	U
– trsm

• Level	3	BLAS	update	trailing	matrix
– gemm
– Aimed	at	machines	with	cache	hierarchy

• Bulk	synchronous
22

The Standard LU Factorization LAPACK
1980’s HPC of the Day: Cache Based SMP

Parallelism in LAPACK
¨ Most flops in gemm update

23

• 2/3 n3 term
• Easily parallelized using

multi-threaded BLAS
• Done in any reasonable software

• Other operations lower order
• Potentially expensive if not parallelized

Last Generations of DLA Software

MAGMA
Hybrid Algorithms
(heterogeneity friendly)

Rely on
- hybrid scheduler
- hybrid kernels

Software/Algorithms follow hardware evolution in time
LINPACK (70’s)
(Vector operations)

Rely on
- Level-1 BLAS

operations

LAPACK (80’s)
(Blocking, cache
friendly)

Rely on
- Level-3 BLAS

operations

ScaLAPACK (90’s)
(Distributed Memory)

Rely on
- PBLAS Mess Passing

PLASMA
New Algorithms
(many-core friendly)

Rely on
- a DAG/scheduler
- block data layout
- some extra kernels

8/7/17
24

ScaLAPACK
Scalable	Linear	Algebra	PACKage

• Distributed	memory
• Message	Passing

– Clusters	of	SMPs
– Supercomputers

• Dense	linear	algebra
• Modules

– PBLAS:	Parallel	BLAS
– BLACS:	Basic	Linear	Algebra	Communication	Subprograms
25

PBLAS
• Similar	to	BLAS	in	functionality	and	naming
• Built	on	BLAS	and	BLACS
• Provide	global	view	of	matrix

• LAPACK: dge___(m, n, A(ia, ja), lda, ...)
– Submatrix	offsets	implicit	in	pointer

• ScaLAPACK: pdge___(m, n, A, ia, ja, descA, ...)
– Pass	submatrix	offsets	and	matrix	descriptor

26

ScaLAPACK	structure

27

ScaLAPACK

PBLAS

LAPACK

BLAS BLACS

MPI

Global addressing

Local addressing

Platform independent

Platform specific

ScaLAPACK	routine,	solve	AX = B
• LAPACK: dgesv(n, nrhs, A, lda, ipiv, B, ldb, info)

• ScaLAPACK: pdgesv(n, nrhs, A, ia, ja, descA, ipiv, B, ib, jb, descB, info)

• input:

• output:

28

info (error code)
= 0: no error
< 0: invalid argument
> 0: numerical error

(e.g., singular)

L, U overwrite A
X overwrites B

Global matrix
point of view

implicit unit diagonal

2D	block-cyclic	layout

29

m × n matrix
p × q process grid

Global matrix view Local process point of view

2D	block-cyclic	layout

30

m × n matrix
p × q process grid

Global matrix view Local process point of view

2D	block-cyclic	layout

31

m × n matrix
p × q process grid

Global matrix view Local process point of view

2D	block-cyclic	layout

32

m × n matrix
p × q process grid

Global matrix view Local process point of view

Parallelism	in	ScaLAPACK
• Similar	to	LAPACK
• Bulk-synchronous
• Most	flops	in	gemm	update

– 2/3	n3 term
– Can	use	sequential	BLAS,
p	x	q	=	#	cores

=	#	MPI	processes,
num_threads	=	1

– Or	multi-threaded	BLAS,
p	x	q	=	#	nodes

=	#	MPI	processes,
num_threads	=	#	cores/node33

C
or

es

Time

Synchronization (in LAPACK)

•  Fork-join, bulk synchronous processing 27

�
�	��� �
�	��� �
�	��� �
�	��� ������

23

���	�������������

���	����
�������

�������
�������

���
���������������

�����
������
�����

Ø fork join
Ø bulk synchronous processing

34

• Objectives
• High utilization of each core
• Scaling to large number of cores
• Synchronization reducing algorithms

• Methodology
• Dynamic DAG scheduling
• Explicit parallelism
• Implicit communication
• Fine granularity / block data layout

• Arbitrary DAG with dynamic scheduling

35

Fork-join parallelism
Notice the synchronization
penalty in the presence of
heterogeneity.

Dataflow Based Design

DAG scheduled
parallelismC

or
es

Time

Tile matrix layout

• Tiled layout
• Each tile is contiguous (column major)
• Enables dataflow scheduling
• Cache and TLB efficient (reduces conflict misses and false sharing)
• MPI messaging efficiency (zero-copy communication)
• In-place, parallel layout translation

36

LAPACK column major (D)PLASMA tile layout

Tile algorithms: Cholesky

37

LAPACK Algorithm (right looking) Tile Algorithm

Track dependencies — Directed acyclic graph
(DAG)

38

Classical fork-join schedule
with loop synchronizations

Reordered for 3 cores,
without synchronizations

Execution trace
• LAPACK-style fork-join leave cores idle

39

panels

24 cores
Matrix is 8000 x 8000, tile size is 400 x 400.

time

Execution trace
• PLASMA squeezes out idle time

40

24 cores
Matrix is 8000 x 8000, tile size is 400 x 400.

panels time

Execution trace
• PLASMA squeezes out idle time

41

24 cores
Matrix is 8000 x 8000, tile size is 400 x 400.

time

PLASMA Factorization
Dataflow Driven

xTRSM

xGEMM

xGEMM

xGETF2

xTRSM

xTRSM

xTRSM

xGEMM
xGEMM

xGEMM

xGEMM xGEMM
xGEMM

xGEMM

xGEMM xGEMM

Numerical program generates tasks and
run time system executes tasks respecting
data dependences.

8/7/17
42

OpenMP tasking

• Added with OpenMP 3.0 (2009)
• Allows parallelization of irregular problems
• OpenMP 4.0 (2013) - Tasks can have

dependencies
• DAGs

43

Tiled Cholesky Decomposition

44

PLASMA Local Scheduling
Dynamic Scheduling: Sliding Window

• DAGs get very big, very
fast
• So windows of active

tasks are used; this
means no global critical
path

• Matrix of NBxNB tiles;
NB3 operation

• NB=100 gives 1 million
tasks

45

PLASMA Local Scheduling
Dynamic Scheduling: Sliding Window

• DAGs get very big, very
fast
• So windows of active

tasks are used; this
means no global critical
path

• Matrix of NBxNB tiles;
NB3 operation

• NB=100 gives 1 million
tasks

46

PLASMA Local Scheduling
Dynamic Scheduling: Sliding Window

• DAGs get very big, very
fast
• So windows of active

tasks are used; this
means no global critical
path

• Matrix of NBxNB tiles;
NB3 operation

• NB=100 gives 1 million
tasks

47

PLASMA Local Scheduling
Dynamic Scheduling: Sliding Window

• DAGs get very big, very
fast
• So windows of active

tasks are used; this
means no global critical
path

• Matrix of NBxNB tiles;
NB3 operation

• NB=100 gives 1 million
tasks

48

PLASMA_[scdz]potrf[_Tile][_Async]()

l Algorithm
l equivalent to LAPACK

l Numerics

l same as LAPACK

l Performance

l comparable to vendor on few cores

l much better than vendor on many cores

Algorithms
Cholesky

0 2000 4000 6000 8000 10000 12000

0

50

100

150

200

250

Cholesky Performance (double prec.)

AMD Istanbul, 2.8 GHz, 8 sockets (48 cores)

Size

G
fl
o
p
/s

PLASMA

MKL

LAPACK

8/7/17 49

PLASMA – Inverse of the Variance-Covariance Matrix

Cholesky inversion using OpenMP
tiles of size 288 x 288, (7200 x 7200)

Factor matrix A = LLT Compute inverse of factor L Computer A-1 = L-TL-1

Intel Xeon Phi, Knights Landing, 68 cores, 1.3 GHz

sync:
770 Gflop/s

Assume a t by t matrix
tiling then Cholesky
Factorization alone: 3t-2
Total: 25(7t-3)

Cholesky inversion using OpenMP
tiles of size 288 x 288, (7200 x 7200)

Factor matrix A = LLT Compute inverse of factor L Computer A-1 = L-TL-1

Intel Xeon Phi, Knights Landing, 68 cores, 1.3 GHz

sync:
770 Gflop/s

async:
1001 Gflop/s

Assume a t by t matrix
tiling then Cholesky
Factorization alone: 3t-2
Total: 25(7t-3)

Total: 18(3t+6)

PLASMA – Inverse of the Variance-Covariance Matrix

Emerging	software	solutions

52

• PLASMA
• Tile layout & algorithms
• Dynamic scheduling — OpenMP 4

• DPLASMA — PaRSEC
• Distributed
• Tile layout & algorithms
• Dynamic scheduling — parameterized task graph

• MAGMA
• Hybrid multicore + accelerator (GPU, Xeon Phi)
• Block algorithms (LAPACK style)
• Standard layout/Static scheduling

2009 2011 2014

• SLATE – DOE ECP Project
• DPLAMA Hybrid
• C++
• Update to state-pf-the-art algorithms

2017

API for Batching BLAS Operations

• We are proposing, as a community standard, an API for
Batched Basic Linear Algebra Operations

• The focus is on multiple independent BLAS operations
• Think “small” matrices (n<500) that are operated on in a single

routine.
• Goal to be more efficient and portable for

multi/manycore & accelerator systems.
• We can show 2x speedup and 3x better energy

efficiency.

53 / 57

Level 1, 2 and 3 BLAS
68 cores Intel Xeon Phi KNL, 1.3 GHz, Peak DP = 2662 Gflop/s

68 cores Intel Xeon Phi KNL, 1.3 GHz
The theoretical peak double precision is 2662 Gflop/s

Compiled with icc and using Intel MKL 2017b1 20160506

Matrix size (N), vector size (NxN)
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

G
flo

p/
s

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400
dgemm BLAS Level 3
dgemv BLAS Level 2
daxpy BLAS Level 1

60.3 Gflop/s

35.1 Gflop/s

2100 Gflop/s

35x

C = C + A*B

y = y + A*x

y = �*x + y

Convolution operation:
• For every filter Fn and every channel, the computation for every

pixel value On,k is a tensor contraction:

• Plenty of parallelism; small operations that must be batched
• With data “reshape” the computation can be transformed

into a batched GEMM (and hence, efficiently implemented;
among other approaches)

Machine Learning
Need of Batched and/or Tensor contraction routines in machine learning

Dk

e.g., Convolutional Neural Networks (CNNs) used in computer vision
Key computation is convolution of Filter Fi (feature detector) and input image D (data):

Filters F

Data D

Fn

On

n,kO

n,kO = k,iD
i
∑ n,iF

Output O

This problem can get away
with 16 bit floating point

=> Some architectures are now
implementing this

1 119 233 348 464 589 707 837 950

1

119

233

348

464

589

707

837

950

nz = 6716

Examples
Need of Batched routines for Numerical LA

[e.g., sparse direct multifrontal methods, preconditioners for sparse iterative methods, tiled algorithms in dense linear algebra, etc.;]
[collaboration with Tim Davis at al., Texas A&M University]

� LU, QR, or Cholesky
on small diagonal matrices

Sparse / Dense Matrix
System

� TRSMs, QRs, or LUs

� TRSMs, TRMMs

� Updates (Schur complement)
GEMMs, SYRKs, TRMMs

DAG-based factorization
To capture main LA patterns needed in a

numerical library for Batched LA

• Example matrix from Quantum chromodynamics
• Reordered and ready for sparse direct multifrontal solver

• Diagonal blocks can be handled in parallel through batched
LU, QR, or Cholesky factorizations

MAGMA Batched Computations CPU
1. Non-batched computation

loop over the matrices one by one and compute either:

• One call for each matrix.
• Sequentially wasting all the other cores, and attaining very poor

performance
• Or using multithread (note that for small matrices there is not

enough work for all cores so expect low efficiency as well as
threads contention can affect the performance)

for (i=0; i<batchount; i++)
dgemm(…)

MAGMA Batched Computations CPU
2. Batched computation

loop over the matrices and assign a matrix to each core working on it
sequentially and independently

• Since matrices are very small, all the n_cores matrices will fit into L2
cache thus we do not increase L2 cache misses while performing in
parallel n_cores computations reaching the best of each core

for (i=cpu_id; i<batchcount; i+=n_cpu)
batched_dgemm(…)

68 cores Intel Xeon Phi KNL, 1.3 GHz
The theoretical peak double precision is 2662 Gflop/s

Compiled with icc and using Intel MKL 2017b1 20160506

Level 1, 2 and 3 BLAS
68 cores Intel Xeon Phi KNL, 1.3 GHz, Peak DP = 2662 Gflop/s

4000 matrices of size
0 32 64 96 128 160 192 224 256 384 512

G
flo

p/
s

0

200

400

600

800

1000

1200

1400

1600
Batched dgemm BLAS 3
Standard dgemm BLAS 3

3x

C = C + A*B

Mixed Precision Methods

• Mixed precision, use the lowest
precision required to achieve a given
accuracy outcome
§ Improves runtime, reduce power

consumption, lower data movement
§ Reformulate to find correction to

solution, rather than solution; Δx rather
than x.

60
60

61

Idea Goes Something Like This…
• Exploit 32 bit floating point as much as

possible.
§ Especially for the bulk of the computation

• Correct or update the solution with selective
use of 64 bit floating point to provide a
refined results

• Intuitively:
§ Compute a 32 bit result,
§ Calculate a correction to 32 bit result using

selected higher precision and,
§ Perform the update of the 32 bit results with the

correction using high precision.

L U = lu(A) SINGLE O(n3)
x = L\(U\b) SINGLE O(n2)
r = b – Ax DOUBLE O(n2)
WHILE || r || not small enough

z = L\(U\r) SINGLE O(n2)
x = x + z DOUBLE O(n1)
r = b – Ax DOUBLE O(n2)

END

Mixed-Precision Iterative Refinement
• Iterative refinement for dense systems, Ax = b, can work this

way.

§ Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.

62

L U = lu(A) SINGLE O(n3)
x = L\(U\b) SINGLE O(n2)
r = b – Ax DOUBLE O(n2)
WHILE || r || not small enough

z = L\(U\r) SINGLE O(n2)
x = x + z DOUBLE O(n1)
r = b – Ax DOUBLE O(n2)

END

Mixed-Precision Iterative Refinement
• Iterative refinement for dense systems, Ax = b, can work this

way.

§ Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.

§ It can be shown that using this approach we can compute the solution
to 64-bit floating point precision.

• Requires extra storage, total is 1.5 times normal;
• O(n3) work is done in lower precision
• O(n2) work is done in high precision
• Problems if the matrix is ill-conditioned in sp; O(108) 63

Power-awareness in Algorithms

64

Iterative refinement to solve Ax=b getting a solution in double precision arithmetic

Matrix size
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k 28k 30k

Pe
rf

or
m

an
ce

 G
flo

p/
s

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600

LU performance on KNL 68 cores. data on MCDRAM
SGESV: Single precision LU solver

Power-awareness in Algorithms

65

Iterative refinement to solve Ax=b getting a solution in double precision arithmetic

Matrix size
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k 28k 30k

Pe
rf

or
m

an
ce

 G
flo

p/
s

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600

LU performance on KNL 68 cores. data on MCDRAM
SGESV: Single precision LU solver
DGESV: Double precision LU solver

Power-awareness in Algorithms

66

Iterative refinement to solve Ax=b getting a solution in double precision arithmetic

Matrix size
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k 28k 30k

Pe
rf

or
m

an
ce

 G
flo

p/
s

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600

LU performance on KNL 68 cores. data on MCDRAM
SGESV: Single precision LU solver
DGESV: Double precision LU solver
DSGESV: Iterative refinement LU solver

GEMM 30X faster than GEMV
GEMM 50X faster than TRSV

Ef
fe

ct
iv

e
Fl

op
s

ra
te

(S
am

e
nu

m
be

r o
f o

ps
 fo

r e
ac

h)

Power-awareness in Algorithms

67

Iterative refinement to solve Ax=b getting a solution in double precision arithmetic

Time (sec)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
ve

ra
ge

 p
ow

er
 (W

at
ts

)

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320

SGESV : Ax=b single precision

1175 joules

• Power consumption of SP,
DP, and mixed precision
algorithm to solve Ax=b
for a matrix of size 30K on
KNL.

Power-awareness in Algorithms

68

Iterative refinement to solve Ax=b getting a solution in double precision arithmetic

Time (sec)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
ve

ra
ge

 p
ow

er
 (W

at
ts

)

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320

SGESV : Ax=b single precision
DGESV : Ax=b double precision

2491 joules

1175 joules

• Power consumption of SP,
DP, and mixed precision
algorithm to solve Ax=b
for a matrix of size 30K on
KNL.

Power-awareness in Algorithms

69

Iterative refinement to solve Ax=b getting a solution in double precision arithmetic

Time (sec)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
ve

ra
ge

 p
ow

er
 (W

at
ts

)

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320

SGESV : Ax=b single precision
DSGESV: Ax=b iterative refinement to double precision
DGESV : Ax=b double precision

2491 joules

1175 joules

1340 joules

• Power consumption of SP,
DP, and mixed precision
algorithm to solve Ax=b
for a matrix of size 30K on
KNL.

• Algorithmic
advancements such as
mixed precision
techniques can also
provide a large gain in
energy and power
consumption. We can
reduce the energy by
about the half.

IEEE 754 Half Precision (16-bit) Floating Pt Standard

70 / 57

A lot of interest driven by “machine learning”

Range = 10±5

Critical Issues at Peta & Exascale for
Algorithm and Software Design

• Synchronization-reducing algorithms
§ Break Fork-Join model

• Communication-reducing algorithms
§ Use methods which have lower bound on communication

• Mixed precision methods
§ 2x speed of ops and 2x speed for data movement
§ Now we have 16 bit floating point as well

• Autotuning
§ Today’s machines are too complicated, build “smarts” into software to adapt to

the hardware

• Fault resilient algorithms
§ Implement algorithms that can recover from failures/bit flips

• Reproducibility of results
§ Today we can’t guarantee this. We understand the issues, but some of our

“colleagues” have a hard time with this.
71

Collaborators / Software / Support

u PLASMA
http://icl.cs.utk.edu/plasma/

u MAGMA
http://icl.cs.utk.edu/magma/

u Quark (RT for Shared Memory)
• http://icl.cs.utk.edu/quark/

u PaRSEC(Parallel Runtime Scheduling
and Execution Control)

• http://icl.cs.utk.edu/parsec/

72

u Collaborating partners
University of Tennessee, Knoxville
University of California, Berkeley
University of Colorado, Denver

MAGMA PLASMA

