Unstructured Meshing Technologies

Presented to
ATPESC 2020 Participants

Aaron Fisher (LLNL) & Mark Shephard (RPI)

Date 08/04/2020
Finite elements are a good foundation for large-scale simulations on current and future architectures

- Backed by well-developed theory.
- Naturally support unstructured and curvilinear grids.
- **High-order finite elements on high-order meshes**
 - Increased accuracy for smooth problems
 - Sub-element modeling for problems with shocks
 - Bridge unstructured/structured grids
 - Bridge sparse/dense linear algebra
 - FLOPs/bytes increase with the order
- Demonstrated match for compressible shock hydrodynamics (BLAST).
- Applicable to variety of physics (DeRham complex).

\[
\begin{align*}
H(\text{grad}) & \xrightarrow{\nabla} H(\text{curl}) & \xrightarrow{\nabla \times} H(\text{div}) & \xrightarrow{\nabla \cdot} L^2
\end{align*}
\]

- High-order kinematics
- High-order MHD
- High-order rad. diff.
- High-order thermodynamics

Non-conforming mesh refinement on high-order curved meshes

8th order Lagrangian hydro simulation of a shock triple-point interaction
Modular Finite Element Methods (MFEM)

MFEM is an open-source C++ library for scalable FE research and fast application prototyping

- Triangular, quadrilateral, tetrahedral and hexahedral; volume and surface meshes
- Arbitrary order curvilinear mesh elements
- Arbitrary-order H^1, $H(\text{curl})$, $H(\text{div})$- and L^2 elements
- Local conforming and non-conforming refinement
- NURBS geometries and discretizations
- Bilinear/linear forms for variety of methods (Galerkin, DG, DPG, Isogeometric, …)
- Integrated with: HYPRE, SUNDIALS, PETSc, SUPERLU, PUMI, VisIt, Spack, xSDK, OpenHPC, and more …
- Parallel and highly performant
- Main component of ECP’s co-design Center for Efficient Exascale Discretizations (CEED)
- Native “in-situ” visualization: GLVis, glvis.org

mfem.org
(v3.4, May/2018)
Example 1 – Laplace equation

- **Mesh**
  ```
  // 2. Read the mesh from the given mesh file. We can handle triangular,
  // quadrilateral, tetrahedral, hexahedral, surface and volume meshes with
  // the same code.
  mesh = mesh;
  if(mesh)
    { 
      mesh = new Mesh(mesh, 1, 1);
      mesh.close();
      int dim = mesh.Dimension();
      // 3. Refine the mesh to increase the resolution. In this example we do
      // 'ref_levels' of uniform refinement. We choose 'ref_levels' to be the
      // largest number that gives a final mesh with no more than 50,000.
      for(int l = 0; l < ref_levels; l++)
        mesh->UniformRefinement();
  }
  ```

- **Finite element space**

- **Initial guess, linear/bilinear forms**

- **Linear solve**

- **Visualization**
  ```
  // 10. Send the solution by socket to a CLVis server.
  if (visualization)
    {
      char wishport[] = "localhost";
      int visport = 10914;
      socketstream sol_sock(wishport, visport);
      sol_sock.precision(8);
      sol_sock << "solution\n" << mesh << x << flush;
    }
  ```

- **Results**
 - works for any mesh & any H1 order
 - builds without external dependencies
Example 1 – Laplace equation

- Mesh

```cpp
63 // 2. Read the mesh from the given mesh file. We can handle triangular,
64 // quadrilateral, tetrahedral, hexahedral, surface and volume meshes with
65 // the same code.
66 Mesh *mesh;
67 ifstream imesh(mesh_file);
68 if (!imesh)
69 {
70   cerr << "Can not open mesh file: " << mesh_file << 'n' << endl;
71   return 2;
72 }
73 mesh = new Mesh(imesh, 1, 1);
74 imesh.close();
75 int dim = mesh->Dimension();
76
77 // 3. Refine the mesh to increase the resolution. In this example we do
78 // 'ref_levels' of uniform refinement. We choose 'ref_levels' to be the
79 // largest number that gives a final mesh with no more than 50,000
80 // elements.
81 {
82   int ref_levels =
83     (int)floor(log(50000./mesh->GetNE())/log(2.)/dim);
84   for (int l = 0; l < ref_levels; l++)
85     mesh->UniformRefinement();
```
Example 1 – Laplace equation

- Finite element space

```cpp
// 4. Define a finite element space on the mesh. Here we use continuous
//     Lagrange finite elements of the specified order. If order < 1, we
//     instead use an isoparametric/isogeometric space.

FiniteElementCollection *fec;
if (order > 0)
    fec = new H1_FECollection(order, dim);
else if (mesh->GetNodes())
    fec = mesh->GetNodes()->OwnFEC();
else
    fec = new H1_FECollection(order = 1, dim);
FiniteElementSpace *fespace = new FiniteElementSpace(mesh, fec);
cout << "Number of unknowns: " << fespace->GetVSize() << endl;
```
Example 1 – Laplace equation

- Initial guess, linear/bilinear forms

```c++
// 5. Set up the linear form b(.) which corresponds to the right-hand side of
// the FEM linear system, which in this case is (1,phi_i) where phi_i are
// the basis functions in the finite element fespace.
LinearForm *b = new LinearForm(fespace);
ConstantCoefficient one(1.0);
b->AddDomainIntegrator(new DomainLFIntegrator(one));
b->Assemble();

// 6. Define the solution vector x as a finite element grid function
// corresponding to fespace. Initialize x with initial guess of zero,
// which satisfies the boundary conditions.
GridFunction x(fespace);
x = 0.0;

// 7. Set up the bilinear form a(.,.) on the finite element space
// corresponding to the Laplacian operator -Delta, by adding the Diffusion
// domain integrator and imposing homogeneous Dirichlet boundary
// conditions. The boundary conditions are implemented by marking all the
// boundary attributes from the mesh as essential (Dirichlet). After
// assembly and finalizing we extract the corresponding sparse matrix A.
BilinearForm *a = new BilinearForm(fespace);
a->AddDomainIntegrator(new DiffusionIntegrator(one));
a->Assemble();
Array<int> ess_bdr(mesh->bdr_attributes.Max());
ess_bdr = 1;
a->EliminateEssentialBC(ess_bdr, x, *b);
a->Finalize();
const SparseMatrix &A = a->SpMat();
```
Example 1 – Laplace equation

- **Linear solve**

```c
#define MFEM_USE_SUITESPARSE

// 8. Define a simple symmetric Gauss-Seidel preconditioner and use it to
// solve the system Ax=b with PCG.
GSSmoother M(A);
PCG(A, M, *b, x, 1, 200, 1e-12, 0.0);
```

- **Visualization**

```c
// 10. Send the solution by socket to a GLVis server.
if (visualization)
{
  char vishost[] = "localhost";
  int visport = 19916;
  socketstream sol_sock(vishost, visport);
  sol_sock.precision(8);
  sol_sock << "solution\n" << *mesh << x << flush;

```
Example 1 – parallel Laplace equation

- **Parallel mesh**

- **Parallel finite element space**

- **Parallel initial guess, linear/bilinear forms**

- **Parallel assembly**

- **Parallel linear solve with AMG**

- **Visualization**

- highly scalable with minimal changes

- build depends on *hypre* and METIS
MFEM example codes – mfem.org/examples

Example 1: Laplace Problem

This example code demonstrates the use of MFEM to define a simple isoparametric finite element discretization of the Laplace problem

\[-\Delta u - 1\]

with homogeneous Dirichlet boundary conditions. Specifically, we discretize with the FE space coming from the mesh (linear by default, quadratics for quadratic curvilinear mesh, NURBS for NURBS mesh, etc.).

The example highlights the use of mesh refinement, finite element grid functions, as well as linear and bilinear forms corresponding to the left-hand side and right-hand side of the discrete linear system. We also cover the explicit elimination of boundary conditions on all boundary edges, and the optional connection to the GLVis tool for visualization.

The example has a serial (ex1.cpp) and a parallel (ex1c.cpp) version.

Example 2: Linear Elasticity

This example code solves a simple linear elasticity problem describing a multi-material cantilever beam. Specifically, we approximate the weak form of

\[-\text{div}(\sigma(u)) = 0\]

where

\[\sigma(u) = \lambda \text{div}(u) I + \mu (\nabla u + \nabla u^T)\]

is the stress tensor corresponding to displacement field \(u\), and \(\lambda\) and \(\mu\) are the material Lame constants. The boundary conditions are \(u = 0\) on the fixed part of the boundary with attribute 1, and \(\sigma(u) \cdot n = f\) on the remainder with \(f\) being a constant pull down vector on boundary elements with attribute 2, and zero otherwise. The geometry of the domain is assumed to be as follows:

- boundary attribute 1 (fixed)
- material 1
- material 2
- boundary attribute 2 (pull down)
Discretization Demo & Lesson

https://xsdk-project.github.io/MathPackagesTraining2020/lessons/mfem_convergence/
Application to high-order ALE shock hydrodynamics

- **hypre**: Scalable linear solvers library
- **MFEM**: Modular finite element methods library
- **BLAST**: High-order ALE shock hydrodynamics research code

- **hypre** provides scalable algebraic multigrid solvers
- **MFEM** provides finite element discretization abstractions
 - uses **hypre**’s parallel data structures, provides finite element info to solvers
- **BLAST** solves the Euler equations using a high-order ALE framework
 - combines and extends **MFEM**’s objects

www.llnl.gov/casc/hypre
www.llnl.gov/casc/blast
www.mfem.org
BLAST models shock hydrodynamics using high-order FEM in both Lagrangian and Remap phases of ALE.

Lagrange phase
Physical time evolution
Based on physical motion

Remap phase
Pseudo-time evolution
Based on mesh motion

Lagrangian phase ($\vec{c} = \vec{0}$)

- **Momentum Conservation:**
 \[
 \frac{d\vec{v}}{dt} = \nabla \cdot \sigma
 \]

- **Mass Conservation:**
 \[
 \frac{d\rho}{dt} = -\rho \nabla \cdot \vec{v}
 \]

- **Energy Conservation:**
 \[
 \frac{de}{dt} = \sigma : \nabla \vec{v}
 \]

- **Equation of Motion:**
 \[
 \frac{d\vec{x}}{dt} = \vec{v}
 \]

Galerkin FEM

- Gauss-Lobatto basis

Discont. Galerkin

- Bernstein basis

Advection phase ($\vec{c} = -\vec{v}_m$)

- **Momentum Conservation:**
 \[
 \frac{d(\rho \vec{v})}{d\tau} = \vec{v}_m \cdot \nabla (\rho \vec{v})
 \]

- **Mass Conservation:**
 \[
 \frac{d\rho}{d\tau} = \vec{v}_m \cdot \nabla \rho
 \]

- **Energy Conservation:**
 \[
 \frac{d(\rho e)}{d\tau} = \vec{v}_m \cdot \nabla (\rho e)
 \]

- **Mesh velocity:**
 \[
 \vec{v}_m = \frac{d\vec{x}}{d\tau}
 \]
High-order finite elements lead to more accurate, robust and reliable hydrodynamic simulations.

Parallel ALE for Q4 Rayleigh-Taylor instability (256 cores)

Robustness in Lagrangian shock-3pt axisymmm. interaction

Symmetry in 3D implosion

Symmetry in Sedov blast
High-order finite elements have excellent strong scalability

Strong scaling, p-refinement

- Approximately 600 dofs/zone
- 1 zone/core

Strong scaling, fixed #dofs

- 2D 256K DOFs
- 256 cores
- More FLOPs, same runtime

Finite element partial assembly

FLOPs increase faster than runtime
Unstructured Mesh R&D: Mesh optimization and high-quality interpolation between meshes

We target high-order curved elements + unstructured meshes + moving meshes

High-order mesh relaxation by neo-Hookean evolution (Example 10, ALE remesh)

DG advection-based interpolation (ALE remap, Example 9, radiation transport)
Unstructured Mesh R&D: Accurate and flexible finite element visualization

Two visualization options for high-order functions on high-order meshes

GLVis: native MFEM lightweight OpenGL visualization tool

Visit: general data analysis tool, MFEM support since version 2.9

BLAST computation on 2nd order tet mesh

glvis.org

visit.llnl.gov
MFEM’s unstructured AMR infrastructure

Adaptive mesh refinement on library level:

- Conforming local refinement on simplex meshes
- *Non-conforming refinement for quad/hex meshes*
- h-refinement with fixed p

General approach:

- any high-order finite element space, H_1, $H(\text{curl})$, $H(\text{div})$, …, on any high-order curved mesh
- 2D and 3D
- arbitrary order hanging nodes
- anisotropic refinement
- derefinement
- serial and parallel, including parallel load balancing
- independent of the physics (easy to incorporate in applications)
Nonconforming variational restriction
Nonconforming variational restriction

Regular assembly of A on the elements of the (cut) mesh
Nonconforming variational restriction

Conforming solution $y = P x$
AMR = smaller error for same number of unknowns

2D Shock-like Problem AMR Benchmark (Quad Mesh, Anisotropic Refinements)

Approximation error (H1 seminorm) vs. Square root of the number of unknowns for different orders of AMR:
- 1st order AMR
- 2nd order AMR
- 4th order AMR
- 8th order AMR

Uniform refinement and anisotropic adaptations for 1st, 2nd, 4th, and 8th order.
Parallel dynamic AMR, Lagrangian Sedov problem

Adaptive, viscosity-based refinement and derefinement. 2nd order Lagrangian Sedov

Parallel load balancing based on space-filling curve partitioning, 16 cores
Parallel AMR scaling to ~400K MPI tasks

- weak+strong scaling up to ~400K MPI tasks on BG/Q
- **measure AMR only components**: interpolation matrix, assembly, marking, refinement & rebalancing (no linear solves, no “physics”)

Parallel decomposition
(2048 domains shown)

Parallel partitioning via Hilbert curve
- PDE-based simulations on **unstructured grids**
- **high-order** and **spectral** finite elements
 - ✓ any order space on any order mesh ✓ curved meshes,
 - ✓ unstructured AMR ✓ optimized low-order support

- state-of-the-art CEED discretization libraries
 - ✓ better exploit the hardware to deliver significant performance gain over conventional methods
 - ✓ based on MFEM/Nek, low & high-level APIs

2 Labs, 5 Universities, 30+ researchers
All runs done on BG/Q (for repeatability), 8192 cores in C32 mode. Order $p = 1, \ldots, 16$; quad. points $q = p + 2$.

BP1 results of MFEM+xlc (left), MFEM+xlc+intrinsics (center), and deal.ii + gcc (right) on BG/Q.

Preliminary results – paper in preparation

Cooperation/collaboration is what makes the bake-offs rewarding.
High-order methods show promise for high-quality & performance simulations on exascale platforms

- **More information and publications**
 - MFEM – mfem.org
 - BLAST – computation.llnl.gov/projects/blast
 - CEED – ceed.exascaleproject.org

- **Open-source software**

- **Ongoing R&D**
 - Porting to GPUs: Summit and Sierra
 - Efficient high-order methods on simplices
 - Matrix-free scalable preconditioners

Q4 Rayleigh-Taylor single-material ALE on 256 processors
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

LLNL-PRES-755924

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.
Fundamental finite element operator decomposition

The assembly/evaluation of FEM operators can be decomposed into parallel, mesh topology, basis, and geometry/physics components:

\[
A = P^T G^T B^T D B G P
\]

- **Partial assembly** = store only \(D \), evaluate \(B \) (tensor-product structure)
- better representation than \(A \): optimal memory, near-optimal FLOPs
- purely algebraic, applicable to many apps
CEED high-order benchmarks (BPs)

- **CEED's bake-off problems** (BPs) are high-order kernels/benchmarks designed to test and compare the performance of high-order codes.
 - **BP1**: Solve \(\{ M u = f \} \), where \(\{ M \} \) is the mass matrix, \(q=p+2 \)
 - **BP2**: Solve the vector system \(\{ M u_i = f_i \} \) with \(\{ M \} \) from BP1, \(q=p+2 \)
 - **BP3**: Solve \(\{ A u = f \} \), where \(\{ A \} \) is the Poisson operator, \(q=p+2 \)
 - **BP4**: Solve the vector system \(\{ A u_i = f_i \} \) with \(\{ A \} \) from BP3, \(q=p+2 \)
 - **BP5**: Solve \(\{ A u = f \} \), where \(\{ A \} \) is the Poisson operator, \(q=p+1 \)
 - **BP6**: Solve the vector system \(\{ A u_i = f_i \} \) with \(\{ A \} \) from BP3, \(q=p+1 \)

- Compared Nek and MFEM implementations on BG/Q, KNLs, GPUs.
- Community involvement – deal.ii, interested in seeing your results.
- Goal is to learn from each other, benefit all CEED-enabled apps.

github.com/ceed/benchmarks
Tensorized partial assembly

\[B_{ki} = \varphi_i(q_k) = \varphi_{i1}^{1d}(q_{k1})\varphi_{i2}^{1d}(q_{k2}) = B_{k1i1}^{1d}B_{k2i2}^{1d} \]

\[U_{k1k2} = B_{k1i1}^{1d}B_{k2i2}^{1d}V_{i1i2} \rightarrow U = B^{1d}V(B^{1d})^T \]

\(p \) – order, \(d \) – mesh dim, \(O(p^d) \) – dofs

<table>
<thead>
<tr>
<th>Method</th>
<th>Memory</th>
<th>Assembly</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Matrix</td>
<td>(O(p^{2d}))</td>
<td>(O(p^{3d}))</td>
<td>(O(p^{2d}))</td>
</tr>
<tr>
<td>Partial Assembly</td>
<td>(O(p^d))</td>
<td>(O(p^d))</td>
<td>(O(p^{d+1}))</td>
</tr>
</tbody>
</table>

Storage and floating point operation scaling for different assembly types

Poisson CG solve performance with different assembly types (higher is better)

Full matrix performance drops sharply at high orders while partial assembly scales well!
FASTMath Unstructured Mesh Technologies

K.D. Devine¹, V. Dobrev, D.A. Ibanez¹, T. Kolev², K.E. Jansen³, O. Sahni³, A.G. Salinger¹, S. Seol⁴, M.S. Shephard⁴, C.W. Smith⁴

¹Sandia National Laboratories
²Lawrence Livermore National Laboratory
³University of Colorado
⁴Rensselaer Polytechnic Institute
Unstructured Mesh Methods

Unstructured mesh – a spatial domain discretization composed of topological entities with general connectivity and shape

Advantages

- Automatic mesh generation for any level of geometric complexity
- Can provide the highest accuracy on a per degree of freedom basis
- General mesh anisotropy possible
- Meshes can easily be adaptively modified
- Given a proper geometric model, with analysis attributes defined on that model, the entire simulation work flow can be automated

Disadvantages

- More complex data structures and increased program complexity, particularly in parallel
- Requires careful mesh quality control (level required a function of the unstructured mesh analysis code)
- Poorly shaped elements increase condition number of global system – makes matrix solves harder
Unstructured Mesh Methods

Goal of FASTMath unstructured mesh technologies:

• Component-based tools that take full advantage of unstructured mesh methods and are easily used by analysis code developers and users

• Components operate through multi-level APIs that increase interoperability and ease integration

• Unstructured mesh tools to address needs and eliminate/minimize disadvantages of unstructured meshes

• Integration of these technologies with their tools to address application needs that arise
FASTMath Unstructured Mesh Developments

Areas of Technology development:

• Unstructured Mesh Analysis Codes – Support application’s PDE solution needs – MFEM is a key example code

• Performant Mesh Adaptation – Parallel mesh adaptation to integrate into analysis codes to ensure solution accuracy

• Dynamic Load Balancing and Task Management – Technologies to ensure load balance and the effective execution of applications on heterogeneous systems

• Unstructured Mesh for PIC – Tools to support PIC on unstructured meshes

• Unstructured Mesh for UQ – Bringing unstructured mesh adaptation to UQ

• In Situ Vis and Data Analytics – Tools to gain insight as simulations execute
Performant Unstructured Meshes

• Goal
 — Unstructured meshing technologies that execute on exascale systems
 — Develop versions of tools that run on accelerators (GPUs)
 — Strive to have all operations on execute on GPUs

• Developing GPU based versions of
 — Unstructured mesh solvers (MFEM, etc.)
 — Mesh adaptation (Omega_h)
 — PIC operations on Unstructured Meshes

• Relevant Software Tools
 — MFEM
 — Omega_h (https://github.com/ibaned/omega_h)
 — PUMIpic
Parallel Unstructured Mesh Infrastructure

Key unstructured mesh technology needed by applications

- Effective parallel representation for adaptive mesh control and geometry interaction provided by PUMI and Omega_h

- Base parallel functions
 - Partitioned mesh control and modification
 - Read only copies for application needs
 - Associated data, grouping, etc.

- Attached fields supported
Mesh Generation, Adaptation and Optimization

Mesh Generation

- Automatically mesh complex domains – should work directly from CAD, image data, etc.
- Use tools like Gmsh, Simmetrix, etc.

Mesh Adaptation must

- Use \textit{a posteriori} information to improve mesh based on discretization errors or user supplied solution based criteria
- Account for curved geometry (fixed and evolving)
- Support general anisotropic adaptation
- Support some forms of mixed mesh adaptation

Parallel execution of all functions critical on large meshes
General Mesh Modification for Mesh Adaptation

- Driven by an anisotropic mesh size field that can be set by any combination of criteria
 - Employ a “general set” of mesh modification operations to alter the mesh into one that matches the given mesh size field
- Advantages
 - Supports anisotropic meshes
 - Can obtain level of accuracy desired
 - Can deal with any level of geometric domain complexity
 - Solution transfer can be applied incrementally - provides more control to satisfy conservation constraints
Mesh Adaptation Status

- Applied to very large scale models – 92B elements on 3.1M processes on ¾ million cores
- Local solution transfer supported through callback
- Effective storage of solution fields on meshes
- Supports adaptation with boundary layer meshes
Mesh Adaptation Status

• Supports adaptation of curved elements

• Adaptation based on multiple criteria, examples
 – Level sets at interfaces
 – Tracking particles
 – Discretization errors
 – Controlling element shape in evolving geometry problems
Dynamic Load Balancing

• Purpose: to rebalance load during an evolving simulation (mesh adaptation, particle moving through mesh, etc.)
 – Goal is equal “work load” with minimum inter-process communications

• FASTMath load balancing tools
 – Zoltan/Zoltan2 libraries that provide multiple dynamic partitioners with general control of partition objects and weights
 – EnGPar diffusive multi-criteria partition improvement
Architecture-aware partitioning and task mapping reduce application communication time at extreme scale

- **Partitioning and load balancing**: assign work to processes in ways that avoid process idle time and minimize communication

- **Task mapping**: assign processes to cores in ways that reduce messages distances and network congestion

- **Important in extreme-scale systems**:
 - Small load imbalances can waste many resources
 - Large-scale networks can cause messages to travel long routes and induce congestion

- **Challenge** to develop algorithms that…
 - account for underlying architectures & hierarchies
 - run effectively side-by-side with application across many platforms (multicore, GPU)
Zoltan/Zoltan2 Toolkits: Partitioners

Suite of partitioners supports a wide range of applications; no single partitioner is best for all applications.

Geometric

- Recursive Coordinate Bisection
- Recursive Inertial Bisection
- Multi-Jagged Multi-section

Topology-based

- PHG Graph Partitioning
- Interface to ParMETIS (U. Minnesota)
- Interface to PT-Scotch (U. Bordeaux)

- PHG Hypergraph Partitioning
 Interface to PaToH (Ohio St.)
EnGPar quickly reduces large imbalances on (hyper)graphs with billions of edges on up to 512K processes

- Multi-(hyper)graph supports representing multiple types of dependencies between application work items
- Loop over application defined list of edge types
- Diffusion sends boundary edges from heavily loaded parts to lighter parts
 - Bias selection towards edges that are far from the graph ‘center’
 - Multiple traversals of boundary with increasing limit of edge degree
 - Receiver cancels send if it imbalances higher priority edge type
- On a 1.3B element mesh EnGPar reduced a 53% vtx imbalance to 6%, elm imbalance of 5%, edge cut increase by 1% (took 8 seconds)
Parallel Unstructured Mesh PIC – PUMIpic

Current approaches have copy of entire mesh on each process

PUMIpic supports a distributed mesh
- Employ large overlaps to avoid communication during push
- All particle information accessed through the mesh

\[\frac{dx}{dt} = v \]
\[m \frac{dv}{dt} = F = q(E(x) + v \times B(x)) \]

Red and Blue designate quantities associated with particles and mesh, resp.

Field solve on mesh with new RHS
\[\nabla^2 \phi(x) = 4 \pi \rho(x) \]
\[E(x) = -\nabla \phi(x) \]
Parallel Unstructured Mesh PIC – PUMIpic

- Components interacting with mesh
 - Mesh distribution
 - Particle migration
 - Adjacency search
 - Charge-to-mesh mapping
 - Field-to-Particle mapping
 - Dynamic load balancing
 - Continuum solve

- Builds on parallel unstructured mesh infrastructure

- Developing set of components to be integrated into applications
 - XGC – Gyrokinetic Code
 - GITR - Impurity Transport

Require knowledge of element that particle is in after push
- Particle motion “small” per time step
- Using mesh adjacencies on distributed mesh
- Overall 4 times improvement
PUMIpic Data Structures

- The layout of particles in memory is critical for high performance push, scatter, and gather operations on GPUs.

- Mesh data structure requirements:
 - Provide required adjacency information on GPU
 - Reduce irregular memory accesses by building arrays of mesh field information needed for particles.

- Particle data structure requirements:
 - Optimizes push, scatter, and gather operations
 - Associates particles with mesh elements
 - Changes in the number of particles per element
 - Evenly distributes work with a range of particle distributions (e.g. uniform, Gaussian, exponential, etc.)
 - Stores a lot of particles per GPU – low overhead
Mesh Data – Omega_h

- Omega_h features
 - Compact arrays ordered so that adjacent entities are aligned
 - BFS-like algorithms for effective local serial
 - Space filling curves to support parallelization
 - Independent set construction (currently for mesh adaptation)
 - On-node OpenMP or CUDA parallelism using Kokkos

github.com/ibaned/omega_h
Particle Data Structures (cont.)

- Particles associated with elements in mesh
- Sell-C-σ (SCS) structure selected
 - Layout: rotated and sorted CSR, a row has the particles of an element
 - Pros – Fast push, lower memory usage for scatter/gather
 - Cons – Complexity
- Demonstrated good strong scaling for required PIC operations of 4096 nodes (24567 GPU’s) on Summit

SCS with vertical slicing (bottom)
Besta, Marending, Hoefler, IPDPS 2017
PUMIpic for XGC Gyrokinetic Code

- XGC uses a 2D poloidal plane mesh considering particle paths
 - Mesh distribution takes advantage of physics defined model/mesh
 - Separate parallel field solve on each poloidal plane
- XGC gyro-averaging for Charge-to-Mesh
- PETSc used for field solve
 - Solves on each plane
 - Mesh partitioned over $N_{\text{ranks}}/N_{\text{planes}}$ ranks
 - Ranks for a given plane form MPI sub-communicators

Two-level partition for solver (left) and particle push (right)
Impurity Transport Code - GITR

PUMIpic capabilities needed for GITR

- Fully 3D graded/adapted meshes based on particle distribution
- Wall interactions
- Plan on supporting the future case where the fields evolve based on particle position

Development of 3D mesh version of GITR initiated

- Based on PUMIpic
- Efforts focused on GPU based on-node operations
- Complete version available, performance improvement underway
Parallel data and services are at the core
- Geometric model topology for domain linkage
- Mesh topology – it must be distributed
- Simulation fields distributed over geometric model and mesh
- Partition control
- Dynamic load balancing required at multiple steps
- API’s to link to
 - CAD
 - Mesh generation and adaptation
 - Error estimation
 - etc
Parallel Adaptive Simulation Workflows

• Automation and adaptive methods critical to reliable simulations

• In-memory examples
 – MFEM – High order FE framework
 – PHASTA – FE for NS
 – FUN3D – FV CFD
 – Proteus – multiphase FE
 – Albany – FE framework
 – ACE3P – High order FE electromagnetics
 – M3D-C1 – FE based MHD
 – Nektar++ – High order FE flow
Application interactions – Accelerator EM

Omega3P Electro Magnetic Solver (second-order curved meshes)

This figure shows the adaptation results for the CAV17 model. (top left) shows the initial mesh with ~126K elements, (top right) shows the final (after 3 adaptation levels) mesh with ~380K elements, (bottom left) shows the first eigenmode for the electric field on the initial mesh, and (bottom right) shows the first eigenmode of the electric field on the final (adapted) mesh.
Application interactions – Land Ice

- FELIX, a component of the Albany framework is the analysis code
- Omega_h parallel mesh adaptation is integrated with Albany to do:
 - Estimate error
 - Adapt the mesh
- Ice sheet mesh is modified to minimize degrees of freedom
- Field of interest is the ice sheet velocity
Application interactions – RF Fusion

• Accurate RF simulations require
 – Detailed antenna CAD geometry
 – CAD geometry defeaturing
 – Extracted physics curves from EFIT
 – Faceted surface from coupled mesh
 – Analysis geometry combining CAD, physics geometry and faceted surface
 – Well controlled 3D meshes for accurate FE calculations in MFEM
 – Conforming mesh adaptation with PUMI