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Outline of Tutorial

§ Why direct solvers?
§ Sparse matrix distributed data structure
§ Algorithms
§ Software, user interface

§ Examples, Fortran 90 interface
§ Hands-on exercises
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Strategies of sparse linear solvers

§ Iterative methods: (e.g., Krylov, multigrid, …)
§ A is not changed (read-only)
§ Key kernel: sparse matrix-vector multiply

• Easier to optimize and parallelize
§ Low algorithmic complexity, but may not converge

§ Direct methods:
§ A is modified (factorized) :  A = L*U

• Harder to optimize and parallelize
§ Numerically robust, but higher algorithmic complexity

§ Often use direct method to precondition iterative 
method
§ Solve an easy system: M-1Ax = M-1b
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• SuperLU:  conventional direct solver for general unsymmetric linear 
systems.
X.S. Li, J. Demmel, J. Gilbert, L. Grigori, P. Sao, M. Shao, I.  Yamazaki 
– O(N2) flops, O(N4/3) memory for typical 3D PDEs.
– C, hybrid MPI+ OpenMP + CUDA; Provide Fortran interface.
– Real, complex.
– Componentwise error analysis and error bounds (guaranteed solution 

accuracy), condition number estimation.
– http://crd-legacy.lbl.gov/~xiaoye/SuperLU/

• STRUMPACK: “inexact” direct solver, preconditioner. 
P. Ghysels, C. Gorman, F.-H. Rouet, X.S. Li
– O(N4/3 logN) flops, O(N) memory for 3D elliptic PDEs.
– C++, hybrid MPI + OpenMP; Provide Fortran interface.
– Real, complex.
– http://portal.nersc.gov/project/sparse/strumpack/
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• Download site: 
– Tarball: http://crd.lbl.gov/~xiaoye/SuperLU
– Github: https://github.com/xiaoyeli/superlu_dist
– Users’ Guide,  HTML code documentation, papers.

• Follow README at top level directory
Two ways of building:
1. CMake build system.
2. Edit make.inc (compilers, optimizations, libraries, ...)

• Dependency: BLAS, ParMetis or PT-Scotch (parallel ND ordering)
– Link with a fast BLAS library

• The one under CBLAS/ is functional, but not optimized
• Vendor, OpenBLAS, ATLAS, … 

SuperLU Installation
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Use multicore, GPU

• Instructions in top-level README.
• To use OpenMP parallelism:

Export OMP_NUM_THREADS=<##>

• To enable Nvidia GPU access, need to take the following 2 step:
1. set the following Linux environment variable:

export ACC=GPU
2. Add the CUDA library location in make.inc: (see sample make.inc)

ifeq "${ACC}" "GPU”
CUDA_FLAGS = -DGPU_ACC
INCS += -I<CUDA directory>/include
LIBS += -L<CUDA directory>/lib64 -lcublas –lcudart

endif
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Direct solvers can support wide range of applications

• fluid dynamics, structural mechanics, chemical process 
simulation, circuit simulation, electromagnetic fields, magneto-
hydrodynamics, seismic-imaging, economic modeling,  
optimization, data analysis, statistics, . . .

• Symmetric, nonsymmetric, indefinite, ill-conditioned … 
• Example: A of dimension 106,   10~100 nonzeros per row
• Matlab:  > spy(A)

Boeing/msc00726 (structural eng.) Mallya/lhr01 (chemical eng.)
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Sparse data structure: Compressed Row Storage (CRS)

§ Store nonzeros row by row contiguously
§ Example: N = 7,  NNZ = 19
§ 3 arrays:

§ Storage: NNZ reals,  NNZ+N+1 integers
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nzval    1  a   2  b    c  d  3   e  4  f   5  g   h  i  6  j   k  l  7

colind    1  4    2  5   1  2  3   2  4 5   5  7   4  5 6 7  3  5  7

rowptr   1  3  5  8  11  13  17  20

1            3             5                 8                11         13                 17              20

Many other data structures:  “Templates for the Solution of Linear Systems: 
Building Blocks for Iterative  Methods”,  R. Barrett et al.
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Distributed input interface

§ Matrices involved:
§ A, B (turned into X) – input, users manipulate them
§ L, U – output, users do not need to see them

§ A (sparse) and B (dense) are distributed by block rows

Local A stored in
Compressed Row Format

A B
x     x      x     x

x     x      x

x      x           x

x      x           x

P0

P1

P2
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Distributed input interface

§ Each process has a structure to store local part of A 
Distributed Compressed Row Storage

typedef struct {
int_t nnz_loc;  // number of nonzeros in the local submatrix
int_t m_loc;     // number of rows local to this processor
int_t fst_row;   // global index of the first row
void   *nzval;     // pointer to array of nonzero values, packed by row
int_t *colind;    // pointer to array of column indices of the nonzeros
int_t *rowptr;   // pointer to array of beginning of rows in nzval[]and colind[]

}  NRformat_loc;
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Distributed Compressed Row Storage

§ Processor P0 data structure:
§ nnz_loc = 5
§ m_loc = 2
§ fst_row = 0    // 0-based indexing 
§ nzval = { s,  u,  u,  l,  u }
§ colind = { 0,  2,  4,  0,  1 }
§ rowptr = { 0, 3, 5 }

§ Processor P1 data structure:
§ nnz_loc = 7
§ m_loc = 3
§ fst_row = 2     // 0-based indexing
§ nzval = { l,  p,  e,  u,  l,  l,  r }
§ colind = { 1, 2,  3,  4,  0, 1, 4 }
§ rowptr = { 0, 2, 4, 7 }

A is distributed on 2 processors: u
s u u
l

p
e

l l r

P0

P1
l

u
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§ 2D block cyclic layout – input by user
§ Process grid should be as square as possible. Or,  set the row 

dimension (nprow) slightly smaller than the column dimension 
(npcol). 
§ For example: 2x3, 2x4, 4x4, 4x8, etc.

Internal : distributed L & U factored matrices
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Sparse LU factorization

Two algorithm variants
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Algorithm phases

1. Reorder equations to minimize fill, maximize parallelism  (~10% time)
• Sparsity structure of L & U depends on A, which can be changed by row/column 

permutations (vertex re-labeling of the underlying graph)
• Ordering (combinatorial algorithms; “NP-complete” to find optimum [Yannakis ’83]; 

use heuristics)

2. Predict the fill-in positions in L & U  (~10% time)
• Symbolic factorization (combinatorial algorithms)

3. Design efficient data structure for storage and quick retrieval of the 
nonzeros
• Compressed storage schemes

4. Perform factorization and triangular solutions  (~80% time)
• Numerical algorithms (F.P. operations only on nonzeros)
• Usually dominate the total runtime

For sparse Cholesky and QR, the steps can be separate. For sparse LU with 
pivoting, steps 2 and 4 my be interleaved.
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User-controllable options

For stability and efficiency, need to factorize a transformed matrix:

Pc	(	Pr (Dr	A	Dc	)	)	PcT

“Options” fields with C enum constants:

• Equil: {NO, YES}

• RowPerm: {NOROWPERM, LargeDiag, MY_PERMR}

• ColPerm:   {NATURAL, MMD_ATA, MMD_AT_PLUS_A, COLAMD,                     
METIS_AT_PLUS_A, PARMETIS, ZOLTAN, MY_PERMC}

Call routine set_default_options_dist(&options) to set default values.
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Tips for Debugging Performance

§ Check sparsity ordering
§ Diagonal pivoting is preferable

§ E.g., matrix is diagonally dominant, . . .

§ Need good BLAS library (vendor, OpenBLAS, ATLAS)
§ May need adjust block size for each architecture

( Parameters modifiable in routine sp_ienv() )
• Larger blocks better for uniprocessor
• Smaller blocks better for parallellism and load balance

§ New xSDK4ECP project: automatic tuning for block size.
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SuperLU_DIST performance on Intel KNL

• Single node improvement
– Aggregate large GEMM
– OpenMP task parallel
– Vectorize scatter
– Cacheline- & Page-aligned malloc

• Strong scaling to 32 nodes

• Current work: 3D algorithm 
to reduce communication, 
increase parallelismnlpttk80, n = 1.1M, nnz = 28M

Ga19As19H42,  n = 1.3M, nnz = 8.8M
RM07R,              n = 0.3M, nnz = 37.5M
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Examples in EXAMPLE/

See README
§ pddrive.c: Solve one linear system.
§ pddrive1.c: Solve the systems with same A but different right-hand 

side at different times.
§ Reuse the factored form of A.

§ pddrive2.c: Solve the systems with the same pattern as A.
§ Reuse the sparsity ordering.

§ pddrive3.c: Solve the systems with the same sparsity pattern and 
similar values.
§ Reuse the sparsity ordering and symbolic factorization.

§ pddrive4.c: Divide the processes into two subgroups (two grids) 
such that each subgroup solves a linear system independently 
from the other.

0 1
2 3

4 5
6 7

8 9
1011

Block Jacobi preconditioner
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STRUMPACK “inexact” direct solver
• Baseline is a sparse multifrontal direct solver.

• In addition to structural sparsity, further apply data-sparsity 
with low-rank compression:

• O(N logN) flops, O(N) memory for 3D elliptic PDEs.

• Hierarchical matrix algebra generalizes Fast Multipole

• Diagonal block (“near field”) exact; off-diagonal block 
(“far field”) approximated via low-rank compression.

• Hierarchically semi-separable (HSS), HODLR, etc.

• Nested bases + randomized sampling to achieve 
linear scaling.

• Applications: PDEs, BEM methods, integral equations, 
machine learning, and structured matrices such as Toeplitz, 
Cauchy matrices.
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STRUMPACK Installation
• Download site: 

– Tarball: http://portal.nersc.gov/project/sparse/strumpack/
– Github: https://github.com/pghysels/STRUMPACK
– Users’ Guide, code documentation, papers

• Dependency:  BLAS, ParMetis or PT-Scotch, SCALAPACK

• CMake example:

> export METISDIR=/path/to/metis
> export PARMETISDIR=/path/to/parmetis
> export SCOTCHDIR=/path/to/scotch
> cmake ../strumpack-sparse -DCMAKE_BUILD_TYPE=Release \

-DCMAKE_INSTALL_PREFIX=/path/to/install \
-DCMAKE_CXX_COMPILER=<C++ (MPI) compiler> \
-DCMAKE_C_COMPILER=<C (MPI) compiler> \
-DCMAKE_Fortran_COMPILER=<Fortran77 (MPI) compiler> \
-DSCALAPACK_LIBRARIES="/path/to/scalapack/libscalapack.a;/path/to/blacs/libblacs.a" \
-DMETIS_INCLUDES=/path/to/metis/incluce \
-DMETIS_LIBRARIES=/path/to/metis/libmetis.a \
-DPARMETIS_INCLUDES=/path/to/parmetis/include \
-DPARMETIS_LIBRARIES=/path/to/parmetis/libparmetis.a \
-DSCOTCH_INCLUDES=/path/to/scotch/include \
-DSCOTCH_LIBRARIES="/path/to/ptscotch/libscotch.a;...libscotcherr.a;...libptscotch.a;...libptscotcherr.a”

> make
> make examples  #optional
> make install
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Use through PETSc
./configure \

--with-shared-libraries=0 \
--download-strumpack \
--with-openmp \
--with-cxx-dialect=C++11 \
--download-scalapack \
--download-parmetis \
--download-metis \
--download-ptscotch \

make PETSC_DIR=<petsc-dir> PETSC_ARCH=<petsc-arch-dir> all

make PETSC_DIR=<...> PETSC_ARCH=<...> test

export PETSC_DIR=<...>
export PETSC_ARCH=<...>
cd src/ksp/ksp/examples/tutorials
make ex52

## use as direct solver
OMP_NUM_THREADS=1 mpirun -n 2 ./ex52 -pc_type lu -pc_factor_mat_solver_package strumpack -
mat_strumpack_verbose 1

## use as approximate factorization preconditioner
OMP_NUM_THREADS=1 mpirun -n 2 ./ex52 -pc_type ilu -pc_factor_mat_solver_package strumpack -
mat_strumpack_verbose 1
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STRUMPACK algorithm scaling for 3D Poisson

• Theory predicts O(n4/3 log n) flops for compression.
• HSS ranks grow with mesh size ~ n1/3 = k
• Use as a preconditioner with aggressive compression.

Mesh size k
64 96 128 160 192 224 256

Fl
op
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10 11
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10 15

FR
fit: 5 n 2.06

HSS(10 -1)
fit: 61420 n 1.29

HSS(0.5)
fit: 335647 n 1.14
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STRUMPACK-dense: parallel weak scaling

• Root node of the multifrontal factorization of a discretized 
Helmholtz problem (frequency domain, PML boundary, 10Hz).

• For many PDEs on mesh KxKxK, max. off-diagonal rank O(K).

K (mesh: K3) 100 200 300 400 500

Matrix size K2 10,000 40,000 90,000 160,000 250,000
MPI tasks 64 256 1,024 4,096 8,192
Max. rank 313 638 903 1289 1625
Speedup over 
ScaLAPACK 
LU

1.8 4.0 5.4 4.8 3.9
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STRUMPACK-sparse: strong scaling

• Matrix from SuiteSparse Matrix Collection:
– Flan_1565 : N= 1,564,794, NNZ = 114,165,372

• Flat MPI on nodes with 2 x 12-core Intel Ivy Bridge, 64GB (NERSC 
Edison)

• Fill-reducing reordering (ParMetis) has poor scalability, quality 
decreases
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Examples in examples/

See README
• testPoisson2d: 

– A double precision C++ example, solving the 2D Poisson problem with 
the sequential or multithreaded solver.

• testPoisson2dMPIDist: 
– A double precision C++ example, solving the 2D Poisson problem with 

the fully distributed MPI solver.
• testMMdoubleMPIDist: 

– A double precision C++ example, solving a linear system with a matrix 
given in a file in the matrix-market format, using the fully distributed MPI 
solver.

• testMMdoubleMPIDist64: 
– A double precision C++ example using 64 bit integers for the sparse 

matrix.
• {s,d,c,z}example:

– examples to use C interface.
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Summary

• Sparse (approximate) factorizations are important kernels for 
numerically difficult problems.

• Performance more sensitive to latency than dense case
• Continuing developments funded by DOE ECP and SciDAC

projects
– Integrate into more applications 
– Hybrid model of parallelism for multicore/vector nodes, differentiate 

intra-node and inter-node parallelism
– Hybrid programming models,  hybrid algorithms
– More parallel structured matrix precondtioners:

• HODLR, H/H2, butterfly, …
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SuperLU_DIST handson
• Convection-Diffusion equation (steady-state): 𝛻 + 𝜅	𝛻𝑢 − 	𝛻 + (𝑣⃗ 𝑢) 	+ 	𝑅	 = 	0 

/projects/ATPESC2017/NumericalPackages/handson/mfem/examples/atpesc/superlu

• GMRES iterative solver
$ ./convdiff (default velocity = 100)
$ ./convdiff --velocity 1000   (no convergence)

• Switch to SuperLU direct solver
$ ./convdiff -slu --velocity 1000

• Experiment with different orderings: --slu-colperm
0 - natural (default)
1 - mmd-ata (minimum degree on graph of A^T*A)
2 - mmd_at_plus_a (minimum degree on graph of A^T+A)
3 - colamd
4 - metis_at_plus_a (Metis on graph of A^T+A)
5 - parmetis (ParMetis on graph of A^T+A)

• Lessons learned
– Direct solver can deal with ill-conditioned problems. 
– Performance may vary greatly with different elimination orders.
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EXTRA SLIDES

28
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Goal of pivoting is to control element growth in L & U for stability
– For sparse factorizations, often relax the pivoting rule to trade with 

better sparsity and parallelism (e.g., threshold pivoting, static pivoting 
, . . .)

Partial pivoting used in sequential SuperLU and SuperLU_MT
(GEPP) 

– Can force diagonal pivoting (controlled by diagonal
– threshold)
– Hard to implement scalably for sparse factorization

Static pivoting used in SuperLU_DIST (GESP)
Before factor, scale and permute A to maximize diagonal: Pr Dr A Dc = 
A’
During factor A’ = LU, replace tiny pivots by    , without changing 
data structures for L & U
If needed, use a few steps of iterative refinement after the first solution
quite stable in practice

Ae

b

s x x

x   x    x
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Numerical Pivoting
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Ordering : Minimum Degree

Local greedy: minimize upper bound on fill-in
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Ordering : Nested Dissection 

Model problem: discretized system Ax = b from certain PDEs, e.g., 5-
point stencil on  n x n  grid,  N = n2

– Factorization flops: O( n3 ) = O( N3/2 )
Theorem: ND ordering gives optimal complexity in exact arithmetic 
[George ’73, Hoffman/Martin/Rose]
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Generalized nested dissection [Lipton/Rose/Tarjan ’79]
– Global graph partitioning: top-down, divide-and-conqure
– Best for largest problems
– Parallel codes available: ParMetis, PT-Scotch
– First level

– Recurse on A and B
Goal: find the smallest possible separator S at each level

– Multilevel schemes: 
•Chaco [Hendrickson/Leland `94],  Metis [Karypis/Kumar `95]

– Spectral bisection [Simon et al. `90-`95]
– Geometric and spectral bisection [Chan/Gilbert/Teng `94]

ND Ordering
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ND Ordering

2D mesh A,  with row-wise ordering

A,  with ND ordering L &U factors
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• Can use a symmetric ordering on a symmetrized matrix
• Case of partial pivoting (serial SuperLU, SuperLU_MT):

– Use ordering based on AT*A

• Case of static pivoting (SuperLU_DIST): 
– Use ordering based on AT+A

• Can find better ordering based solely on A, without symmetrization
– Diagonal Markowitz   [Amestoy/Li/Ng `06]

• Similar to minimum degree, but without symmetrization
– Hypergraph partition   [Boman, Grigori, et al. `08]

• Similar to ND on ATA, but no need to compute ATA

Ordering for LU (unsymmetric)


