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U.S. DOE Potential System Architecture Targets 

ATPESC Workshop (07/30/2018) 

System attributes 2010 2018 2021-2022 

System peak 2 Peta 150-200 Petaflop/sec 1 Exaflop/sec 

Power 6 MW 15 MW 20 MW 

System memory 0.3 PB 5 PB 32-64 PB 

Node performance 125 GF 3 TF 30 TF 10 TF 100 TF 

Node memory BW 25 GB/s 0.1TB/sec 1 TB/sec 0.4TB/sec 4 TB/sec 

Node concurrency 12 O(100) O(1,000) O(1,000) O(10,000) 

System size (nodes) 18,700 50,000 5,000 100,000 10,000 

Total Node 
Interconnect BW 

1.5 GB/s 20 GB/sec 200GB/sec 

MTTI days O(1day) O(1 day) 

Current 
production 

Planned 
Upgrades 

(e.g., CORAL) 

Exascale 
Goals 

[Includes some modifications to the DOE Exascale report] 



General Trends in System Architecture 

 Number of nodes is increasing, but at a moderate pace 

 Number of cores/threads on a node is increasing rapidly 

 Each core is not increasing in speed (clock frequency) 

 Chip logic complexity decreasing (in-order instructions, no 

pipelining, no branch prediction) 

 What does this mean for networks? 

– More cores will drive the network 

– More sharing of the network infrastructure 

– The aggregate amount of communication from each node will 

increase moderately, but will be divided into many smaller messages 

– A single core will not be able to drive the network fully 
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A Simplified Network Architecture 

 Hardware components 

– Processing cores and 

memory subsystem 

– I/O bus or links 

– Network 

adapters/switches 

 Software components 

– Communication stack 

 Balanced approach 

required to maximize 

user-perceived network 

performance 
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Bottlenecks on Traditional Network Adapters 

 Network speeds saturated at 

around 1Gbps 

– Features provided were limited 

– Commodity networks were not 

considered scalable enough for 

very large-scale systems 

ATPESC Workshop (07/30/2018) 

P0 

Core0 Core1 

Core2 Core3 

P1 

Core0 Core1 

Core2 Core3 

Memory 

Memory I

/

O

 

B

u

s 

Network Adapter 

Network 

Switch 

Network 

Bottlenecks 

Ethernet (1979 - ) 10 Mbit/sec 

Fast Ethernet (1993 -) 100 Mbit/sec 

Gigabit Ethernet (1995 -) 1000 Mbit /sec 

ATM (1995 -) 155/622/1024 Mbit/sec 

Myrinet (1993 -) 1 Gbit/sec 

Fibre Channel (1994 -) 1 Gbit/sec 



End-host Network Interface Speeds 

 Recent network technologies provide high bandwidth links 

– InfiniBand EDR gives 100 Gbps per network link 

• Upcoming networks expected to increase that by several fold 

– Multiple network links becoming a common place 

• ORNL Summit and LLNL Sierra machines, Japanese Post T2K machine 

• Torus style or other multi-dimensional networks 

 End-host peak network bandwidth is “mostly” no longer 

considered a major limitation 

 Network latency is still an issue 

– That’s a harder problem to solve – limited by physics, not technology 

• There is some room to improve it in current technology (trimming the fat) 

• Significant effort in making systems denser so as to reduce network latency 

 Other important metrics: message rate, congestion, … 
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Simple Network Architecture (past systems) 

 Processor, memory, 

network are all 

decoupled 
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Integrated Memory Controllers (current systems) 

 In the past 10 years or so, memory 

controllers have been integrated on 

to the processor 

 Primary purpose was scalable 

memory bandwidth (NUMA) 

 Also helps network communication 

– Data transfer to/from network requires 

coordination with caches 

 Several network I/O technologies 

exist 

– PCIe, HTX, NVLink 

– Expected to provide higher bandwidth 

than what network links will have 
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Integrated Networks (current/future systems) 
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 May improve network bandwidth 

– Unclear if the I/O bus would be a 
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 Improves network latencies 

– Control messages between the 
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Processing Bottlenecks in Traditional Protocols 

 Ex: TCP/IP, UDP/IP 

 Generic architecture for all networks 

 Host processor handles almost all 

aspects of communication 

– Data buffering (copies on sender and 

receiver) 

– Data integrity (checksum) 

– Routing aspects (IP routing) 

 Signaling between different layers 

– Hardware interrupt on packet arrival or 

transmission 

– Software signals between different 

layers to handle protocol processing in 

different priority levels 
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Network Protocol Stacks: The Offload Era 

 Modern networks are spending more and more network real-estate on 

offloading various communication features on hardware 

 Network and transport layers are hardware offloaded for most modern 

networks 

– Reliability (retransmissions, CRC checks), packetization 

– OS-based memory registration, and user-level data transmission 
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Comparing Offloaded Network Stacks with 

Traditional Network Stacks 
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Current State for Network APIs 

 A large number of network vendor specific APIs 

– InfiniBand verbs, Intel PSM2, IBM PAMI, Cray Gemini/DMAPP, … 

 Recent efforts to standardize these low-level communication 

APIs 

– Open Fabrics Interface (OFI) 

• Effort from Intel, CISCO, etc., to provide a unified low-level communication 

layer that exposes features provided by each network 

– Unified Communication X (UCX) 

• Effort from Mellanox, IBM, ORNL, etc., to provide a unified low-level 

communication layer that allows for efficient MPI and PGAS communication 

– Portals 4 

• Effort from Sandia National Laboratory to provide a network hardware 

capability centric API 
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User-level Communication: Memory Registration 
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1. Registration Request  

• Send virtual address and length 

2. Kernel handles virtual->physical 

mapping and pins region into 

physical memory 

• Process cannot map memory 

that it does not own (security !) 

3. Network adapter caches the 

virtual to physical mapping and 

issues a handle 

4. Handle is returned to application 

Before we do any communication: 
All memory used for communication must 

be registered 
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User-level Communication: OS Bypass 

ATPESC Workshop (07/30/2018) 

Process 
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User-level APIs allow direct interaction with 
network adapters  Contrast with traditional network 

APIs that trap down to the kernel 

 

 Eliminates heavyweight context 

switch 

 

 Memory registration caches allow 

for fast buffer re-use, further 

reducing dependence on the 

kernel 



Send/Receive Communication 
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PUT/GET Communication 
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Atomic Operations 
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Network Protocol Stacks: Specialization 

 Increasing network specialization is the focus today 

– The next generation of networks plan to have further support for 

noncontiguous data movement, and multiple contexts for multithreaded 

architectures 

 Some networks, such as the Blue Gene network, Cray network and 

InfiniBand, are also offloading some MPI and PGAS features on to 

hardware 

– E.g., PUT/GET communication has hardware support 

– Increasing number of atomic operations being offloaded to hardware 

• Compare-and-swap, fetch-and-add, swap 

– Collective operations (NIC and switch support) 

– Hardware tag matching for MPI send/recv 

• Cray Seastar, Bull BXI, Mellanox Infiniband (ConnectX-5 and later) 
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Traditional Network Topologies: Crossbar 

 A network topology describes how different network 

adapters and switches are interconnected with each other 

 The ideal network topology (for performance) is a crossbar 

– Alltoall connection between network adapters 

– Typically done on a single network ASIC 

– Current network crossbar ASICs go up to 64 ports; too expensive to 

scale to higher port counts 

– All communication is nonblocking 
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Traditional Network Topologies: Fat-tree 

 The most common topology for small and medium scale 

systems is a fat-tree 

– Nonblocking fat-tree switches available in abundance 

• Allows for pseudo nonblocking communication 

• Between all pairs of processes, there exists a completely nonblocking 

path, but not all paths are nonblocking 

– More scalable than crossbars, but the number of network links still 

increases super-linearly with node count 

• Can get very expensive with scale 
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Network Topology Trends 

 Modern topologies are moving towards 

more “scalability” (with respect to cost, not 

performance) 

 Blue Gene, Cray XE/XK, and K 

supercomputers use a torus-network; Cray 

XC uses dragonfly 

– Linear increase in the number of 

links/routers with system size 

– Any communication that is more than one 

hop away has a possibility of interference – 

congestion is not just possible, but common 

– Even when there is no congestion, such 

topologies increase the network diameter 

causing performance loss 

 Take-away: topological locality is important 

and its not going to get better 
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Network Congestion Behavior: IBM BG/P 
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2D Nearest Neighbor: Process Mapping (XYZ) 
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Nearest Neighbor Performance: IBM BG/P 
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Network Interactions with Memory/Cache 

 Most network interfaces understand and work with the cache 

coherence protocols available on modern systems 

– Users do not have to ensure that data is flushed from cache before 

communication 

– Network and memory controller hardware understand what state the 

data is in and communicate appropriately 
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Send-side Network Communication 
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Receive-side Network Communication 
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Network/Processor Interoperation Trends 

 Direct cache injection 

– Most current networks inject data into memory 

• If data is in cache, they flush cache and then inject to memory 

– Some networks are investigating direct cache injection 

• Data can be injected directly into the last-level cache 

• Can be tricky since it can cause cache pollution if the incoming data is not 

used immediately 

 Atomic operations 

– Current network atomic operations are only atomic with respect to 

other network operations and not with respect to processor atomics 

• E.g., network fetch-and-add and processor fetch-and-add might corrupt 

each other’s data 

– With network/processor integration, this is expected to be fixed 
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Network Interactions with Accelerators 

 PCI Express peer-to-peer capabilities enables network 

adapters to directly access third-party devices 

– Coordination between network adapter and accelerator (GPUs, 

FPGAs, …) 

– Data does not need to be copied into to/from buffers when going over 

the network 

– GPUDirect RDMA one example, but not limited to NVIDIA GPUs 
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Summary 

 These are interesting times for all components in the overall 

system architecture: processor, memory, interconnect 

– And interesting times for computational science on these systems 

 Interconnect technology is rapidly advancing 

– More hardware integration is the key to removing bottlenecks and 

improve functionality 

• Processor/memory/network integration is already in progress and will 

continue for the foreseeable future 

– Offload technologies continue to evolve as we move more 

functionality to the network hardware 

– Network topologies are becoming more “shared” (cost saving) 
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Thank You! 

Email: raffenet@mcs.anl.gov 


