Enabling Optimization Using Adjoint Solvers

Presented to

ATPESC 2017 Participants

Hong Zhang
Mathematics and Computer Science Division
Argonne National Laboratory

Q Center, St. Charles, IL (USA)
August 7, 2017
9 — \
P

) U.S. DEPARTMENT OF ofﬁce of i \(
ENERGY ATPESC Numerical Software Track

Science EXASCALE COMPUTING PROJECT

Argonne & Bl @& ® Rensselaer @swv

NATIONAL LABORATORY




Outline

e Motivation and background

e Existing approaches

» finite differences
» automatic differentiation
» forward and adjoint methods

e Adjoint solvers in PETSc
» implementation & design
» checkpointing
» validation
e Solving dynamic constrained optimization with PETSc/TAO
» basic usage
» examples
e PETSc tips and advice

o Takeaways

2/18



Motivation: PDE-constrained optimization

min J (y, u)

st c(y,u,t) =0 (governing PDE) :
Y
g(y,u) =0 (equality constraints) new initial : ¢
condition i7"

h(y,u) <0 (inequality constraints) :

@ An example objective function

1
Tyu) =5 1Qu —dl* + 5 1 L(u — uer)

state variable y, control or design variable u, data d
Q is observation operator

L is cost functional for design

« is tradeoff between cost of design and fitting data

@ Gradient-based optimization algorithms require the derivatives (Hessian optionally) for the
objective and the constraints

vvyVvYyy



Why do we need sensitivity analysis?

Sensitivity studies can quantify how much model
output are affected by changes in model input

Can be used to
@ |dentify most influential parameters

@ Study dynamical systems (trajectory
sensitivities)

@ Provide gradients of objective functions

600

500

400

300
200

100

Sensitivity of grid operation costs with respectto
weather conditions [Cioaca ef.al. 2011]

@ experimental design
@ model reduction

@ optimal control
@ parameter estimation

@ data assimilation
@ dynamic constrained optimization

4/18



Computing sensitivities: finite differences

pi+Ap G+AG

@ Easy to implement
@ Inefficient for many parameter case, due to one-at-a-time

@ Possible to pertube multiple parameters simultaneously by
using graph coloring

@ Error depends on the perturbation value Ap

Error

otal Err

Trupc€ation Error
Roundof\Error

\

Ap



Computing sensitivities: automatic differentiation

automatic differentiation

f@{.--}
@ AD can evaluate the sensitivities for an
arbitrary sequence of computer codes
ieps . human
o Difficulties of low-level AD programmer
> pointers
» dynamic memory
» directives
» function calls from external libraries G I L LT T Ly Ty ——
» iterative processes (e.g. Newton iteration) symbolic differentiation
» non-smooth problems (human/computer)



N
Forward and adjoint sensitivity analysis (SA) approaches

We compute the gradients by differentiating the time stepping algorithm, e.g. backward Euler
(yn+1 = Yn + hf(tn+1, yn+1))

Sl,n+l - Sé‘.n +h fy(tn,+lvy'n+l)sé,n+1

Forward SA

tn+1

O O O O

[e]
[e]
o

Adjoint SA

An = )\n,+1 + hfy (tn+17 Z/n+l)T An

Forward
Best to use when # of parameters << # functionals # of parameters >> # of functionals
Complexity O (# of parameters) O (# of functionals)
Checkpointing No Yes
Implementation Medium High
Accuracy High High

7/18



Adjoint integration with PETSc

@ PETSc: open-source numerical library for large-scale
parallel computation
https://www.mcs.anl.gov/petsc/

@ ~ 200,000 yearly downloads
@ Portability

>
>
>
>
>

>

32/64 bit, real/complex
single/double/quad precision
tightly/loosely coupled architectures
Unix, Linux, MacOS, Windows

C, C++, Fortran, Python, MATLAB
GPGPUs and support for threads

@ Extensibility

>

ParMetis, SuperLU, SuperLU_Dist, MUMPS, HYPRE,

UMFPACK, Sundials, Elemental, Scalapack, UMFPack...

@ Toolkit

>

>
>
>
>

sequential and parallel vectors

sequential and parallel matrices (AlJ, BAIJ...)
iterative solvers and preconditioners

parallel nonlinear solvers

adaptive time stepping (ODE and DAE) solvers

Full software stack

New feature

8/18


https://www.mcs.anl.gov/petsc/

Other software for adjoints and related functionality

Also available in:
@ SUNDIALS
@ Trilinos

This presentation focuses on experiences in PETSc.

9/18



Applications of PETSc adjoint solvers

@ The PETSc adjoint solvers have been used:

>

>

In a bundle method for transient security constrained economic
dispatch (TSCED) problem [Francois et.al. 2017]

To estimate generator inertias during dynamic transient [Petra
et.al. 2017]

With libmesh (finite element methods) for parallel solution of
Navier-Stokes problems

With spectral element methods for CFD optimal control (ongoing)

In variational methods for data assimilation (ongoing)

@ The programming languages for these applications range from
Julia, Python, C++ and C

soee ar I m I.‘u‘ L o

10/18



Design goals and implementation

@ Minimize intrusion
@ Reuse functionalities (implemented in PETSc or provided by users)
@ Aim for general-purpose solutions

parameters

input

TSSolve

TSTrajectorySet
TSEvent

TSAdjointSolve

TSTrajectoryGet

{ TSAdjointEvent
1 TSAdjointStep
\ TSAdjointMonitor

:

: TSStep

'\\ TSMonitor
TSAdapt

11/18



Optimal checkpointing

@ Minimize the number of recomputations and the number of reads/writes by using the revolve
library of Griewank and Walther

> Revolve is designed as a top-level controller for time stepping
» TSTrajectory consults revolve about when to store/restore/recompute

@ Incorporate a variety of single-level and two-level schemes for offline and online checkpointing
» existing algorithms work great for RAM only checkpointing
> optimal extension for RAM+disk (work in progress)

An optimal schedule given 3 allowable checkpoints in RAM:
blue arrow: store a

checkpoint )
red arrow: restore a .
checkpoint @_,

black arrow: a step

A O I

10/18



Validating Jacobian and sensitivity

@ PETSc and TAO (optimization component in PETSc) can test hand-coded Jacobian and
gradients against finite difference approximations

@ Jacobian test: —snes_type test

@ -snes_test_display and —tao_test_display can show the differences element-wisely

13/18



Solving dynamic constrained optimization |

User needs to provide routines that

Initialize the variable vector (optional)

Set the variable bounds (for bounded
optimization)

Compute the objective function value
Compute the gradient

Compute the Hessian matrix (optional)
for Newton methods

TAO application

Tao tao; /+ TAO Optimization solver =/
UserContext user; /* user—-defined structure =/
Vec x; /* solution vector x/

PetscInitialize (&argc, &argv,0,0);

TaoCreate (PETSC_COMM_WORLD, &tao) ;
TaoSetType (tao, TAOBLMVM) ;
TaoSetInitialVector (tao, x);
TaoSetObjectiveRoutine (tao,MyFunction, &user) ;
TaoSetGradientRoutine (tao,MyGradient, &user) ;
// The above two routines can be replaced with
// TaoSetObjectiveAndGradientRoutine ()
TaoSetFromOptions (tao) ;

TaoSolve (tao);

14/18



Solving dynamic constrained optimization Il

To compute the gradients using TSAdjoint,
one needs to provide routines that are
normally needed by TS such as the
right-hand-side function and the Jacobian
and an additional Jacobian w.r.t parameters
if gradients to the parameters are desired.

The terminal conditions (initial values for
adjoint variables) for the adjoint sensitivity
variables must be set properly.

Using PETSC Adjoint solver for gradients

PetscErrorCode MyGradient (TaoSolver tao,Vec x,
Vec g,void =*user) {

TS ts;

Vec u;

TSCreate (PETSC_COMM_WORLD, &ts) ;
TSSetType (ts, TSCN) ;

TSSetIFunction (ts,NULL,MyIFunction,user);
TSSetIJacobian (ts,A,A,MyIJacobian,user) ;
TSSetDuration (ts, PETSC_DEFAULT, ftime) ;
TSSetExactFinalTime (ts, TS_EXACTFINALTIME_MATCHSTEP) ;
TSSetInitialTimeStep(ts,0.0,0.1);
TSSetSaveTrajectory (ts);

...Initialize u or system parameters with x...
TSSolve (ts,u);

...Set terminal conditions for lambda and mu...
TSSetCostGradients (ts, 1, lambda, mu) ; CHKERRQ (ierr) ;
TSAdjointSolve () ;

...Compute g from lambda and mu...

}




Examples for SA and optimization

PETSc has some examples included in the source folder src/ts/exmaples that you can follow to
build your own applications.

Equation Source Application
Van der pol ex20adj.c adjoint SA
ex20fwd.c forward SA
ex20opt_ic.c optimization over initial conditions
ex20opt_p.c optimization over parameters
Hybrid system with switching hybrid/ex1adj.c adjoint SA
hybrid/ex1fwd.c forward SA
Power grid stability power_grid/stability_9bus/ex9busadj.c adjoint SA
power_grid/stability_9bus/ex9busopt.c optimization over parameters
Generator swing equation power_grid/ex3adj.c adjoint SA
with discontinuities power_grid/ex3fwd.c forward SA
power_grid/ex3opt.c optimization using adjoint
power_grid/ex3opt_fd.c optimization using FD approximation
power_grid/ex3opt_fwd.c optimization using forward SA
Diffusion-reaction PDE advection-diffusion-reaction/ex5adj.c adjoint SA )

* Highlighted examples will be demonstrated in the hands-on session

16/18



PETSc tips and advice

@ Jacobian can be efficiently approximated using finite difference with coloring
(-snes_fd_coloring); particularly convenient via DMDA

@ Most of the difficulties stem from mistakes in the hand-coded Jacobian function; make
sure to validate it carefully

@ Use direct solvers such as SuperLU and MUMPS for best accuracy (but not
scalability) of the gradients

@ Use -tao_monitor —ts_monitor —-ts_adjoint_monitor —snes_monitor
-log_view for monitoring the solver behavior and profiling the performance

@ -malloc_hbw allows us to do the computation using MCDRAM and checkpointing
using DRAM on Intel’s Knights Landing processors (Argonne’s Theta, NERSC’s Cori)

@ Check the user manual and the website for more information, and ask questions on
the mailing lists

17/18


https://www.mcs.anl.gov/petsc/

Takeaways

Adjoint as an enabling technology for optimization

PETSc offers discrete adjoint solvers that take advantage of highly developed PETSc
infrastructure: MPI, parallel vectors, domain decomposition, linear/nonlinear solvers

Requires minimal user input, and reuses information provided for the forward simulation

@ PETSc and TAO help you rapidly develop parallel code for dynamic constrained optimization

Advanced checkpointing, transparent to the user

Validation for Jacobian and gradients using finite differences

18/18



Thank you!

11111



	Appendix

