Unstructured Mesh Technologies

Presented to

ATPESC 2017 Participants

Tzanio Kolev (LLNL) & Mark Shephard (RPI)

Q Center, St. Charles, IL (USA)
Date 08/07/2017

":;% .............

&
B 2
() ENERGY

Py \
ELCP
Office of  ATPESC Numerical Software Track

Science EXASCALE COMPUTING PROJECT

"h P‘:b“;’,‘;a'mes @) Rensselaer @ smuU

AAAAAAAAAAAAAAAAAA




Finite elements are a good foundation for large-scale
simulations on current and future architectures

= Backed by well-developed theory.
= Naturally support unstructured and curvilinear grids.

= High-order finite elements on high-order meshes
 Increased accuracy for smooth problems
 Sub-element modeling for problems with shocks

« Bridge unstructured/structured grids
Non-conforming mesh refinement

« Bridge sparse/dense linear algebra on high-order curved meshes
« FLOPs/bytes increase with the order

= Demonstrated match for compressible shock
hydrodynamics (BLAST).

= Applicable to variety of physics (DeRham complex).

H(grad) v, H (curl) VX, H (div) ANy
“nodes” “edges” “faces” “zones”

High-order High-order High-order High-order
kinematics MHD rad. diff. thermodynamics of a shock triple-point interaction

2 ATPESC 2017, July 30 — August 11, 2017




Modular Finite Element Methods (MFEM)

MFEM is an open-source C++ library for scalable FE research

and fast application prototyping D

= Triangular, quadrilateral, tetrahedral and hexahedral; ,
volume and surface meshes

= Arbitrary order curvilinear mesh elements
= Arbitrary-order H1, H(curl), H(div)- and L2 elements Linear, quadratic and cubic finite

. . . element spaces on curved meshes
= Local conforming and non-conforming refinement
= NURBS geometries and discretizations

= Bilinear/linear forms for variety of methods (Galerkin,
DG, DPG, Isogeometric, ... )

= [Integrated with: HYPRE, SUNDIALS, PETSc, SUPERLU,
STRUMPACK, PUMI (in progress), ...

= Parallel and highly performant mfem.org

= Main component of ECP’s co-design Center for Efficient
Exascale Discretizations (CEED)

% CEED
= Native “in-situ” visualization: GLVis, glvis.org “!i

J
‘ EXASCALE DISCRETIZATIONS
3 ATPESC 2017, July 30 — August 11, 2017



Example 1 — Laplace equation

= Mesh = Linearsolve

63 // 2. Read the mesh from the given mesh file. We can handle triangular, 130 | #ifndef MFEM USE_SUITESPARSE
64 /7 quadrilateral, tetrahedral, hexahedral, surface and volume meshes with 131 // 8. Define a simple symmetric Gauss-Seidel preconditioner and use it to
65 /7 the same code. 132 1/ solve the system Ax=b with PCG.
66 Mesh *mesh; 133 GSSmoother M(A);
67 ifstream imesh(mesh_file); 134 PCG(A, M, *b, x, 1, 200, le-12, 0.0);
68 if (!imesh) 135 #else
69 { // 8. If MFEM was compiled with SuiteSparse, use UMFPACK to solve the system.
70 cerr << "\nCan not open mesh file: " << mesh_file << '\n' << endl; 137 UMFPackSolver umf_solver;
71 return 2; - 138 umf_solver. Control[UHFPACK ORDERING] = UMFPACK_ORDERING_METIS;
72 } 139 umf_solver.SetOperator(A);
73 mesh = new Mesh(imesh, 1, 1); 140 umf_solver.Mult(*b, x);
74 imesh.close(); 141 | #endif
75 int dim = mesh->Dimension();
76 . . .
77 // 3. Refine the mesh to increase the resolution. In this example we do | V I t
78 1/ 'ref_levels' of uniform refinement. We choose 'ref_levels' to be the Isua Iza Ion
79 /7 largest number that gives a final mesh with no more than 50,000
80 1/ elements.
81 { - 152 // 10. Send the solution by socket to a GLVis server.
82 int ref levels = 153 if (visualization)
83 (ix}t)floor(log(SOOOO./mesh—>GetNE( ))/log(2.)/dim); 154 r
g; tome‘a;;i—:ﬂlin-ifg;mllzc;i;gf\si?{?J:s: LEh) 155 char vxshost[] = "localhost";
86 } v 156 int wvisport = 19916;
b 157 socketstream sol_sock(vishost, visport);

158 sol_sock.precision(8);

159 sol_sock << "solution\n" << *mesh << x << flush;

= Finite element space il

88 // 4. Define a finite element space on the mesh. Here we use continuous 8 00 IX| GLVis [scalar data]
89 /7 Lagrange finite elements of the specified order. If order < 1, we
90 /7 instead use an isoparametric/isogeometric space.
91 FiniteElementCollection *fec;
92 if (order > 0)
93 fec = new H1_FECollection(order, dim);
94 else if (mesh->GetNodes())
95 fec = mesh->GetNodes()->OwnFEC();
96 else
97 fec = new H1l_FECollection(order = 1, dim);
98 FiniteElementSpace *fespace = new FiniteElementSpace(mesh, fec);
99 cout << "Number of unknowns: " << fespace->GetVSize() << endl;
o . . oy
= |nitial guess, linear/bilinear forms
101 // 5. Set up the linear form b(.) which corresponds to the right-hand side of
102 /7 the FEM linear system, which in this case is (1,phi_i) where phi_i are
103 124 the basis functions in the finite element fespace.
104 LinearForm *b = new LinearForm(fespace);
105 ConstantCoefficient one(1.0);
106 b->AddDomainIntegrator(new DomainLFIntegrator(one));
107 b->Assemble();
108
109 // 6. Define the solution vector x as a finite element grid function
110 1/ corr ding to fesp . Initialize x with initial guess of zero,
111 /7 which satisfies the boundary conditions.
112 GridFunction x(fespace);
113 x = 0.0;
114
115 // 7. Set up the bilinear form a(.,.) on the finite element space
116 /7 corresponding to the Laplacian operator -Delta, by adding the Diffusion
117 /7 domain integrator and imposing homogeneous Dirichlet boundary
118 /7 conditions. The boundary conditions are implemented by marking all the
119 1/ boundary attributes from the mesh as essential (Dirichlet). After
120 124 assembly and finalizing we extract the corresponding sparse matrix A.
7 I e e B Py = works for any mesh & any H1 order
122 a->AddDomainIntegrator(new DiffusionIntegrator(one));
123 a->Assemble();
124 Array<int> ess_bdr(mesh->bdr_attributes.Max());
| S = builds without external dependencie
126 a->EliminateEssentialBC(ess_bdr, x, *b); t t t
127 a->Finalize(); u S W u X S
128 const SparseMatrix &A = a->SpMat();

4 ATPESC 2017, July 30 — August 11, 2017




Example 1 — Laplace equation

= Mesh
63 // 2. Read the mesh from the given mesh file. We can handle triangular,
64 // quadrilateral, tetrahedral, hexahedral, surface and volume meshes with
65 /7 the same code.
66 Mesh *mesh;
67 ifstream imesh(mesh_file);
68 if (!imesh)
69 {
70 cerr << "\nCan not open mesh file: " << mesh_file << '\n' << endl;
71 return 2;
72 }
73 mesh = new Mesh(imesh, 1, 1);
74 imesh.close();
75 int dim = mesh->Dimension();
76
77 // 3. Refine the mesh to increase the resolution. In this example we do
78 /7 'ref levels' of uniform refinement. We choose 'ref levels' to be the
79 /7 largest number that gives a final mesh with no more than 50,000
80 /7 elements.
81 {
82 int ref_levels =
83 (int)floor(log(50000./mesh->GetNE())/log(2.)/dim);
B84 for (int 1 = 0; 1 < ref levels; 1l++)
85 mesh->UniformRefinement();
86 }

5 ATPESC 2017, July 30 — August 11, 2017




Example 1 — Laplace equation

= Finite element space

88 // 4. Define a finite element space on the mesh. Here we use continuous
89 /7 Lagrange finite elements of the specified order. If order < 1, we
90 /7 instead use an isoparametric/isogeometric space.

91 FiniteElementCollection *fec;

92 if (order > 0)

93 fec = new Hl_FECollection(order, dim);

94 else if (mesh->GetNodes())

95 fec = mesh->GetNodes()->OwnFEC();

96 else

97 fec = new H1l FECollection(order = 1, dim);

98 FiniteElementSpace *fespace = new FiniteElementSpace(mesh, fec);

99 cout << "Number of unknowns: " << fespace->CetVSize() << endl;

6 ATPESC 2017, July 30 — August 11, 2017




Example 1 — Laplace equation

= |nitial guess, linear/bilinear forms

101
102
103
104
105
106
107
108
109
110
111
112
4 B B
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

// 5. Set up the linear form b(.) which corresponds to the right-hand side of
/7 the FEM linear system, which in this case is (1,phi_i) where phi_i are
/7 the basis functions in the finite element fespace.

LinearForm *b = new LinearForm(fespace);

ConstantCoefficient one(1.0);

b->AddDomainIntegrator(new DomainLFIntegrator(one));

b->Assemble();

// 6. Define the solution vector x as a finite element grid function

/7 corresponding to fespace. Initialize x with initial guess of zero,

/7 which satisfies the boundary conditions.

GridFunction x(fespace);

x=0.0;

// 7. Set up the bilinear form a(.,.) on the finite element space

/7 corresponding to the Laplacian operator -Delta, by adding the Diffusion
/7 domain integrator and imposing homogeneous Dirichlet boundary

/7 conditions. The boundary conditions are implemented by marking all the
/7 boundary attributes from the mesh as essential (Dirichlet). After

/7 assembly and finalizing we extract the corresponding sparse matrix A.

BilinearForm *a = new BilinearForm(fespace);
a->AddDomainIntegrator(new DiffusionIntegrator(one));
a->Assemble();

Array<int> ess_bdr(mesh->bdr_ attributes.Max()):;
ess_bdr = 1;

a->EliminateEssentialBC(ess_bdr, x, *b);
a->Finalize();

const SparseMatrix &A = a->SpMat():;

7 ATPESC 2017, July 30 — August 11, 2017




Example 1 — Laplace equation

= Linearsolve

130
131
a2
133
134
135
136
137
138
139
140
141

#ifndef MFEM USE SUITESPARSE
// 8. Define a simple symmetric Gauss-Seidel preconditioner and use it to
/7 solve the system Ax=b with PCG.
GSSmoother M(A);
PCG(A, M, *b, x, 1, 200, le-12, 0.0);

#else
// 8. If MFEM was compiled with SuiteSparse, use UMFPACK to solve the system.
UMFPackSolver umf_solver;
umf_ solver.Control[UMFPACK_ORDERING] = UMFPACK_ORDERING_ METIS;
umf_solver.SetOperator(A);
umf_solver.Mult(*b, x);

#endif

= Visualization

152
153
154
155
156
157
158
159
160

// 10. Send the solution by socket to a GLVis server.
if (visualization)

{
char vishost[] = "localhost";
int wvisport = 19916;
socketstream sol_sock(vishost, visport);
sol_sock.precision(8);
sol_sock << "solution\n" << *mesh << x << flush;
}

8 ATPESC 2017, July 30 — August 11, 2017




Example 1 — parallel Laplace equation

= Parallel mesh

101
102
103
104
105
106
107
108
109
110

// 5. Define a parallel mesh by a partitioning of the serial mesh. Refine
/7 this mesh further in parallel to increase the resolution. Once the
/7 parallel mesh is defined, the serial mesh can be deleted.

ParMesh *pmesh = new ParMesh(MPI_COMM WORLD, *mesh);

delete mesh;

int par_ref_levels = 2;
for (int 1 = 0; 1 < par_ref_levels; 1l++)
pmesh->UniformRefinement();

— —

@) o)

R ARAKRE

avaar

N
o
)
S
03
o
KT
o
%
<
q
)
%
X

s

2%
s

R
&
&
g
&
g
g
g
N
g
&
&
g
g
N
N
N

%
%

= Parallel finite element space

122

ParFiniteElementSpace *fespace = new ParFiniteElementSpace(pmesh, fec);

C )

(1) . . . B

®

P :true_dof — dof

= Parallel initial guess, linear/bilinear forms

130
138
147]

ParLinearForm *b = new ParLinearForm(fespace);
ParGridFunction x(fespace);
ParBilinearForm *a = new ParBilinearForm(fespace);

= Parallel assembly

155
156
157
158
159

A=PlaP

// 10. Define the parallel (hypre) matrix and vectors representing a(.,.),
/7 b(.) and the finite element approximation.

HypreParMatrix *A = a->ParallelAssemble();

HypreParVector *B = b->ParallelAssemble();

HBypreParVector *X = x.ParallelAverage();

B = PTy xr=PX

9 ATPESC 2017, July 30 — August 11, 2017

= Parallel linear solve with AMG

164
165
166
167
168
169
170
171
172

// 11. Define and apply a parallel PCG solver for AX=B with the BoomerAMG
/7 preconditioner from hypre.

HypreSolver *amg = new HypreBoomerAMG(*A);

HyprePCG *pcg = new HyprePCG(*A);

pcg->SetTol(le-12);

pcg->SetMaxIter(200);

pcg->SetPrintLevel(2);

pcg->SetPreconditioner(*amg);

peg->Mult (*B, *X);

= Visualization

// 14. Send the solution by socket to a GLVis server.

if (visualization)
char vishost[] = "localhost";
int wvisport = 19916;

socketstream sol_sock(vishost, visport);
sol_sock << "parallel " << num procs << " "
sol_sock.precision(8);

sol_sock << "solution\n" << *pmesh << x << flush;

<< myid << "\n";

800 [\ GLVis [scalar data]

do Y

= highly scalable with minimal changes
= build depends on hypre and METIS




Example 1 — parallel Laplace equation

101
102
103
104
105
106
107
108
109

__!

122
130 |
138
147 |

155
156
162
158
159

164
165
166
167
168
169
170
171
172

200
201
202

// 5. Define a parallel mesh by a partitioning of the serial mesh. Refine
/7 this mesh further in parallel to increase the resolution. Once the
/7 parallel mesh is defined, the serial mesh can be deleted.

ParMesh *pmesh = new ParMesh(MPI_COMM_WORLD, *mesh);

delete mesh;

{
int par_ref_ levels = 2;
for (int 1 = 0; 1 < par_ref_ levels; l++)
pmesh->UniformRefinement();
}

ParFiniteElementSpace *fespace = new ParFiniteElementSpace(pmesh, fec);
ParLinearForm *b = new ParLinearForm(fespace);

ParGridFunction x(fespace); i

ParBilinearForm *a = new ParBilinearForm(fespace);

// 10. Define the parallel (hypre) matrix and vectors representing a(.,.),
!/ b(.) and the finite element approximation.

HypreParMatrix *A = a->ParallelAssemble();

HypreParVector *B = b->ParallelAssemble();

HypreParVector *X = x.ParallelAverage();

// 11. Define and apply a parallel PCG solver for AX=B with the BoomerAMG
/7 preconditioner from hypre.

HypreSolver *amg = new HypreBoomerAMG(*A);

HyprePCG *pcg = new HyprePCG(*A);

pcg->SetTol(le-12);

pcg->SetMaxIter(200);

pcg->SetPrintLevel(2);

pcg->SetPreconditioner(*amg);

pcg->Mult (*B, *X);

sol_sock << "parallel " << num procs << " " << myid << "\n";
sol_sock.precision(8);
sol_sock << "solution\n" << *pmesh << x << flush;

10 ATPESC 2017, July 30 — August 11, 2017




MFEM example codes — demo@6:30pm

http://mfem.org/examples

8 06 MFEM: Example Codes e

+ | doxygen.mfem.googlecode.com xamples/README _files/index.htn ¢ |yReade)

E# Apple Yahoo! Google Maps YouTube Wikipedia News~ Popular v
MFEM 3.

Example Codes

This file provides a brief overview of the MFEM example codes. For detailed documentation of the MFEM sources, including the examples, build the Doxygen documentation in the doc/ directory, or browse the online version.

Clicking on any of the categories below displays examples that contain the ibed feature. All les support i high-order meshes and finite element spaces. The numerical results from the example codes can be visualized
using the GLVis visualization tool (based on MFEM). See the GLVis website, for more details.

Users are encouraged to submit any example codes that they have created and would like to share. Contact a member of the MFEM team to report bugs or post questions or comments.

Equation (PDE) Finite Elements Discretization Solver

@Al @Al @Al @Al

(OlLaplace () L, discontinuous elements (O Galerkin FEM ()Jacobi

(Elasticity () H! nodal elements (OMixed FEM (O Gauss-Seidel

() Definite Maxwell () H(curl) Nedelec elements *)Discontinuous Galerkin (DG) OPCG

(Ograd-div () H(div) Raviart-Thomas elements _)Discontinuous Petrov-Galerkin (DPG) (OMINRES

(_Darcy () H~ % interfacial elements _lsogeometric analysis (NURBS) (AIgebraic Multigrid (BoomerAMG)
(_Advection _)Adaptive mesh refinement (AMR) (Auxiliary-space Maxwell Solver (AMS)

(Auxiliary-space Divergence Solver (ADS)
(OUMFPACK (serial direct)

(Newton method (nonlinear solver)
(Explicit Runge-Kutta (ODE integration)
(Olmplicit Runge-Kutta (ODE integration)

Example 1: Laplace Problem
This example code demonstrates the use of MFEM to define a simple i ic finite element lization of the Laplace problem

—Au=1

with homogeneous Dirichlet boundary conditions. Specifically, we discretize with the FE space coming from the mesh (linear by default, quadratic for quadratic curvilinear mesh, NURBS
for NURBS mesh, etc.)

The example highlights the use of mesh refinement, finite element grid functions, as well as linear and bilinear forms corresponding to the left-hand side and right-hand side of the discrete
linear system. We also cover the explicit elimination of boundary conditions on all boundary edges, and the optional connection to the GLVis tool for visualization.

The example has a serial (ex1.cpp) and a parallel (ex1p.cpp) version.

Example 2: Linear Elasticity

This example code solves a simple linear elasticity problem ibing a multi-material cantilever beam. ifi we { the weak form of

—div(

where

o(u) = Adiv(u) I + 2 (Vu + VuT)

is the stress tensor corresponding to displacement field u, and ) and /& are the material Lame constants. The boundary conditions are yy — () on the fixed part of the
boundary with attribute 1, and a(u) n= f on the remainder with f being a constant pull down vector on boundary elements with attribute 2, and zero otherwise. The

geometry of the domain is assumed to be as follows:

boundary boundary
attribute 1 material 1 material 2 attribute 2
(fixed) (pull down)

11 ATPESC 2017, July 30 — August 11, 2017




Application to High-order ALE shock hydrodynamics

hypre: Scalable linear MFEM: Modular finite BLAST: High-order ALE shock
solvers library element methods library hydrodynamics research code

High performance
preconditioners

www.lInl.gov/casc/hypre mfem.org www.lInl.gov/casc/blast

= hypre provides scalable algebraic multigrid solvers

= MFEM provides finite element discretization abstractions
 uses hypre’s parallel data structures, provides finite element info to solvers

= BLAST solves the Euler equations using a high-order ALE framework
« combines and extends MFEM'’s objects

12 ATPESC 2017, July 30 — August 11, 2017




High-order finite elements lead to more accurate, robust
and reliable hydrodynamic simulations

Symmetry in
3D implosion

1
iy
l\lll\‘l‘\‘l

Symmetry in
Sedov blast

Robustness in
Parallel ALE for Q4 Rayleigh- Lagrangian shock-3pt
Taylor instability (256 cores) axisymm. interaction

13 ATPESC 2017, July 30 — August 11, 2017



High-order finite elements have excellent strong scalability

BLAST Strong Scaling on Vulcan
10000 2D Lagrangian Sedov Problem on 131,072 zones
=-SGH Code
| . ==Q2 FEM (Inline)
TN ~600 dofs/zone ot FEM (I
“— \\ \ -Q (Inline)
100 ~ N (O\ --Q8 FEM (Inline)
= \\\ N < ©Q16 FEM (Inline)
S N N N [ p-refinement ]
Y 10 \\ \
o D N N
o ) ©
E N N \ °
- \ ‘\ \ °
1 N N O 1 zone/core
\ . .
N S
0.1 \’
0.01
0.001 w
Number of cores

14 ATPESC 2017, July 30 — August 11, 2017




Unstructured Mesh R&D: Mesh optimization and high-
quality interpolation between meshes

We target high-order curved elements + unstructured meshes + moving meshes

High-order mesh relaxation by neo-Hookean DG advection-based interpolation (ALE
evolution (Example 10, ALE remesh) remap, Example 9, radiation transport)

15 ATPESC 2017, July 30 — August 11, 2017




Unstructured Mesh R&D: Accurate and flexible finite
element visualization

Two visualization options for high-order functions on high-order meshes

GLVis: native MFEM lightweight OpenGL Vislt: general data analysis tool, MFEM
visualization tool support since version 2.9

BLAST computation on 2"
order tet mesh

glvis.org visit.linl.gov

16 ATPESC 2017, July 30 — August 11, 2017




Unstructured Mesh R&D: Library-based AMR algorithms
that can be applied to a variety of physics (6:30pm talk)

HO ALE

HO flux-based radiation-diffusion

3lodsup.ay OH /uo13daApp Ng

dHW OH




Unstructured Mesh Methods

Unstructured mesh — a spatial domain discretization composed
of topological entities with general connectivity and shape

Advantages of unstructured mesh methods

= Fully automated procedures to go from CAD to valid mesh

= Can provide highly effective solutions
 Easily fitted to geometric features

e General mesh anisotropy to account
for anisotropic physics possible

= Given a complete geometry, with analysis
attributes defined on that model, the entire
simulation work flow can be automated

* Meshes can easily be adaptively modified

r

A
rrrrr r
BERKELEY LAB

@ Rensselaer @ smu 18




Unstructured Mesh Methods

Disadvantages of unstructured meshes
= More complex data structures than structured meshes
 Increased program complexity, particularly in parallel

= Can provide the highest accuracy on a per degree of
freedom — requires careful method and mesh control

e The quality of element shapes influences solution
accuracy — the degree to which this happens a function of
the discretization method

e Poorly shaped elements increase condition number of
global system — iterative solvers increase time to solve

e Require careful a priori, and/or good a posteriori, mesh
control to obtain good mesh configurations

Sandia =
i) N @) Rensselaer @ sMmu 1

Laboratories




Unstructured Mesh Methods

Goal of FASTMath unstructured mesh developments include:

* Provide component-based tools that take full advantage of
unstructured mesh methods and are easily used by analysis
code developers and users

= Develop those components to operate through multi-level
APls that increase interoperability and ease of integration

= Address technical gaps by developing specific unstructured
mesh tools to address needs and eliminate/minimize
disadvantages of unstructured meshes

= Work with DOE applications on the integration of these

technologies with their tools and to address new needs that
arise

Sandia =
i) e @) Rensselaer @ sMU "




Parallel Unstructured Mesh Infrastructure

Key unstructured mesh technology needed by applications

= Effective parallel mesh representation for adaptive mesh
control and geometry interaction provided by PUMI

= Base parallel functions mteggﬂ?:ﬁi part

o Partitioned mesh control and modification Proci | Proc j
e Read only copies for application needs P
e Associated data, grouping, etc.

. o 7 intra-process part
Geometric model Partition model Distributed mesh boundary

Sandia =
“ h Nawond (@) Rensselaer SMU ”

AAAAAAAAAAAAAAAAAA



Mesh Generation, Adaptation and Optimization

Mesh Generation

= Automatically mesh complex domains — should work directly
from CAD, image data, etc.

= Use tools like Gmsh, Simmetrix, etc.
Mesh Adaptation must el
= Use a posteriori information to improve mesh
= Account for curved geometry (fixed and evolving)
= Support general, and specific, anisotropic adaptatlon ‘
Mesh Shape Optimization

= Control element shapes as needed by the various ="
discretization methods for maintaining accuracy and eff|C|ency

Parallel execution of all three functions critical on large meshes

Sandia =
A\” “ h Natoral (@) Rensselaer SMU 2




General Mesh Modification for Mesh Adaptation

= Driven by an anisotropic mesh size field that can be set by any
combination of criteria

= Employ a “complete set” of mesh modification operations to alter
the mesh into one that matches the given mesh size field
= Advantages
e Supports general anisotropic meshes
e Can obtain level of accuracy desired
e Can deal with any level of geometric domain complexity

e Solution transfer can be applied incrementally - provides more
control to satlsfy constraints (like mass conservation)

09 (- 0000&0

Edge split face split Edge collapse Double split collapse to remove sliver

Sandia
A\H ’ National () v) Rensselaer SMU 23

BERKELEY LAB Laboratories




Mesh Adaptation Status

= Applied to very large scale models
— 92B elements on 3.1M processes
on % million cores

= |_ocal solution transfer supported
through callback

= Effective storage of solution
fields on meshes L\

= Supports adaptation with
boundary layer meshes

. » —
a %

RIS
RIS =]
DNV
A R\
W“‘\\Q

\
HANR

Sandia
National

Naional () Rensselaer @ sMU

Argonne &

NATIONAL LABORATORY




Mesh Adaptation Status

= Supports adaptation of
curved elements

= Adaptation based on
multiple criteria, examples

e Level sets at interfaces
e Tracking particles
e Discretization errors

e Controlling element
shape in evolving
geometry

Argonne &

NATIONAL LABORATORY

n';;::,gg'm @ Rensselaer @ smu




Attached Parallel Fields (APF)

= Attached Parallel Fields (APF) 3
= Effective storage of solution fields on meshes *

= Supports operations on the fields

e Interrogation
Differentiation
Integration
Interpolation/projection
Mesh-to-mesh transfer

e Local solution transfer
= Recent efforts

e Adaptive expansion of Fields from 2D to 3D in M3D C1

e History-dependent integration point fields

for Albany plasticity models

Bl i) % rmm @ Rensselaer @ smuU 2%




Dynamic Load Balancing

= Purpose: to rebalance load during mesh modification and
before each key step in the parallel workflow

e Equal "work load” with minimum inter-process
9500

communications . HYPERGRAPH

= FASTMATH load balancing tools s

o Zoltan/ZoltanZ2 libraries
provide multiple dynamic
partitioners with general control
of partition objects and weights

 ParMA — Partitioning using

D
o

40005

Number of Rgn

mesh adjacencies R TR AL L

e ParMA and Zoltan2 can use
each other’'s methods Part namber o

0 3.2768 6.5536 9.8304 13.1072

Sandia
r“| National
Laboratories




Zoltan/Zoltan2 Toolkits: Partitioners

Suite of partitioners supports a wide range of applications;
no single partitioner is best for all applications.

Geometric
Recursive Coordinate Bisection 2 ~
Recursive Inertial Bisection =
| Multi-dJagged Multi-section |
Space Filling Curves =

Topology-based
PHG Graph Partitioning

Interface to ParMETIS (U. Minnesota)

Interface to PT-Scotch (U. Bordeaux)

PHG Hypergraph Partitioning
Interface to PaToH (Ohio St.)

] \ Sandia
o “ i) Now @ Rensselaer @ sMu 2




ParMA Partition Improvement

Guide partitioning decisions using mesh adjacencies

B All mesh entities can be considered *
B Employ diffusive migration Fl
aces

B Well suited to improve partition after graph or i
geometric partitioning Edges
Example result for PHASTA FE-based CFD code "
m 1.6B element mesh from 128K to 1Mi i
Global RIB — 103 sec.,ParMA — 20 sec.

209% vitx imb reduced to 6%, perfect elm imb
increased to 4%, 5.5% reduction in avg vtx per part

Sandia =
i) o @ Rensselaer @ smu 2

Laboratories




Building In-Memory Parallel Workflows

A scalable workflow requires effective component coupling

* Avoid file-based information passing

— On massively parallel systems 1/O dominates power
consumption

— Parallel filesystem technologies lag behind performance and
scalability of processors and interconnects

— Unlike compute nodes, the file system resources are almost
always shared and performance can vary significantly

 Use APIs and data-streams to keep inter-component
information transfers and control in on-process memory
— When possible, don’t change horses

— Component implementation drives the selection of an in-
memory coupling approach

— Link component libraries into a single executable

Sandia =
i) N @) Rensselaer @ sMmu 0

Laboratories




Creation of Parallel Adaptive Loops

Parallel data and services are the core

= Geometric model topology for domain linkage

= Mesh topology — it must be distributed

= Simulation fields distributed over geometric model and

mesh
= Partition control _
Solutiog]jransfer constraints 5 lnon-n;am{pld
. : model construction
= Dynamlc Ioad . Mesh Generation
Solution . and/or Adaptation .
. . . 3 geometric _
balancing required interrogation
: PDE’s and
at multiple steps discretization |
methods fields ' SNBALUIE  complete
- API’S to Ilnk to mesh size Parallel Data & Services Domain
o ~ Correction
CAD Indicator Mesh Topology/Shape geometry updates
 Mesh generation mesh

and adaptation
e Error estimation

W|th /
— Postprocessing
Partition Control
“Mesh-Based | partitin Control_| oot
Analysis Dynamic Load Balancing > —

calculated fields mesh with fields

{“;i}‘;’,a"?(',m @ Rensselaer @ smu 9




Parallel Adaptive Simulation Workflows

= Automation and adaptive methods critical
to reliable simulations for both SC|ent|f|c
and industrial applications

= [n-memory examples
e MFEM - FE framework
e PHASTA — FE for NS
FUN3D - FV CFD
e Proteus — multiphase FE

Albany/Trilinos — FE Solid
mechanics

ACE3P - High order FE I AR
electromagnetics |

e M3D-C1 - FE based MHD
* Nektar++ — High order FE flow

Argonne & [l mh

NATIONAL LABORATORY

Fields in beam frame moving at speed of light



PUMI Software Pointers

Resources for PUMI:
B Overview: scorec.rpi.edu/pumi/
B Design, concepts, and applications: (TOMS journal paper)
scorec.rpi.edu/REPORTS/2014-9.pdf
B Intro and user's guide: scorec.rpi.edu/pumi/pumi_intro.pdf,
scorec.rpi.edu/pumi/PUMI.pdf
B APIs: scorec.rpi.edu/~seol/scorec/doxygen/
B Build instructions: github.com/SCOREC/core/wiki/General-Build-
Instructions
B Nightly regression: my.cdash.org/index.php?project=SCOREC
B Much more: github.com/SCOREC/core/wiki
Recent PUMI advances (its running on the latest Phi’s at Argonne and
NERSC, there is also a GPU version):

B Thesis on array-based implementation using manycore & GPUs:
scorec.rpi.edu/reports/view report.php?id=710

B See |lbanez or Smith 2015 - 2017 gagers scorec.rpi.edu/reports/
) i @) Rensselaer @ sMU ,




