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Conforming & Nonconforming Mesh Refinement

m Conforming refinement

m Nonconforming refinement

m Natural for quadrilaterals and hexahedra
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MFEM'’s unstructured AMR infrastructure

Adaptive mesh refinement on library level:
— Conforming local refinement on simplex meshes
— Non-conforming refinement for quad/hex meshes

— h-refinement with fixed p

General approach:

— any high-order finite element space, H1, H(curl),
H(div), ..., on any high-order curved mesh

Example 15
— 2D and 3D

— arbitrary order hanging nodes

— anisotropic refinement

— derifenement

— serial and parallel, including parallel load balancing

— independent of the physics (easy to incorporate in
applications)

Shaper miniapp
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Nonconforming meshes — H1 finite elements

m Finite element space cut along coarse-fine interfaces
(solution discontinuous)

m Define constrained FE space with some degrees of
freedom (DOFs) eliminated

m Simple example: linear H' (continuous) elements

a
o ® °oC
b

Constraint: c = (a+ b)/2
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More general nonconforming constraints

H(curl) elements

High-order elements
€

d

Constraint: e=f=d/2

! ]
Indirect constraints
s e Py (K)

> m € Py(K)
VY Constraint: local interpolation matrix
> s=0Q -m, Q¢cRY

More complicated in 3D...
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Nonconforming variational restriction

m General constraint:
— Px P = /
y=r "=1"wl

x — conforming space DOFs,
y —nonconforming space DOFs (unconstrained + slave),

dim(x) < dim(y)
W — interpolation for slave DOFs
m Constrained problem:
P'APx = P'b,

y = Px.

6 ATPESC 2017, July 30 — August 11, 2017



Nonconforming variational restriction
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Nonconforming variational restriction

Regular assembly of A on the elements of the (cut) mesh
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Nonconforming variational restriction

Jin W1w
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Regular assembly of A on the elements of the (cut) mesh
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Nonconforming variational restriction

Conforming solutiony = P x
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AMR = smaller error for same number of unknowns

2D Shock-like Problem AMR Benchmark (Quad Mesh, Anisotropic Refinements)
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Anisotropic adaptation to
shock-like fields in 2D & 3D




Static parallel refinement, Lagrangian Sedov problem

4096 cores, random non-conforming ref.

8 cores, random non-conforming ref.

= “«! —
e ———

Shock propagates through non-conforming zones without imprinting
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Initial Lagrangian dynamic AMR results

Adaptive, viscosity-based refinement and Parallel load balancing based on space-
derefinement. 2"? order Lagrangian Sedov filling curve partitioning, 16 cores
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Integration of Geometry-Based Adaptive
Simulation into MFEM

Goal: Fully automated parallel adaptive simulations from
general problem definition consisting of:

B A complete geometric domain definition
B The physical parameters defined in terms of that model
M List of desired output fields and level of accuracy desired

Proper interaction with geometry must be addressed
This is of even greater importance for high order methods

CAD Geometry Mesh Solution field

PN,
Wheisis

Vi
LER %




Geometry-Based Adaptive Simulation

BElement geometric approximation order must be consistent
with order of basis function

BMesh generators for graded coarse curved meshes needed
BCurved mesh adaptation
BMesh generation, mesh adaptation and element routines (for

Typical geometry sources:
BCAD Geometric Models

HImage data ‘
BMesh Models

‘ Region P—»{ Shell P—»‘FaceUse%—»{LoopUse

A A

EdgeUse VertexUse

A A

Face L(‘)'op E(‘lrge Vel'tex
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Mesh/Model Relationship

Critical to simulation processes

Relationship is termed “classification”

B Mesh Classification: Unique
association of a mesh entity, M,
to a geometric model entity, do;',
where d;<d; is denoted by
M - G/
C indicates the left-hand entity
(or set) represents a portion of the

right-hand entity in the discretization

d;
)

Multiple M, classified on a G,

B Boundary mesh entities are identified
in terms of their classifications

MESH
ADJACENCIES ENTITIES

GEOMETRIC DOMAIN

mesh region ——— region
mesh face — region or face

mesh edge — region, face or

I edge

mesh vertex ——» region, face,
edge, or vertex

m Classification critical to supporting adaptive
simulations and high level problem definitions
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Curved Mesh Representations

There are multiple options for Curved mesh representatlon

_rnod Iedg — el e

B |nterpolation methods | D L —~
® Sensitive to interpolating | : "

points — not easy to select
for curved CAD domains

B [sogeometric I i Tt

® Requires basically a one-to-one correspondence between model and
mesh entity parametric spaces — strongly constrains mesh
configuration and not possible in general since CAD systems support
Boolean operations that trim portions of parametric spaces in arbitrary
ways and CAD systems do not parameterize volumes

B Employ geometric approximation of sufficient order for
curved boundary representation — several options

® Bezier polynomials are convenient

® Rational polynomials possible — but unless properly aligned — still have
approximation plus the cost of dealing with the rational functions
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PUMI-MFEM Integration

Goal: Effective in-memory integration of PUMI
based parallel mesh adaptation tools into MFEM

-

> PUMI - Parallel Unstructured Mesh Infrastructure

ey wasvass N e

TN jay N
VAR AV AR Al

» Key components to be integrated into MFEM are:

Jlgsy
0%
W)

Vs

<\

> Distributed mesh — interprocess communication, Y
SN

migration of mesh entities, remote read only copies
» Link to the geometry and attributes
> Mesh adaptation & mesh motion
» Curved-geometry mesh adaptation
» Dynamic load balancing

» Mesh adaptation driven by
anisotropic mesh metric field

- Sandia
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PUMI Software Pointers

Resources for PUMI:

Overview: scorec.rpi.edu/pumi/

Design, concepts, and applications: (TOMS journal paper)
scorec.rpi.edu/REPORTS/2014-9.pdf

Intro and user's guide: scorec.rpi.edu/pumi/pumi_intro.pdf,
scorec.rpi.edu/pumi/PUMI.pdf

APIs: scorec.rpi.edu/~seol/scorec/doxygen/

Build instructions: github.com/SCOREC/core/wiki/General-Build-
instructions

Nightly regression: my.cdash.org/index.php?project=SCOREC
Much more: github.com/SCOREC/core/wiki

Recent PUMI advances (its running on the latest Phi’s at Argonne and
NERSC, there is also a GPU version):

Thesis on array-based implementation using manycore & GPUSs:
scorec.rpi.edu/reports/view_report.php?id=710

See Ibanez or Smith 2015 - 2017 papers: scorec.rpi.edu/reports/
19




MFEM/PUMI Integration: Tools Used

Tools currently being used/available in this process

B Curved mesh generation — Simmetrix has high quality
guadratic mesh generation capabilities

B Tool to inflate the order of elements with Beziers to order 6
on fixed mesh topologies (Usually no problem for good
quadratic curved meshes — but not guaranteed)

B Tools to take straight sided meshes and curve them — this
includes mesh topology modification since that is needed in
the majority of cases (curving often yields invalid elements)

B PUMI to manage the meshes in parallel
B Curved mesh adaptation based on mesh modification
B ParMA for mesh partition improvement

Sandia =
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MFEM/PUMI Integration

» Partition the mesh w load balancing.
The mesh is classified on CAD
model (PUMI)

« Curve the mesh up to order 6 (PUMI)

 Load the parallel mesh into MFEM
format (MFEM-PUMI)

« Solve (MFEM)
* Transfer field to PUMI (MFEM-PUMI)

 AMR: error estimate, refine/coarse,
snap, dynamic load balance (PUMI)

* Load new mesh to MFEM w updated
field (MFEM-PUMI)

Mesh
PUM| == MFEM

Field
PUMI ea=) MIFEM




MFEM/PUMI Integration Simple Example

Simple example: Poisson + homogenous Dirichlet BCs.

CAD Model
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Importance of Geometric Approximation

Solving same problem on a sphere meshed with 8 elements

“G” Geometric order
. FE polynomial order
Analytical solution at center : 0.4166

Geometry Linear mesh

H1_3D_P1_G H1 3D P2 G2 H1 3D P3 G3 H1_3D_P4_G4

1
______|P1G1_|P2G2 |P3G3_|P4G4 |P8G4_

Center T 0.2083 0.2955 0.4214 0.4174 0.4156



Importance of Geometric Approximation

A4

H1_3D_P1_G1 H1_3D_P8_G1 H1_3D_P1_G2 H1_3D_P8_G2

P1G1_|P2G1_|P3G1 | P4G1 | P8G1 I P1G2 |P2G2 |P3G2 | P4G2 | P8G2_

0.2083 0.138 0.1770 0.1773 0.1757 0.5983 0.2955 0.3739 0.3701 0.3713

Analytical solution: 0.4166

H1_3D_P3_G4 H1_3D_P8_G4

P1G4_|P2G4_|P3G4_|P4G4 | P8G4

0.2083 0.3471 0.4189 0.4174 0.4156



MFEM/PUMI Integration Example

Transient Nonlinear heat equation
+ Neumann BC.

OT/dt = V(aT+e)VT inq
ar/dt =0 inT

Initial 7 : Lower 5, upper 1.




MFEM/PUMI Integration Example

G2_H2

a4

3.55

2.7

Lw i |\

&!VJQA VA

i\ ‘JINAVA'"
Pei

NN
AN A
"

[ 1.85
VAN

bR ,s;‘ 4
24
iy

Oy

T =0.006




