A allinea
X rORGE am

DDT + MAP REPORTS

Debugging and Profiling your HPC Applications
Srinath Vadlamani, Field Application Engineer
srinath.vadlamani@arm.com

Aug. 8, ATPESC_2017
1 © 2017 Arm Limited q r m

About this talk

Techniques not tools

- Learn ways to debug and profile your code

Use tools to apply techniques

- Debugging with Allinea DDT
- Benchmarking with Allinea Performance Reports
- Profiling with Allinea MAP

« Go to www.allinea.com/trials

Tools are available on the ATPESC machines

Aug. 8, ATPESC_2017
2 © 2017 Arm Limited q r m

Motivation

HPC systems are finite

- Limited lifetime to achieve most science possible

- Sharing a precious resource means your limited allocation needs to be used well

Your time is finite

« PhD to submit
- Project to complete
- Paper to write

- Career to develop

Doing good things with HPC means creating better software, faster

- Being smart about what you’re doing

- Using the tools that help you apply smart techniques Aug. 8, ATPESC_2017

3 © 2017 Arm Limited q r m

Real-world example

Fle Edit View Metrics Window Help

Fle Edit View Metrics Window Help

Profiled: Discovar on 1 process. 1 node, 36 cores (36 per process) Sampled from: FiJul 24 16:16:36 2015 for 300.05

Application activity

cPU floating-point
12%

Hide Metrics.

Memory usage
219068 —

16:16:36-16:21:36 (300.0135): Main thread compute 11.5 5, Pthreads 5. = %, OpenP 55.7 %, Fle 0 1.5 %, Synchronisation %, OpenMP overhead 21.0 %, Sleeping (% CPU floating-point 1.2 %; Memory usage 2.19 (Zoom A1 = ©

 LoadCorrectCore.cc 3 |

ongprotoTnpDi sHansger tnp max (14P) ;
——— 45 Correctionsuite(tan nar, heur, oac, Tou control, creads, orrected CoaTERer, NOW THREADS, EXTT, cTock, T
')|
1 vec<int> trace ids, preco. |
Input/Output | Project Fles _ OpenP Stacks | OpenMP Regions | Functions
Openhe stacks ax

Total core time ' [overhead [Function(s) on line Source

S 2 Discovar [program]

Conectionsute(feudals
ot g hour

37.0% E— 5 Correct1prelFeudalstring <char, td-char trafts<char eaie, trins

17.9% - 0.1 @ CorrectPairs](FeudalString<char, std::char_traits<char trace ids, heus, log
7% ¥ : 5 CorrectPairsl (FeudalString<char, st char tratochar <race_ide, heur?, 1o

6.9% 0 i il

19% 1 5 . std::char traits<... 1os_co tose, 2, o

3.6%k ' 4 others.

& 7 [OpenMP worker threads]
Showing data from 1,000 samples taken over 1 process (1000 per process)

Bioinformatics
Discover Assembly
3x speedup

EC2

4 © 2017 Arm Limited

Profled: st on 1 process, node, 24 coes (24 per process) Sampled fom: e un 28 13:41:48 2016 for 1,200.1s Shou Metcs..
Wissing Debugging Information () | ¢ ThlensoMath.c [] | * TensorDimAgpiyh £ | [Time spent on fine 1 8x

TESo

: &l | Notime was messured on this ne.

conz \

>einen

break; |

opoioupt | Profct s Openk®e Sacks | Openheregons | Foctions |

[ATies Forae v5-L-BRANCH [Connected to: ec-user@52.18.49.160 [OpenMP View

OpentP tacks ax
4 T T
otal core time 5] |
LoadCorrectCore.cc:791 &2 uajt lpragram]
THThread main
Discovar.cc:149 Gl peal
BIBC_FUNCC =
1 1 proess) il o320 [& OpentPView

Deep Learning
Torch + DeepMind
5.3x speedup

Intel Xeon Phi (KNL

Fle Edit View Control Tools Window Help

[P Bad B0t O-O

|Focus on current; & process ¢ Thread [~ step Threads Together HU SE=E=NE -2

EE O000

B 8| ¢ wave openmp.c 3 | Locals Current Line(s) | Current Stack |
I8 months ago 2168 (current Linels) 5 x
e months ago
e months ago lobal e i . Variable Name Value
|8 months ago ((first + j - (first +-oldval 0x7ffff531c010
3 monche a2 newvally 4 values —oxffsabe010
l6 months 2g0 do_math (
e months ago)
) |8 months ago }
@ :void [B months ago
(5 main(int argc, char *+a [months a - -
i output_master(void) : v
51 output_workers(voi T
) reduce print(const cha |3 monchs e
(5] time_mpi_start : void [g months ac
(21 time_mpi_stof e months ago Mark 0'Connor <mark@allinea.com>
51 update 8 months ago [date: Fri Nov 07 11:37:23 2014 +0100
@ & External Code [6 months ago |summary: Swap arrays directly via their pointers instead of copying each element; this takes longer than the cal
e hs ago
|8 months ago
l6 months ago ™
|8 months ago
o ronehe oo A 2l
KT 1l
Inputioutput | Breakpoints | Watchpoints Stacks | Tracepoints | Tracepoint Output | Logbook | Evaluate ax
stacks & x [Expression [Value
Threads Function JE «-newval ——O0x7ffffab7a010
T 15 o (wave openmp <353) oldval —OxTHfS3Lc010
u drvalues —Ox7ffffsabe010
35 omp_in_final
Ready 4

Fluid Dynamics
HemelLB blood flow
16.8x capability boost
50k core crash fixed

Aug. 8, ATPESC_2017

arm

Debugging in practice...

a

Compile

\

Insert print
statements

Hypothesis

Aug. 8, ATPESC_2017
5 © 2017 Arm Limited a r m

Optimization in Practice

6 © 2017 Arm Limited

/

Change code

\

Analyze

performance
result

N\

Run code

/

Aug. 8, ATPESC_2017
arm

About those techniques...

“No-one cares how quickly you can compute the
wrong answer”

- Old saying of HPC performance experts

Let’s start with debugging then...

Aug. 8, ATPESC_2017
7 © 2017 Arm Limited q r m

Some types of bug Slg¥ea

Bohrbug Steady, dependable bug
Heisenbug Vanishes when you try to debug (observe)
Mandelbug Complexity and obscurity of the cause is so great that it

appears chaotic

Schroedinbug

8 © 2017 Arm Limited

First occurs after someone reads the source file and deduces
that the code should have never worked, after which the
program ceases to work until fixed

Aug. 8, ATPESC_2017
arm

Debugging

The art of transforming a broken program to a working one:

Debugging requires thought — and discipline:

 Track the problem

« Reproduce

- Automate — (and simplify) the test case

« Find origins — where could the “infection” be from?
« Focus — examine the origins

- Isolate — narrow down the origins

 Correct — fix and verify the testcase is successful

Suggested Reading:

« Andreas Zeller, “Why Programs Fail”, 2nd Edition, 2009

What you will read:

« Crowd sources like stack overflow

9 © 2017 Arm Limited

allinea
DDT

Aug. 8, ATPESC_2017
arm

Popular techniques

Automation

e Test cases

e Bisection via
version control

10 © 2017 Arm Limited

Observation

® Print
statements

e Debuggers

Inspiration

e Explaining the
source code to
a duck

allinea
DDT

Magic

e Static analysis

e Memory
debugging

Aug. 8, ATPESC_2017
arm

Solving Software Defects g'g?ea

Who had a rogue behavior ?

- Merges stacks from processes and threads

Run
Where did it happen? with Allinea tools
- leaps to source Identify
a problem
How did it happen? Gather info

. ' Who, Where,
- Diagnostic messages How, Why

- Some faults evident instantly from source

Fix
Why did it happen? ke ()
. “ . . A ” Processes Function
« Unique “Smart Highlighting 150120 B & start
150120 Z__libc_start_main
« Sparklines comparing data across processes 150120 “main
150120 Z pop (POP.fa0:81)
150120 Zinitialize_pop (initial f90:119)
: 150120 Zinit_communicate (communicate f90:87)
Locals Curreni Line(s) l Current Stack I 150119] -Create_ocn_communicator (communicate.f90:300)
< |currem Line(s TR\ =
Variable Name Value
g...‘ﬂ:o‘v 36
- mmm Aug. 8, ATPESC_2017
11 © 2017 Arm Limited { q r m

Favorite Allinea DDT Features for Scale

Stacks (All)

Array Expression: | bigArray[sil

Distributed Array Dimensions: [1__ [+ How do | view distributed arrays?
Range of $x (Distributed) | Range of $i

5343 6795 7881 9108 9467

1]

1]

Al CE]
ddt.bin E”Z'
ceserver m

VIV Ve = Ee my @

m Focus on curent. @ Group () Process [

200004 processes (0200003) Paused: 200004 Running: 0
Currently selected:

Step, play, and

breakpoints

12 © 2017 Arm Limited

From: [0
T
-
»
Al C
5 1
(&
D
dl d

P 3ok 101 provess v

i
Reason/Origin: i, sigsend or raise
il probably be terminated if you continve.

Messages Tracepoints Output »

Offline debugging

allinea
DDT

Aug. 8, ATPESC_2017

arm

6 steps to help improve performance allinea

MAP
Get a realistic Look for the
test case significant
What is the :
nature of the PRy TR Bottle It
solve
problem?
Logging like an experiment is useful. Aug. 8, ATPESC 2017

13 © 2017 Arm Limited q rm

: : allinea
Bottling it... JIAD
Lock in performance once you have won it

Save your nightly performance

Tie your performance results to your continuous integration server

Lock in the bug fixes
Save the test cases

Tie the test cases to your continuous integration server

Regression tests do help you from regressing!!!

Aug. 8, ATPESC_2017
14 © 2017 Arm Limited q r m

PERFORMANCE ROADMAP

Improving the efficiency of your parallel software holds the key to solving more complex research problems faster.

This pragmatic, step by step guide will help you to identify and focus on bottlenecks and optimizations one at a tme

with an emphasis on measuring and understanding before reswritng.

ANALYIE BEFORE YOU OPTIMIZE

-

-
®

TS FOR SUMOCESS:

®

EXAMIMNE IMO

Dhomicis el apealicationn spane sgnificant T in WO7
Cometariarn Problims:

®
-
-

-

TS FOR SUMOCESS:

-

-

Sisasere all prfofTiasos aoteels
L TRy T e
Frithist mmal wiorbhoerhs oot amiScial wea

Ay PeifiarTiv fuas Fepsort dis U Gusckly aind daly

i bpasditiing boscs St
Marey arvadl resch o el weilis,

it i heorme clissctorny inslsad of scranc
Mlriphe recades using Tlespaenn of T sarre Time

Eliruna Forge Pghlght Bees of asds spending a ke mms in D
Traoe ard debug sepeieis of ko e aTieims wing Slines Horge

BALAMCE WORKLOAD

Soamralingg: & bt of Tieve in e hamdwridth comimunication and syechronbEton?
D Probles:

& Dl boo senall i rus el Thce nly at Sk scaks

& LD oo caisd g bane dusraler

= By In work pertitoning aode

TOHILS FOR SIMCCESS-

& Perforenancs Regals debsos halanos S

& Al Forpe bo e s comimnizaion call el procies

& Diva il part dosrdag: concs with inligratnd die-b g bn Sliresa Fongs

© 2017 Arm Limited

E
E
3

IMPROVYE MEMORY ACCESS PATTERNS
Pellaary el oalis. s Sreerasty-Dodind; B Ohis cne?
DR Ol PRODERLEMS.

* InitlaliFing Meenory on one cong bt Lsing & on afother

& Erways off EFetunie oo ke inefTicent coct utfiEarion

* Carhing ssults siun McompURathon b chkassr

TOOLS FOR SIRCCESS:
* Bllirasa Foms s R of oo ot by Sy aooei T
+ Troeos allocarhon and s of hot dats Sretiees n Allines Forge debs ger

REYIEWY COMMUNICATION

Laowes of thev i rrsid WrnyTigch- e kol cormnncathon 7
DR Ol PRODERLEMS.

* Shat Bigh Trecussrey (Metciages anl visy sensllhee Do Rty
*® Ti Sy Syrchioninations

* Mooveriap e comeunkeation and ampulEtion

TOOLS FOR SIRCCESS:
* Allirssa Performance Repors trecks cemmuniion perkmencs
+ Bl Foomm S wiich cofmimunieation o e s s wiy

©

USE MULTIPLE CORES

Lhing peociiees for plwsical oo, theseess for oghoa] cones?
CORAMON FROBLERNE

+ Irenplicit theeed Barriers Insichs Tght koo

+ Sgnificant coss idie T dus 10 soriioed imbalanes

(6]

+ Thesads e

TOOLS FOR SUMCCESS:

+ Allinea Perdormancs Reparts shows syncheoniation oserseed and
e el braicen

+ Aliewsa Forgs highlght syncronisarion ey oo and impliclt bamers

YECTORIZE f OFFLOAD HOT LOOPS

Hith Mesing: Saing Losags Bast gett ng ko secterization soons?

CORAMON FROBLERNE

+ Enpeoing conmplies io prfosn saghc of Using The wiong cengler Sags

+ Musmricalb el oops st Fard o vectorbe salteims

+ Whsing roumines thal hove Taer vesdor-provices ssulsabents in hghk-
efstienid st e

TS FOR SUMCCESS:
4 Al PerRoTia i Pt ot S il iieradty sl e of sactiabiton
* Aliewsa Forgs shoss hot oo, uisisceorised code and G performancs

=

allinea

o eenalicss com E 0 ENN) SO0 STEE e asiecsgelinesa oo
Afirema. Eoftvwees inc. 2003 Datweesy Flacs. Sute 500 San Joss. G4 23490

Aug. 8, ATPESC_2017
arm

How The Tools Fit...

16

© 2017 Arm Limited

Demand for software

efficiency

Demand for developer

Performance
Reports

Measure

e
X

allinea
FORGE

DDT + MAP

efficiency

Demand for performance

Forge

optimization

performance

Leads to MAP to optimize

Profile and Optimize

Debug, optimize, edit,

commit, build, repeat...

Pull for MAP to develop
performance fix

A

Demand for debugging

DDT

Debug

A

Leads to DDT to
understand and fix

—
Open Interfaces)
(eg. JSON APIs) L

A 4

Continuous Integration

A

A 4

A 4

Version Control

o

allinea

PERFORMANCE

REPORTS

Aug. 8, ATPESC_2017

arm

How to help scientific developers best?

You can teach a man to fish
But first he must realize he is hungry

Image © Kanani CC-BY

Aug. 8, ATPESC_2017
17 © 2017 Arm Limited q rm

Communicate the benefits of optimization R

Show, don't tell...

18

© 2017 Arm Limited

allinea
PERFORMANCE
CPU REPORTS
A breakdown of the £4.4% CPU time:
Scalar numeric ops 27.4% R
Vector numeric ops 0.0% |
Memory accesses 72.6% 1R

Waiting for accelerators 0.0% |

The per-core performance is memory-bound. Use a profiler to
identify time-consuming loops and check their cache
performance.

No time is spent in vectorized instructions. Check the compiler's
vectorization advice to see why key loops could not be vectorized.

... this is your code on “—~007, ie. no optimizations

Aug. 8, ATPESC_2017
arm

Show performance they understand ﬁ

allinea

PERFORMANCE

CPU REPORTS

A breakdown of the 52.5% CPU time:
Single-core code 100.0% N

CScalar numeric op®» 22.4% W

Vector numeric ops 0.0% |
Memory accesses 776% 1R

The per-core performance is memory-bound. Use a profiler to identify
time-consuming loops and check their cache performance.

No time is spent in vectorized instructions. Check the compiler's
vectorization advice to see why key loops could not be vectorized.

Aug. 8, ATPESC_2017
19 © 2017 Arm Limited a rm

Communicating at the right level

20 © 2017 Arm Limited

Pipelined

Time per
retired
instruction

Y

allinea

PERFORMANCE

REPORTS

Aug. 8, ATPESC_2017
arm

Explaining performance at the right level

21

/

CPU

A breakdown of the £5.5% CPU time:
Single-core code 100.0% N
Scalar numericops 22.4% WM

Vector numeric ops 0.0% |

Memory accesses 776% R
The per-core performance is memory-bound. Use a profiler to identify
time-consuming loops and check their cache performance.

No time is spent in vectorized instructions. Check the compiler's
vectorization advice to see why key loops could not be vectorized.

+ simple, actionable advice

© 2017 Arm Limited

Compiler advice is your friend.

o

allinea

PERFORMANCE

REPORTS

Aug. 8, ATPESC_2017

arm

Vectorization, MPI, VO, memory, energy...
@ g,‘:mu;i:;;f’h‘i"a 8 logical cores per node)

22

30 seconds (1 minute)

allinea

PERFORMANCE

REPORTS

2.1 Ghz CPU frequency

CPU

MPI 110

Summary: wave_c is CPU-bound in this configuration

CPU 885% _ Time spent running application code. High values are usually good.
N This is high; check the CPU performance section for optimization advice.

MPI 11.4% [JJJ
/O o00% |

Time spent in MPI calls. High values are usually bad.
This is very low; this code may benefit from increasing the process count.

Time spent in filesystem I/O. High values are usually bad.
This is negligible; there's no need to investigate /0 performance.

This application run was CPU-bound. A breakdown of this time and advice for investigating further is in the CPU section below.

As very little time is spent in MP| calls, this code may also benefit from running at larger scales.

CPU

A breakdown of the 88.5% CPU time:

Single-core code 100.0% I

Scalar numeric ops 224% M

Vector numeric ops 0.0% |

Memory accesses 77.6%

The per-core performance is memory-bound. Use a profiler to identify
time-consuming loops and check their cache performance.

No time is spent in vectorized instructions. Check the compiler's
vectorization advice to see why key loops could not be vectorized.

110

A breakdown of the 0.0% I/O time:

Time in reads 0.0%
Time in writes 0.0% |

Effective process read rate 0.00 bytes/s
Effective process write rate 0.00 bytes/s

No time is spent in |/O operations. There's nothing to optimize here!

Memory

Per-process memory usage may also affect scaling:
Mean process memory usage 49.7 MB [N

Peak process memory usage 53.6 MB I

Peak node memory usage 24.0% W

The peak node memory usage is very low. You may be able to reduce
the amount of allocation time used by running with fewer MPI processes
and more data on each process.

© 2017 Arm Limited

MPI

A breakdown of the 11.4% MPI time:

Time in collective calls 3.1% |

Time in point-to-point calls 96.9% I
Effective process collective rate 31.7kBls 1
Effective process point-to-point rate 269 kB/s [N

Most of the time is spent in point-to-point calls with a very low transfer
rate. This suggests load imbalance is causing synchonization overhead;
use an MPI profiler to investigate further.

Threads

A breakdown of how multiple threads were used:
Computation 0.0%
Synchronization 0.0% |
Physical core utilization 100.0% [N
Involuntary context switches per second 1.8 |

No measurable time is spent in multithreaded code.

Energy

A breakdown of how the total J energy was spent:
CcPU %
Accelerators 0.0%

Peak power 23.00W [
Mean power 19.20W

The is responsible for all measured energy usage. Check the CPU
breakdown section to see if it is being well-used.

Note: system-level measurements were not available on this run.

allinea

PERFORMANCE

REPORTS

CPU

A breakdown of the 88.5% CPU time:
100.0%
Scalar numericops 22.4%

Single-core code

Vector numeric ops 0.0%

Memory accesses 77.6%

The per-core performance is memory-bound. Use a profiler to identify
time-consuming loops and check their cache performance.

No time is spent in vectorized instructions. Check the compiler's
vectorization advice to see why key loops could not be vectorized.

Memory
Per-process memory usage may also affect scaling:

Mean process memory usage 49.7 MB |GG

53.6 M8
24.0% W

Peak process memory usage
Peak node memory usage
The peak node memory usage is very low. You may be able to reduce

the amount of allocation time used by running with fewer MPI processes
and more data on each process.

Aug. 8, ATPESC_2017
arm

Accelerator support...

/scratch/mark/miniMD_OpenCL/miniMD_nvidia -t 128 Compute
2 processes, 1 node (12 physical, 24 logical cores per node) i

23

© 2017 Arm Limited

kaze

Mon Nov 3 11:52:14 2014
110 seconds (2 minutes)

allinea

PERFORMANCE

REPORTS

MPI le]

Summary: miniMD_ nvidia is Compute-bound in this configuration

Time spent running application code. High values are usually good.
Com DUte 89.8% _ This is high; check the CPU and accelerator sections for optimization advice.

MPI 10.1% .

1/0 0.1%

Time spent in MPI calls. High values are usually bad.
This is very low; this code may benefit from increasing the process count.

Time spent in filesystem I/O. High values are usually bad.
This is very low; however single-process I/O often causes large MPI wait times.

This application run was compute-bound. Investigate further with the CPU and accelerator sections below.
As very little time is spent in MPI calls, this code may also benefit from running at larger scales.

CPU
A breakdown of the 89.8% CPU time:
Waiting for accelerators 31.5% [l

Scalar numeric ops 156% 1§
Vector numeric ops 0.0% |
Memory accesses 62.0% N

The per-core performance is memory-bound. Use a profiler to identify
time-consuming loops and check their cache performance.

No time is spent in vectorized instructions. Check the compiler's
vectorization advice to see why key loops could not be vectorized.

170

A breakdown of the 0.1% VO time:

Time in reads 1 % I
Time in writes 0.0% |

Effective process read rate 12.7 vB/s TN
Effective process write rate 0.00 bytes/s |

Most of the time is spent in read operations with a low eﬂeclwe lransler

MPI

A breakdown of the 10.1% MPI time:

Time in collective calls 31.4% W
Time in point-to-point calls 68.6% N
Effective process collective rate 859 bytes/s |
Effective process point-to-point rate s73mB/s N

Most of the time is spent in point-to-point calls with an average transfer
rate. Using larger messages and overlapping communication and
computation may increase the effective transfer rate.

The collective transfer rate is very low. This suggests load imbalance is
causing synchonization overhead; use an MPI profiler to investigate
further.

rate. This may be caused by contention for the fi Y
access patterns. Use an /O profiler to investigate which wnle calls are
affected.

Memory

Per-process memory usage may also affect scaling:
Mean process memory usage 209 MB N

Peak process memory usage 212 M8 N

Peak node memory usage 6.0% |

The peak node memory usage is very low. You may be able to reduce
the amount of allocation time used by running with fewer MPI processes
and more data on each process.

Threads

A breakdown of how multiple threads were used:

Computation 68.19% N
Synchronization 319%

Physical core utilization 16.7% N

Involuntary context switches per second 71 |

Physical core utilization is low. Try increasing the number of threads or
pr to improve performance.

Significant time is spent synchronizing threads. Check which locks cause
the most overhead with a profiler.

Accelerators

A breakdown of how accelerators were used:

Compute utilization 93.1% N

Memory utilization 204% W

Device memory used 98% ||

High compute and low memory utilization suggests compute throughput
is limiting GPU peformance.

Use a profiler to find the hottest kernels and check them for divergent
branches and over-subscribed function units.

allinea

PERFORMANCE

REPORTS

Aug. 8, ATPESC_2017
arm

Application Development Workflow -/i Eglgég

DDT + MAP

Profiling

Optimization

Debugging

Aug. 8, ATPESC_2017
24 © 2017 Arm Limited q rm

Hello Allinea Forge!

allinea

o o0

DDT + MAP

25 © 2017 Arm Limited

Allinea MAP to find performance bottleneck

A 4

Increasing memory usage? Memory leak!
Workload imbalance? Possible partitioner bug!

A 4

Flick to Allinea DDT
Common interface and settings files

A
v ¢

allinea
FORGE

Aug. 8, ATPESC_2017
arm

: : : <
HPC means being productive on remote machines r.9

allinea
FORGE

N . &dit View Window Help
V‘ LI AL e— allinea
25 FORGE

NS

- PROFILE
w O S/X Profile a program
.LOAD PROFILE DATA FILE
Connect to Remote Host
Connecting to tita

allinea
ve Windows

DDT

allinea
MAP

<< Hide inal
/home/mark/Work/code/jon/libexec/remote-exec tita /a nea//libexec/ddt-remote
d
* Please send questions or comments to the NCCS User Assistance Center
* help@olcf.ornl.gov
" IVI It o | h SS * http://www.olcf.ornl.gov/support
I Enter PASSCODE:[]
Y7) RSA+C d

*3 Uses server license

rrrrrrrrr

llllllllllll

2014 ,

Aug. 8, ATPESC_2017
26 © 2017 Arm Limited q r m

MAP in a nutshell

27

© 2017 Arm Limited

Small data files

allinea
MAP

File Edit View Window Help

Profiled: wave openmp on 1 process, 4 cores (4 per process) Started: Fri Nov 7 10:26:34 2014 Runtime: 30s Hide Metrics...

Application activity | I I | ‘

CPU floating-point (%)
0 - 70 (145avg)

Memory usage (kB)
44663 - 72,221 (68,908 avg)

10:26:34-10:27:04 (29.975s): Main thread compute 14 %, OpenMP 21 %, Overhead 64 %, Sleeping © % | CPU floating-point 14.5 %; Memory usage 68,908 kB; ﬂetrics,' Select All |

£ wave_openmp.c [£J |

' Al
f <= npoints; j++)
2 {
O% [{11 RNV oldvallj] = values[j];
SR A A ~ values[j] = newvalljl;
’ =

iterations;

Input/Output | Project Files ~ Stacks | OpenMP Regions |

Stacks 8 X
Time '\'IMPI IOverheadIFunction(s) on line ISource IPosition I
B & wave_openmp [program]
B # main wave_openmp.c:324
Elupdate iterations = update(left, right); wave openmp.c:357

41.0% I[N 00O

37.4% (1IN 00K CO00RE FORET 1T % update._omp_fn.0.constprop.1 #pragma omp parallel shared(newval, oldval, value.. wave openmp.c:213
16.2% [[INIININN 10 00 [0 oldval[j] = values[j]; wave_openmp.c:229
a.8%|[l B [N] nnil 4.8 omp_in_final #pragma omp parallel shared(newval, oldval, value.. Wave_openmp.c:213
0.5% | | 3 others
0.1%]| 1 other

[Allinea Ultimate map-smoketest-scripts-5.0 0a3f65bcf767 Nov. 7 2014 4

Aug. 8, ATPESC_2017
arm

Above all... allinea
Aimed at any performance problem that matters

- MAP focuses on time
Does not prejudge the problem

- Doesn’t assume it’s MPI messages, threads or 1/0
If there’s a problem..

- MAP shows you it, next to your code

Aug. 8, ATPESC_2017
28 © 2017 Arm Limited q r m

Scaling issue — 512 processes

29

hemelb_512p_2014-02-08_10-18.map - Allinea MAP 4.2-34164 [Trial Version]

File View Search Window Help

Showing data from 512000 samples taken over 512 processes (1000 per process)

Profiled: hemelb on 512 processes Started: Sat Feb 8 10:18:36 2014 Runtime: 308s Time in MPI: 58% Hide Metrics...
Memory usage (M) i ~1
218 - 1526 (1083 avg) g—“ ;
MPI call duration (ms) /"

0 - 11,789.1 (65.7 avg) . - ‘

CPU floating-point (%) - P T W hae oo R N g Y P Y R W o

0o - 100 (1lavg) i . 3 = 2 = S e = . Gy
10:18:36-10:23:43 (307.7305): Mean: Memory usage 108.3 M; MPI call duration 65.7 ms; CPU floating-point 10.6 %;

H] ger.h 3¢ o tion.cc 3¢ ™ StepManager.cc 3¢ I

56 std::string name; (a]
57 Action(Concern &concern, MethodLabel method) :
58 & concern(&concern), method(method)
59 {
60 }
61 —
62 =@ = =
63 Input/Output | Project Files | Parallel Stack View | ||
64 =
65 ‘arallel Stack View
B — gs fime A MPI Function(s) on line Source u
68 1.4% 0.1% hemelb::net::IteratedActi... RequestComms();
69 1.5% 1.3
70 = Call [inlined] CallActionsForStep(static cast<ste Step>(step), 0);
;; :IteratedActi... return concern->CallAction(method);
e =lhemelb::extraction::Pro... EndIteration();
74 —— =T hemelb::extraction::Pr... propertyWriter->Write(simulationState.GetTimeStep());
75 =’ hemelb::extraction::... localPropertyOutputs[outputNumber]->Write((uint64_t) iterationNumber);
76 343% .. R._.1. 0. 1, HBi1343% PMPI_File_write_at MPI_STATUS_IGNORE);
77 <0.1% <0.1
78 <0.1%
L <0.1% 1 o
Input/Output] Project Files ‘ Parallel Stack Vi<<g'§: o
Parallel Stack View - - e T S e an 1. — P N @®
Time ~ MPI FunciRMEineAata fram 812000 gamnlec taken nuer 812 nracaccac (10NN ner nracace) e [«]
1.4% 0.1% hemelb::net::IteratedActi... RequestComms(); IteratedAction.cc:27
1.5% 1.3
(= Call [inlined] CallActionsForStep(static_cast<steps::Step>(step), 0); StepManager.cc:127
] . return concern->CallAction(method); StepManager.h:67
. EndIteration(); IteratedAction.cc:39
. propertyWriter->Write(simulationState.GetTimeStep()); PropertyActor.cc:90
localPropertyOutputs [outputNumber] ->Write((uint64_t) iterationNumber); PropertyWriter.cc:42

34.3% .. R.-.A.. L MPI_STATUS_IGNORE); LocalPropertyOutput.cc:302

<0.1% <0.1

<0.1%

<0.1%

<0.1%

0.2% 2

Allinea MAP 4.2-34164

© 2017 Arm Limited

Simple fix... reduce periodicity of output

allinea
MAP

Aug. 8, ATPESC_2017

arm

Deeper insight into CPU usage

Runtime of application still unusually slow

CPU memory access (%) , — .. _—
0o - 90

CPU floating-point (%)

0 - 100 (55avg) T T s T
CPU integer (%)
0 - 20 (lavg)

(39avg) — T e i T - Pl

allinea
MAP

CPU floating point vector (%)
0 - 0 (O0avg)

CPU integer vector (%)

o - 0 (Davg)
CPU branch (%) ' B - _
0o - 50 (12avg) - — -— L 0L

07:44:28-07:44:55 (27.144s): Mean: CPU memory access 39.0 %; CPU floating-point 55.3 %; CPU integer 0.8 %; CPU floating point vector 0.0 %; CPU intege

Allinea MAP identifies vectorization close to zero

Why? Time to switch to a debugger!

30 © 2017 Arm Limited

Aug. 8, ATPESC_2017
arm

allinea

While still connected to the server we switch to the debugger 7

31

© 2017 Arm Limited

File Edit View Control Tools Window Help

._/—‘ allinea
2-$ FORGE

allinea
DDT

allinea
MAP

Support
Tutorials
allinea.com

RUN
Run and debug a program.

ATTACH
Attach to an already running program.

OPEN CORE
Open a core file from a previous run.

MANUAL LAUNCH (ADVANCED)
Manually launch the backend yourself.

OPTIONS

Remote Launch:

Joff [

QuIt

Allinea Ultimate map-smoketest-scripts-5.0 0a3f65bcf767 Nov. 7.2014 ,

Aug. 8, ATPESC_2017
arm

It’s already configured to reproduce the profiling run

File Edit View Control Tools Window Help

allinea
DDT

allinea
MAP

Support
Tutorials
allinea.com

Licence Serial: 4306

32 © 2017 Arm Limited

RUN
Run and debug a program.

ATTACH
Attach to an already running program.

OPEN CORE
Open a core file from a previous run.

MANUAL LAUNCH (ADVANCED)
Manually launch the backend yourself.

OPTIONS

Remote Launch:

|off =

QuIt

Application: /home/mark/wave_openmp/wave_openmp Details
Application: | /home/mark/wave_openmp/wave_openmp ;] = |
Arguments: I j

[~ stdin file: |/home/mark/Work/r/bench.R

Working Directory: |

¥ MPI: 1 process, Open MPI (Compatibility)

Number of MPC Tasks: I 1 32
Number of Processes: I 1 32
I~ Processes per Node | 1 =

Details

Implementation: Open MPI (Compatibility) Change... |

mpirun Arguments: l
[V OpenMP: 4 threads

Number of OpenMP threads: lﬂ
I~ cubA

[~ Memory Debugging

I~ Submit to Queue

Environment Variables: none

Plugins: none

Help Options |

[~

Details

Details

Details...

Configure... Parameters...
Details

Details

Run é I Cancel
V

[Allinea Ultimate map-smoketest-scripts-5.0 0a3f65bcf767 Nov. 7 2014

allinea
DDT

Aug. 8, ATPESC_2017
arm

Today’s Status on Scalability

Debugging and profiling

« Active users at 100,000+ cores debugging
« 50,000 cores was largest profiling tried to date (and was Very Successful)

- ... and active users with just 1 process too

Deployed on

« NERSC Cori, ORNL’s Titan, NCSA Blue Waters, ANL Mira etc.

« Hundreds of much smaller systems — academic, research, oil and gas, genomics, etc.

Tools help the full range of programmer ambition

+ Very small slow down with either tool (< 5%)

Aug. 8, ATPESC_2017
33 © 2017 Arm Limited q r m

Five great things to try with Allinea DDT allinea

InptOup | Bealguns | Wakhpuins | Tracepuns | TrcepinOuput | Sl (A1) r gf(? it : ?IEEE';:Z;;?’].H) & hello.c 3
Tracepoini Output Ci][3] = o; A\ This file is newer than your program. Please recompile then restart yol
Tocnl | puces | Valugs kgged F(i=0;i<SIZEM; i++) 43 else
for (j =0 ; j < SIZE N; j++) A 44 test=-1:
onef0gs | mp] e o W28 o - Tor (k=0 ; k < SIZE 0; kex) :
12,1467223,12 C[il[j] += A[il[k] * BIKI[j1; 2 ¥
, 0, ranks § | 46
o081 e, | T p © Program Stopped 47 = void func3()
0, ranks > (numpy . 48 {
vhone 085 aenan., | ™ ‘1 13N ol H‘ 18 mod Py MPI_S frocessio: 49 void* i = (void*) 1;
A 20, ranks e MPI R [&] Process stopped at watchpoint "rank" in main (watchmatrix.c:45). A 50 while(i++ I I 1)
hone RII2BN e . N old value: 0 51 free((void*)i):
hone 045 919, ranls e .,-ll W ol H‘ - - New value: 1074790400 A\ portability 'itis of type 'void *'. When using void pointers in calcula
12141722312 ¥ Always show this window for watchpoints
o, ranks . N Left click to add a breakpoint on line 50
T I e P o intf M | B continue H Pause H Pause Al | =
et [E15 [S— 56
vhone h | bl ® for (i = 0; S A I H H
57
The scalable print ¢ . 5 Static analysis warnings
vhone (081 prit tOp on varia (SH® ange ?2} -

alternative on code errors

&& !stremp(argv[i], "crash")) { Memory Usage for "AlL" group (16:49:14)
e; t to the top : <) processes
5", *(char **)argv[il); Fory Usage | Alocaton Tble |

Total Across Processes (in Bytes) Current Usage Actoss Processes i Bytes)
2250000

50032 200,000 3
1750000

1500000

1L segps Program Stopped

' Processes 0-3:

Memory error detected in main (hello.c:118):

1250000

null pointer dereference or unaligned memory access

100,000

rot Note: the latter may sometimes occur spuriously if gual 750000,
=L %r:)a:bUse the stack list and the local variables to explore e e
current state and identify the source of the error. 220000
ist.sl f T
- o; Detect read/write Detect stale memory

beyond array bounds allocations

Aug. 8, ATPESC_2017
34 © 2017 Arm Limited q r m

Six Great Things to Try with Allinea MAP

pute 76 %. MPI 24 %. File
Find the peak memory

use

Hide Metrics...

35 © 2017 Arm Limited

g Make sure OpenMP
regions make sense

30 ! late to the party
s 31 do j=1,20*nprocs; a

32 end if

33

34 = if (pe /= 0) then
% .. 35 call MPI_SEND(a, si

36 else

37 = do from=1,nprocs-1
% 38 call MPI_RECV(b,
% R 39 do j=1,50; b=sqrt
% 40 print *,"Answer f

41 end do

42 end if

43 end do
%

s 44] call MPI BARRIER(MPI CO
A

Fix an MPI imbalance

Improve memory access

allinea
MAP

Project Files | Main Thread Stacks | Functions
tacks

2 ~ MPI

Function(s) on line

= CallActionsSeparatedConcerns [in

= Call [inlined]
=hemelb::net::IteratedAction::Ce

=’hemelb::extraction::Property?

= hemelb::extraction::Property

IR 80.3% PMPI_File_write_at

LN e ¥ R

¥R Remove |/O bottleneck

size, nproc, mat a
Ali*size+k]*B[k*s

- emam F L o
na o Restructure for
YRS

vectorization

Aug. 8, ATPESC_2017
arm

Getting started on Theta 4 E&?&E

DDT + MAP

Install local client on your laptop

- www.allinea.com/products/forge/downloads
— Linux — installs full set of tools
- Windows, Mac — just a remote client to the remote system
« Run the installation and software
-« “Connect to remote host”
« Hosthame:

- username@theta.alcf.anl.gov

- Remote installation directory: /soft/debuggers/forge-7.0.6-2017-08-07/
« Click Test

Congratulations you are now ready to debug Theta.

Aug. 8, ATPESC_2017
36 © 2017 Arm Limited q r m

Hands on Session

Use Allinea DDT on your favorite system to debug your code — or example codes

Use Allinea MAP or Performance Reports on Cooley to see your code performance

Use Allinea DDT and Allinea MAP together to improve our test code

- Download examples from www.allinea.com - Trials menu, Resources — “trial guide”

Aug. 8, ATPESC_2017
37 © 2017 Arm Limited q r m

Thank you for your attention!

Contact:

« support@allinea.com

e support@arm.com

Download a trial for ATPESC (or later)

- http://www.allinea.com/trials

Aug. 8, ATPESC_2017
38 © 2017 Arm Limited q rm

