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Conforming	&	Nonconforming	Mesh	RefinementMesh Refinement

Conforming refinement

Nonconforming refinement

Natural for quadrilaterals and hexahedra



ATPESC 2017, July 30 – August 11, 20173

Adaptive mesh refinement on library level:
– Conforming local refinement on simplex meshes

– Non-conforming refinement for quad/hex meshes 

– h-refinement with fixed p

General approach: 
– any high-order finite element space, H1, H(curl), 

H(div), …, on any high-order curved mesh

– 2D and 3D

– arbitrary order hanging nodes

– anisotropic refinement

– derifenement

– serial and parallel, including parallel load balancing

– independent of the physics (easy to incorporate in 
applications)

MFEM’s	unstructured	AMR	infrastructure

Example 15

Shaper miniapp
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Nonconforming Meshes

Finite element space cut along coarse-fine interfaces
(solution discontinuous)
Define constrained FE space with some degrees of
freedom (DOFs) eliminated

Simple example: linear H1 (continuous) elements

Constraint: c = (a + b)/2

Nonconforming	meshes	– H1		finite	elements
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More general nonconforming constraintsConstructing the P matrix

Use interpolation property of nodal finite elements

Q – local interpolation matrix

High-order elements

Constraint:  local interpolation matrix

Constructing the P matrix

Use interpolation property of nodal finite elements

Q – local interpolation matrix

Nonconforming Meshes

Finite element space cut along coarse-fine interfaces
(tangential component discontinuous)
Define constrained FE space with some degrees of
freedom (DOFs) eliminated

Simple example: first order H(curl) (edge elements)

Constraint: e = f = d/2

Constraint:  e = f = d/2

H(curl) elements

Constructing the P matrix

Indirect constraints: slave DOFs may depend on other
slaves

More complex situations in 3D.
Some methods enforce 2:1 ratio between
edges/faces, we do not.

Indirect constraints

More complicated in 3D…
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Variational Restriction

General constraint:

y = Px , P =


I

W

�
.

x – conforming space DOFs,
y – nonconforming space DOFs (unconstrained + slave),

dim(x)  dim(y)

W – interpolation for slave DOFs

Constrained problem:

PTAPx = PTb,

y = Px .

Nonconforming variational restriction
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Nonconforming variational restrictionConstructing the P matrix
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Nonconforming variational restrictionConstructing the P matrix

Regular assembly of A on the elements of the (cut) mesh
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Regular assembly of A on the elements of the (cut) mesh

Nonconforming variational restrictionAnisotropic refinement
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Nonconforming variational restrictionAnisotropic refinement

Conforming solution y = P x
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AMR	=	smaller	error	for	same	number	of	unknowns

Anisotropic adaptation to 
shock-like fields in 2D & 3D

uniform refinement
1st,2nd,4th,8th order

1st order AMR

2nd order AMR

4th order AMR

8th order AMR
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8 cores, random non-conforming ref. 4096 cores, random non-conforming ref.

Shock propagates through non-conforming zones without imprinting

Static	parallel	refinement,	Lagrangian	Sedov	problem
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Initial	Lagrangian	dynamic	AMR	results

Adaptive, viscosity-based refinement and 
derefinement. 2nd order Lagrangian Sedov

Parallel load balancing based on space-
filling curve partitioning, 16 cores



Integration of Geometry-Based Adaptive 
Simulation into MFEM

 Goal: Fully automated parallel adaptive simulations from 
general problem definition consisting of:
n A complete geometric domain definition 
n The physical parameters defined in terms of that model
n List of desired output fields and level of accuracy desired

 Proper interaction with geometry must be addressed 
 This is of even greater importance for high order methods

CAD Geometry Mesh Solution field
(a) (b)

(c) (d)

Figure 8: Simulation of a variation on the benchmark configuration with a 7x7 patch of solder-
balls missing from base 32x32 array, from the row 12, column 12 position to the 18, 18 position.
(a) Mesh of the “patch” system, with top die removed for visualization. (b) syy, shown from y-axis,
after 30 seconds of cooldown at 10 K s�1 starting at a stress free state at 400 K. (c) szz of cutaway
of system for same simulation conditions. (d) szz of cutaway of system showing ball detail near
empty patch.

tions as the benchmark simulations shown in Figures 6 and 7. The results for this “patch” system
are shown in Figure 8. Despite the lack of solderballs taking the load of the differential thermal
contraction over the patch, no significant difference was seen in the stresses experienced by the
solderballs neighboring the patch compared to solderballs in the field or in the benchmark config-
uration.

Although the benchmark configuration was chose to be industrially relevant at the time of this
these calculations, solder joint array sizes have traditionally increased from generation to gen-
eration. As a demonstration of the capability of the proposed workflow, we simulated identical
conditions for a die with 4096 solderballs (an array of 64x64), or four times the number of solder-
balls as the benchmark system. This larger system, shown in Figure 9, was solved on a mesh of
64 million elements using 1024 processors (1 rack of BlueGene/Q). It exhibits similar behavior to
the benchmark configuration. These is no significant bending of the die/carrier system, as the load
is taken up by the compliant solderballs. Stress concentrations occur near the contact patches and
along the polar axis of the solderballs.

We use the von Mises stress, sVM, as a metric for evaluating the state of the solder ball systems
in the context of reliability. This scalar quantity is quick to compute, intuitively compared to
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Geometry-Based Adaptive Simulation

nElement geometric approximation order must be consistent 
with order of basis function
nMesh generators for graded coarse curved meshes needed
nCurved mesh adaptation
nMesh generation, mesh adaptation and element routines (for 
Jacobian calculation) need to interact with geometry
 Typical geometry sources:
nCAD Geometric Models
nImage data  
nMesh Models

Non-manifold boundary representations provide ideal abstraction

15



Mesh/Model Relationship

 Critical to simulation processes
 Relationship is termed “classification”
■ Mesh Classification: Unique 

association of a mesh entity, Mi
di, 

to a geometric model entity, Gj
dj, 

where di<dj is denoted by
 Mi

di         Gj
dj

indicates the left-hand entity 
(or set) represents a portion of the 
right-hand entity in the discretization

Multiple Mi
di classified on a Gj

dj

■ Boundary mesh entities are identified
in terms of their classifications

■ Classification critical to supporting adaptive 
simulations and high level problem definitions

mesh region

mesh face

mesh edge

mesh vertex

region

region or face

region, face or
edge

region, face,
edge, or vertex 

GEOMETRIC DOMAIN
ENTITIES

MESH
ADJACENCIES
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 There are multiple options for curved mesh representation
n Interpolation methods

lSensitive to interpolating 
points – not easy to select 
for curved CAD domains

n Isogeometric
lRequires basically a one-to-one correspondence between model and 

mesh entity parametric spaces – strongly constrains mesh 
configuration and not possible in general since CAD systems support 
Boolean operations that trim portions of parametric spaces in arbitrary 
ways and CAD systems do not parameterize volumes 

n Employ geometric approximation of sufficient order for 
curved boundary representation – several options
lBezier polynomials are convenient
lRational polynomials possible – but unless properly aligned – still have 

approximation plus the cost of dealing with the rational functions 

Curved Mesh Representations
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PUMI-MFEM Integration

Ø PUMI - Parallel Unstructured Mesh Infrastructure

Ø Key components to be integrated into MFEM are:
Ø Distributed mesh – interprocess communication,

migration of mesh entities, remote read only copies
Ø Link to the geometry and attributes
Ø Mesh adaptation & mesh motion
Ø Curved-geometry mesh adaptation
Ø Dynamic load balancing

Ø Mesh adaptation driven by
anisotropic mesh metric field
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Goal: Effective in-memory integration of PUMI 
based parallel mesh adaptation tools into MFEM



PUMI Software Pointers

Resources for PUMI:
n Overview: scorec.rpi.edu/pumi/
n Design, concepts, and applications: (TOMS journal paper) 

scorec.rpi.edu/REPORTS/2014-9.pdf
n Intro and user's guide: scorec.rpi.edu/pumi/pumi_intro.pdf,

scorec.rpi.edu/pumi/PUMI.pdf
n APIs: scorec.rpi.edu/~seol/scorec/doxygen/
n Build instructions: github.com/SCOREC/core/wiki/General-Build-

instructions
n Nightly regression: my.cdash.org/index.php?project=SCOREC
n Much more: github.com/SCOREC/core/wiki

Recent PUMI advances (its running on the latest Phi’s at Argonne and 
NERSC, there is also a GPU version):
n Thesis on array-based implementation using manycore & GPUs: 

scorec.rpi.edu/reports/view_report.php?id=710
n See Ibanez or Smith 2015 - 2017 papers: scorec.rpi.edu/reports/
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MFEM/PUMI Integration: Tools Used

 Tools currently being used/available in this process
n Curved mesh generation – Simmetrix has high quality 

quadratic mesh generation capabilities
n Tool to inflate the order of elements with Beziers to order 6 

on fixed mesh topologies (Usually no problem for good 
quadratic curved meshes – but not guaranteed)

n Tools to take straight sided meshes and curve them – this 
includes mesh topology modification since that is needed in 
the majority of cases (curving often yields invalid elements) 

n PUMI to manage the meshes in parallel
n Curved mesh adaptation based on mesh modification
n ParMA for mesh partition improvement
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MFEM/PUMI Integration 

• Partition the mesh w load balancing. 
The mesh is classified on CAD 
model (PUMI)

• Curve the mesh up to order 6 (PUMI)
• Load the parallel mesh into MFEM 

format (MFEM-PUMI)
• Solve (MFEM)
• Transfer field to PUMI (MFEM-PUMI)
• AMR: error estimate, refine/coarse, 

snap, dynamic load balance  (PUMI)
• Load new mesh to MFEM w updated 

field (MFEM-PUMI)

Mesh
PUMI MFEM

Field
PUMI MFEM

Inflate the order 



MFEM/PUMI Integration Simple Example 

Simple example: Poisson + homogenous Dirichlet BCs. 

Initial Mesh

CAD Model Refine against initial mesh geometry

Refine against CAD using classification



Importance of Geometric Approximation

 Solving same problem on a sphere meshed with 8 elements 

Geometry Linear mesh

“G” : Geometric order
“P”  : FE polynomial order
Analytical solution at center : 0.4166

H1_3D_P1_G
1

P1G1 P2G2 P3G3 P4G4 P8G4
Center T 0.2083 0.2955 0.4214 0.4174 0.4156

H1_3D_P2_G2 H1_3D_P3_G3 H1_3D_P4_G4



H1_3D_P1_G1 H1_3D_P8_G1

G1

P1G1 P2G1 P3G1 P4G1 P8G1
0.2083 0.138

9
0.1770 0.1773 0.1757

Analytical solution: 0.4166

Importance of Geometric Approximation

P1G2 P2G2 P3G2 P4G2 P8G2
0.5983 0.2955 0.3739 0.3701 0.3713

H1_3D_P1_G2 H1_3D_P8_G2

G2

P1G4 P2G4 P3G4 P4G4 P8G4
0.2083 0.3471 0.4189 0.4174 0.4156

H1_3D_P3_G4 H1_3D_P8_G4

G4
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MFEM/PUMI Integration Example 

 Transient Nonlinear heat equation 
   + Neumann BC. 

Initial T : Lower 5, upper 1. 

in	Γ ​"#/"%  = 0

in	Ω

G2 (quadratic) 
mesh

G1 (linear mesh)



MFEM/PUMI Integration Example 

T = 0.003

T = 0.006

G2_H2

T = 0.006


