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Krylov Methods for Linear Systems

Az =b xzeRV(N=10%-.10"%)
Why iterative? For three dimensional PDEs (except for special cases) direct methods require
work > CN*22

memory > CNP=24/3

Richardson (simple) iteration
" =" 4 (b — Az™)
"t = (I — A)e”
Introduce a preconditioner B
"t = 2" 4+ B(b— Az")

"t = (I — BA)e"
Damped Richardson B = I, Jacobi preconditioning B = diag™*(A)
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Accelerating Simple lteration

2" = 2" 4+ B(b— Az™)

Note that N
"t = Z ai(BA)'Bb
=0
That is
"™ € K" = span{Bb, (BA)Bb, (BA)’Bb, ...}
Why not instead define z"** by
min ||B(Az"t" —b)|]

gntlckgn
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Generalized Minimal Residual (GMRES)

Implemented by constructing an orthonormal basis for K™

Bb
{00 =% 9,62, -}
|| Bb]|

and cleverly solving the minimization in the new basis. The ¢; could be called search directions.

Operations required
@ inner products and norms (global reductions)
@ vector updates (embarrassingly parallel)
@ Az (nearest neighbor operations)

@ B (anything goes from no communication to huge amounts of communication and
synchronization)

Restarted GMRES - after n iterations throw out the ¢; and start again.
Pipelined GMRES - overlap the global reductions with the Az and B.
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Other Commonly Used Krylov Methods

Conjugate gradient (CG) method

@ for symmetric, positive-definite matrices

@ has a three-term recurrence relation so does not require restart

@ requires only two inner products and (optionally) a norm at each iteration
Bi-conjugate gradient stabilized (Bi-CG-stab) method

@ uses a short recurrence relation so does not require restart

@ requires several inner products and a norm at each iteration

@ slower convergence than GMRES
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Iterative Solution of Nonlinear Systems

F(z)=b zecRY(N=10°---10")
Nonlinear Richardson (simple) iteration
2" =" 4 A(b— F(z™))

At best
n+1 n
lle" M| < Clle™|].

Nonlinear CG - mimic CG to force each new search direction to be orthogonal to the previous
directions.
Anderson mixing (nonlinear GMRES) - minimize

(@) — b
by using "™ as a linear combination of previous solutions and solving a linear least squares
problem.
At best

le" ] < Clle™||*=".
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Newton’s Method

"M =g — AT (" F(z™)
At best
lle" M| < O™

Operations required

@ inner products and norms (global reductions)

@ vector updates (embarrassingly parallel)

@ compute F() and J() (nearest neighbor operations)

@ approximate linear solves (for Newton’s method)
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Takeaways for lterative Solvers for PDEs

@ Krylov methods accelerate the convergence of simple iterative schemes
@ Most commonly used Krylov methods: GMRES, CG, Bi-CG-stab

@ Nonlinear solvers range from simple iteration (weak) to Newton’s method (strong)

@ Components of linear and nonlinear solvers are similar
» Embarrassingly parallel vector operations

» Global reduction based inner products and norms
> Nearest neighbor matrix-vector products and function evaluation
» Nearest neighbor Jacobian evaluations

» From embarrassingly parallel (weak) to strongly coupled (strong) preconditioners

@ For extreme scale (millions of cores) global reductions are best avoided or mitigated with
pipelining in iterative solvers
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High-performance iterative solvers available via

0 PETSc

Complementary capabilities that
[ SU N D IALS meet the needs of different HPC apps
o Trilinos

The remaining slides focus on PETSc.



PETSc/TAO:

Portable, Extensible Toolkit for Scientific
Computation / Toolkit for Advanced Optimization

Scalable algebraic solvers for PDEs. Encapsulate
parallelism in high-level objects. Active & supported

Optimization

Time Integrators

Nonlinear Algebraic Solvers

Krylov Subspace Solvers

Preconditioners
Domain-
Specific
Interfaces
Vectors Index Sets Matrices

Computation &
Communication Kernels

Easy customization and
composability of solvers
at runtime

— Enables optimality via flexible

combinations of physics,
algorithmics, architectures

— Try new algorithms by
composing new/existing
algorithms (multilevel, domain
decomposition, splitting, etc.)

Portability & performance

— Largest DOE machines, also
clusters, laptops

— Thousands of users worldwide

user community. Full API from Fortran, C/C++, P_ython.

PETSc provides the backbone of
diverse scientific applications.
clockwise from upper left: hydrology,
cardiology, fusion, multiphase steel,
relativistic matter, ice sheet modeling
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PETSc: Platform for experimentation

o No optimality without interplay among physics,

O

algorithmics, and architectures
Need algebraic solvers to be:

o Composable: Separately developed solvers may be easily combined, by
non-experts, to form a more powerful solver.

o Hierarchical: Outer solvers may iterate over all variables for a global

problem, while inner solvers handle smaller subsets of physics, smaller
physical subdomains, or coarser meshes.

o Nested: Outer solvers call nested inner solvers.
o Extensible: Users can easily customize/extend.

Many solver configurations can be set at runtime to avoid needing to
recompile.



PETSc/TAO capabilities

Functionality

More Details (Algorithms, Data Structures, etc.)

Optimization
Time Integrators

Nonlinear Algebraic Solvers

PDE Constrained Adjoint Based Derivative Free Others
Strong Stability Preserving Others

Rosenbrock-W

Pseudo-transient Runge-Kutta
General Linear IMEX

Line Search Newton Quasi-Newton (BFGS) Nonlinear Gauss Seidel  Nonlinear CG
Trust Region Newton Nonlinear Multigrid (FAS) Successive Substitutions Active Set VI

Pipeline methods GMRES Chebyshev BiCG-Stabilized CG
Krylov SUbspace Solvers Hierarchical Krylov LSQR SYMMLQ TFQMR Others
diti Blocks (by field) Additive Schwarz ILU/ICcC Schur Complement
Preconditioners Algebraic Multigrid Geometric Multigrid App-specific Others
Domain- Networks Infrastructure networks, e.g., electrical, gas, water
S ifi S!uadtree / Octree Structured mesh refinement
RESIIC Unstructured Mesh Complex domains with finite element and finite volume discretizations
Interfaces Structured Mesh Simple domains and discretizations, e.g., finite difference methods
q Compressed Sparse Row (Al)) Block AlJ Matrix Blocks (MatNest)
Vectors Index Sets Matrices Symmetric Block Al Dense GPU and Phread Matrices

Computation &
Communication Kernels

MPI, OpenMP, MPI-10, CUDA, Pthreads, BLAS, LAPACK, etc.




Multiphase steel modeling

Computational scale bridging: coupled

microscopic-macroscopic steel simulation

o Uses nonlinear and linear FETI-DP domain decomposition methods (in PETSc)
and algebraic multigrid (in hypre)

o Demonstrates excellent performance on the entire Blue Gene/Q the Argonne
Leadership Computing Facility (Mira: 1,572K MPI processes).

o References:
o A.Klawonn, M. Lanser, O. Rheinbach, Toward Extremely
Scalable Nonlinear Domain Decomposition Methods for
Elliptic Partial Differential Equations, SIAM J Sci Comput
37(6), C667-C696, 2015,
https://doi.org/10.1137/140997907

o Presentation:
http://www.mcs.anl.gov/petsc/meetings/2015/
conference/Rheinbach_Klawonn.pdf
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