Argonne Training Program on Extreme-Scale Computing

Direct Sparse Linear Solvers, Preconditioners

- SuperLU, STRUMPACK, with hands-on examples

ATPESC 2020

X. Sherry Li, Pieter Ghysels
Lawrence Berkeley National Laboratory

August 4, 2020
Tutorial Content

Part 1. Sparse direct solvers: SuperLU and STRUMPACK (30 min)
- Sparse matrix representations
- Algorithms
 - Gaussian elimination, sparsity and graph, ordering, symbolic factorization
- Different types of factorizations
- Parallelism exploiting sparsity (trees, DAGs)
 - Task scheduling, avoiding communication
- Parallel performance

Part 2. Rank-structured approximate factorizations: STRUMPACK (15 min)
- Hierarchical matrices, Butterfly matrix

Part 3. Hands-on examples in SuperLU or STRUMPACK (15 min)
Strategies of solving sparse linear systems

- **Iterative methods:** (e.g., Krylov, multigrid, …)
 - A is not changed (read-only)
 - Key kernel: sparse matrix-vector multiply
 - Easier to optimize and parallelize
 - Low algorithmic complexity, but may not converge

- **Direct methods:**
 - A is modified (factorized) : \(A = L^*U \)
 - Harder to optimize and parallelize
 - Numerically robust, but higher algorithmic complexity

- Often use direct method to **precondition** iterative method
 - Solve an easier system: \(M^{-1}Ax = M^{-1}b \)
Sparse matrix representation: Compressed Row Storage (CRS)

- Store nonzeros row by row contiguously
- Example: N = 7, NNZ = 19
- 3 arrays:
 - Storage: NNZ reals, NNZ+N+1 integers

nzval	1	a	2	b	c	d	3	e	4	f	5	g	h	i	6	j	k	l	7
colind	1	4	2	5	1	2	3	2	4	5	5	7	4	5	6	7	3	5	7
rowptr	1	3	5	8	11	13	17	20											

Distributed input interface

- Matrices involved:
 - A, B (turned into X) – input, users manipulate them
 - L, U – output, users do not need to see them

- A (sparse) and B (dense) are distributed by block rows

Local A stored in *Compressed Row Format*
Distributed input interface

Each process has a structure to store local part of A

Distributed Compressed Row Storage

typedef struct {
 int_t nnz_loc; // number of nonzeros in the local submatrix
 int_t m_loc; // number of rows local to this processor
 int_t fst_row; // global index of the first row
 void *nzval; // pointer to array of nonzero values, packed by row
 int_t *colind; // pointer to array of column indices of the nonzeros
 int_t *rowptr; // pointer to array of beginning of rows in nzval[]and colind[]
} NRformat_loc;
Distributed Compressed Row Storage

SuperLU_DIST/FORTRAN/f_5x5.f90

A is distributed on 2 processors:

Processor P0 data structure:
- `nnz_loc = 5`
- `m_loc = 2`
- `fst_row = 0` \(^{(0-based indexing)}\)
- `nzval = \{ s, u, u, l, u \}`
- `colind = \{ 0, 2, 4, 0, 1 \}`
- `rowptr = \{ 0, 3, 5 \}`

Processor P1 data structure:
- `nnz_loc = 7`
- `m_loc = 3`
- `fst_row = 2` \(^{(0-based indexing)}\)
- `nzval = \{ l, p, e, u, l, l, r \}`
- `colind = \{ 1, 2, 3, 4, 0, 1, 4 \}`
- `rowptr = \{ 0, 2, 4, 7 \}`
Algorithms: review of Gaussian Elimination (GE)

• First step of GE:

\[A = \begin{bmatrix} \alpha & w^T \\ v & B \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ v/\alpha & I \end{bmatrix} \begin{bmatrix} \alpha & w^T \\ 0 & C \end{bmatrix} \]

\[C = B - \frac{v \cdot w^T}{\alpha} \]

• Repeat GE on C

• Result in LU factorization \(A = LU \)
 – L lower triangular with unit diagonal, U upper triangular

• Then, \(x \) is obtained by solving two triangular systems with L and U, easier to solve
Fill-in in sparse LU
Direct solver solution phases

1. Preprocessing: Reorder equations to minimize fill, maximize parallelism (~10% time)
 • Sparsity structure of L & U depends on A, which can be changed by row/column permutations (vertex re-labeling of the underlying graph)
 • Ordering (combinatorial algorithms; “NP-complete” to find optimum [Yannakis ’83]; use heuristics)

2. Preprocessing: predict the fill-in positions in L & U (~10% time)
 • Symbolic factorization (combinatorial algorithms)

3. Preprocessing: Design efficient data structure for quick retrieval of the nonzeros
 • Compressed storage schemes

4. Perform factorization and triangular solutions (~80% time)
 • Numerical algorithms (F.P. operations only on nonzeros)
 • Usually dominate the total runtime

For sparse Cholesky and QR, the steps can be separate. For sparse LU with pivoting, steps 2 and 4 must be interleaved.
Numerical pivoting for stability

- Goal of pivoting is to control element growth in L & U for stability
 - For sparse factorizations, often relax the pivoting rule to trade with better sparsity and parallelism (e.g., threshold pivoting, static pivoting, . . .)

- **Partial pivoting** used in dense LU, sequential SuperLU and SuperLU_MT (GEPP)
 - Can force diagonal pivoting (controlled by diagonal threshold)
 - Hard to implement scalably for sparse factorization

Relaxed pivoting strategies:

- **Static pivoting** used in SuperLU_DIST (GESP)
 - Before factor, scale and permute A to maximize diagonal: \(P_r D_r A D_c = A' \)
 - During factor \(A' = LU \), replace tiny pivots by \(\sqrt{\|A\|} \), w/o changing data structures for L & U
 - If needed, use a few steps of iterative refinement after the first solution
 - quite stable in practice

- **Restricted pivoting**
Can we reduce fill? -- various ordering algorithms

- Reordering (= permutation of equations and variables)

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
2 & 2 & & & \\
3 & 3 & & & \\
4 & & & & \\
5 & & & & \\
\end{pmatrix}
\] (all filled after elimination)

\[
\begin{pmatrix}
1 & & & & \\
 & 1 & & & \\
 & & 1 & & \\
 & & & 1 & \\
1 & & & & \\
\end{pmatrix}
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
2 & 2 & & & \\
3 & 3 & & & \\
4 & & & & \\
5 & & & & \\
\end{pmatrix}
\begin{pmatrix}
1 & & & & \\
 & 1 & & & \\
 & & 1 & & \\
 & & & 1 & \\
1 & & & & \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
5 & 5 \\
4 & 4 \\
3 & 3 \\
2 & 2 \\
5 & 4 & 3 & 2 & 1 \\
\end{pmatrix}
\] (no fill after elimination)
Ordering to preserve sparsity: Minimum Degree

Local greedy strategy: minimize upper bound on fill-in

\[
\begin{bmatrix}
1 & i & j & k & l \\
1 & x & x & x & x \\
i & x & x & x & x \\
j & x & x & x & x \\
k & x & x & x & x \\
l & x & x & x & x \\
\end{bmatrix}
\]

Eliminate 1

\[
\begin{bmatrix}
1 & i & j & k & l \\
1 & x & x & x & x \\
i & x & x & x & x \\
j & x & x & x & x \\
k & x & x & x & x \\
l & x & x & x & x \\
\end{bmatrix}
\]

Eliminate 1
Ordering to preserve sparsity : Nested Dissection

Model problem: discretized system $Ax = b$ from certain PDEs, e.g., 5-point stencil on $k \times k$ grid, $N = k^2$

- **Factorization flops:** $O(k^3) = O(N^{3/2})$

Theorem: ND ordering gives optimal complexity in exact arithmetic [George ’73, Hoffman/Martin/Rose]

![Geometry](Image)

![Reordered Matrix](Image)

![Separator Tree](Image)
ND Ordering

- Generalized nested dissection [Lipton/Rose/Tarjan ’79]
 - Global graph partitioning: top-down, divide-and-conquer
 - Best for large problems
 - Parallel codes available: ParMetis, PT-Scotch
 - First level
 - Recurse on A and B
 - Goal: find the smallest possible separator S at each level
 - Multilevel schemes:
 - Chaco [Hendrickson/Leland ’94], Metis [Karypis/Kumar ’95]
 - Spectral bisection [Simon et al. ’90-’95, Ghysels et al. 2019-]
 - Geometric and spectral bisection [Chan/Gilbert/Teng ’94]
ND Ordering

2D mesh

A, with row-wise ordering

A, with ND ordering

L & U factors
Ordering for LU with non-symmetric patterns

• Can use a symmetric ordering on a symmetrized matrix

• Case of partial pivoting (serial SuperLU, SuperLU_MT):
 – Use ordering based on $A^T A$

• Case of static pivoting (SuperLU_DIST):
 – Use ordering based on $A^T + A$

• Can find better ordering based solely on A, without symmetrization
 – Diagonal Markowitz [Amestoy/Li/Ng `06]
 • Similar to minimum degree, but without symmetrization
 – Hypergraph partition [Boman, Grigori, et al. `08]
 • Similar to ND on $A^T A$, but no need to compute $A^T A$
User-controllable options in SuperLU_DIST

For stability and efficiency, need to factorize a transformed matrix:

\[P_c \left(P_r (D_r A D_c) \right) P_c^T \]

“Options” fields with C enum constants:

- Equil: \{NO, YES\}
- RowPerm: \{NOROWPERM, LargeDiag_MC64, LargeDiag_AWPM, MY_PERMR\}
- ColPerm: \{NATURAL, MMD_ATA, MMD_AT_PLUS_A, COLAMD, METIS_AT_PLUS_A, PARMETIS, ZOLTAN, MY_PERMC\}

Call routine `set_default_options_dist(&options)` to set default values.
Algorithm variants, codes depending on matrix properties

<table>
<thead>
<tr>
<th>Matrix properties</th>
<th>Supernodal (updates in-place)</th>
<th>Multifrontal (partial updates floating around)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetric Pos. Def.: Cholesky LL’ indefinite: LDL’</td>
<td>symPACK (DAG)</td>
<td>MUMPS (tree)</td>
</tr>
<tr>
<td>Symmetric pattern, but non-symmetric value</td>
<td></td>
<td>MUMPS (tree) STRUMPACK (binary tree)</td>
</tr>
<tr>
<td>Non-symmetric everything</td>
<td>SuperLU (DAG)</td>
<td>UMFPACK (DAG)</td>
</tr>
</tbody>
</table>

- Remark:
 - SuperLU, MUMPS, UMFPACK can use any sparsity-reducing ordering
 - STRUMPACK can only use nested dissection (restricted to binary tree)

Sparse LU: two algorithm variants

... depending on how updates are accumulated

DAG based
Supernodal: SuperLU

Tree based
Multifrontal: STRUMPACK, MUMPS

\[S^{(i)} \leftarrow ((S^{(j)} - D^{(k_1)}) - D^{(k_2)}) - ... \]

\[S^{(i)} \leftarrow S^{(i)} - ((..(D^{(k_1)} + D^{(k_2)}) + ...)) \]
Supernode

Exploit dense submatrices in the factors

- Can use Level 3 BLAS
- Reduce inefficient indirect addressing (scatter/gather)
- Reduce graph traversal time using a coarser graph
Distributed L & U factored matrices (internal to SuperLU)

- 2D block cyclic layout – specified by user.
- Rule: process grid should be as square as possible.

 Or, set the row dimension \((nprow)\) slightly smaller than the column dimension \((npcol)\).

- For example: 2x3, 2x4, 4x4, 4x8, etc.
Distributed separator-tree-based parallelism (internal to STRUMPACK)

- Supernode = separator = frontal matrix
- Map sub-tree to sub-process grid
 - Proportional to estimated work
- ScaLAPACK 2D block cyclic layout at each node
- Multi-threaded ScaLAPACK through system MT-BLAS
- Allow idle processes for better communication
 - e.g.: 2x3 process grid is better than 1x7
Comparison of LU time from 3 direct solvers

- Pure MPI on 8 nodes Intel Ivy Bridge, 192 cores (2x12 cores / node), NERSC Edison
- METIS ordering

![Graph showing comparison of LU time from 3 direct solvers](image)
SuperLU_DIST recent improvements

- GPU
- Communication avoiding & hiding

<table>
<thead>
<tr>
<th>SpLU</th>
<th>2D algorithm (baseline)</th>
<th>+ GPU off-load (master) 3x</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D Comm-Avoiding 27x @ 32,000 cores</td>
<td>3.5x @ 4096 Titan nodes (Version-7)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SpTRSV</th>
<th>2D algorithm (baseline)</th>
<th>GPU (gpu_trisolve) 8.5x @1 Summit GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D Comm-Avoiding 7x @ 12,000 cores</td>
<td>1-sided MPI (trisolve-fompi) 2.4x @12,000 KNL cores</td>
<td></td>
</tr>
</tbody>
</table>
Tips for Debugging Performance

- Check sparsity ordering
- Diagonal pivoting is preferable
 - E.g., matrix is diagonally dominant, . . .

- Need good BLAS library (vendor, OpenBLAS, ATLAS)
 - May need adjust block size for each architecture
 (Parameters modifiable in routine sp_ienv())
 - Larger blocks better for uniprocessor
 - Smaller blocks better for parallelism and load balance

GPTune: ML algorithms for selection of best parameters
- https://github.com/gptune/GPTune/
Algorithm complexity (in bigO sense)

- Dense LU: $O(N^3)$
- Model PDEs with regular mesh, nested dissection ordering

<table>
<thead>
<tr>
<th></th>
<th>2D problems $N = k^2$</th>
<th>3D problems $N = k^3$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Factor flops</td>
<td>Solve flops</td>
</tr>
<tr>
<td>Exact sparse LU</td>
<td>$N^{3/2}$</td>
<td>$N \log(N)$</td>
</tr>
<tr>
<td>STRUMPACK with low-rank compression</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>
Software summary

- **SuperLU**: conventional direct solver for general unsymmetric linear systems.
 (X.S. Li, J. Demmel, J. Gilbert, L. Grigori, Y. Liu, P. Sao, M. Shao, I. Yamazaki)
 - O(N^2) flops, O(N^{4/3}) memory for typical 3D PDEs.
 - C, hybrid MPI+ OpenMP + CUDA; Provide Fortran interface.
 - Real, complex.
 - Componentwise error analysis and error bounds (guaranteed solution accuracy), condition number estimation.
 - http://portal.nersc.gov/project/sparse/superlu/

- **STRUMPACK**: “inexact” direct solver, preconditioner.
 (P. Ghysels, G. Chavez, C. Gorman, F.-H. Rouet, X.S. Li)
 - O(N^{4/3} \log N) flops, O(N) memory for 3D elliptic PDEs.
 - C++, hybrid MPI + OpenMP + CUDA; Provide Fortran interface.
 - Real, complex.
 - http://portal.nersc.gov/project/sparse/strumpack/
References

 - 10 hours lectures, hands-on exercises
 - Extended summary: http://crd-legacy.lbl.gov/~xiaoye/g2s3-summary.pdf
 (in book “Matrix Functions and Matrix Equations”, https://doi.org/10.1142/9590)

- SuperLU: portal.nersc.gov/project/sparse/superlu
- STRUMPACK: portal.nersc.gov/project/sparse/strumpack/
- ButterflyPACK: https://github.com/liuyangzhuhan/ButterflyPACK
Rank-structured Approximate Factorizations in STRUMPACK

- “inexact” direct solvers
- strong preconditioners
Rank Structured Solvers for Dense Linear Systems
Hierarchical Matrix Approximation

\(\mathcal{H} \)-matrix representation \cite{Hackbusch1999a}:

- Data-sparse, rank-structured, compressed

Hierarchical/recursive \(2 \times 2 \) matrix blocking, with blocks either:

- Low-rank: \(A_{IJ} \approx UV^\top \)
- Hierarchical
- Dense (at lowest level)

Use cases:

- Boundary element method for integral equations
- Cauchy, Toeplitz, kernel, covariance, . . . matrices
- Fast matrix-vector multiplication
- \(\mathcal{H} \)-LU decomposition
- Preconditioning

\[\text{Hackbusch, W., 1999. A sparse matrix arithmetic based on } \mathcal{H}\text{-matrices. part i: Introduction to } \mathcal{H}\text{-matrices. Computing, 62(2), pp.89-108.} \]
Admissibility Condition

- Row cluster σ
- Column cluster τ
- $\sigma \times \tau$ is compressible \iff

$$\frac{\max(\text{diam}(\sigma), \text{diam}(\tau))}{\text{dist}(\tau, \sigma)} \leq \eta$$

- $\text{diam}(\sigma)$: diameter of physical domain corresponding to σ
- $\text{dist}(\sigma, \tau)$: distance between σ and τ

- Weaker interaction between clusters leads to smaller ranks
- Intuitively larger distance, greater separation, leads to weaker interaction
- Need to cluster and order degrees of freedom to reduce ranks

HODLR: Hierarchically Off-Diagonal Low Rank

• Weak admissibility

\[\sigma \times \tau \text{ is compressible } \iff \sigma \neq \tau \]

Every off-diagonal block is compressed as low-rank, even interaction between neighboring clusters (no separation)

Compared to more general \mathcal{H}-matrix

• Simpler data-structures: same row and column cluster tree
• More scalable parallel implementation
• Good for 1D geometries, e.g., boundary of a 2D region discretized using BEM or 1D separator
• Larger ranks
HSS: Hierarchically Semi Separable

- Weak admissibility
- Off-diagonal blocks

\[A_{\sigma,\tau} \approx U_{\sigma} B_{\sigma,\tau} V_{\tau}^T \]

- Nested bases

\[U_{\sigma} = \begin{bmatrix} U_{\nu_1} & 0 \\ 0 & U_{\nu_2} \end{bmatrix} \hat{U}_{\sigma} \]

with \(\nu_1 \) and \(\nu_2 \) children of \(\sigma \) in the cluster tree.

- At lowest level

\[U_{\sigma} \equiv \hat{U}_{\sigma} \]

- Store only \(\hat{U}_{\sigma} \), smaller than \(U_{\sigma} \)

- Complexity \(\mathcal{O}(N) \leftrightarrow \mathcal{O}(N \log N) \) for HODLR

- HSS is special case of \(\mathcal{H}^2 \): \(\mathcal{H} \) with nested bases

\[
\begin{bmatrix}
D_0 & U_{0}B_{0,1}V_{1}^* & & U_{2}B_{2,5}V_{5}^* \\
U_{1}B_{1,0}V_{0}^* & D_{1} & & \\
& & D_{3} & U_{3}B_{3,4}V_{4}^* \\
& U_{5}B_{5,2}V_{2}^* & & D_{4}
\end{bmatrix}
\]
HSS: Hierarchically Semi Separable

- Weak admissibility
- Off-diagonal blocks

\[A_{\sigma,\tau} \approx U_\sigma B_{\sigma,\tau} V_\tau^T \]

- Nested bases

\[U_\sigma = \begin{bmatrix} U_{\nu_1} & 0 \\ 0 & U_{\nu_2} \end{bmatrix} \hat{U}_\sigma \]

with \(\nu_1 \) and \(\nu_2 \) children of \(\sigma \) in the cluster tree.

- At lowest level

\[U_\sigma \equiv \hat{U}_\sigma \]

- Store only \(\hat{U}_\sigma \), smaller than \(U_\sigma \)

- Complexity \(O(N) \leftrightarrow O(N \log N) \) for HODLR

- HSS is special case of \(\mathcal{H}^2 \): \(\mathcal{H} \) with nested bases
BLR: Block Low Rank [1, 2]

- Flat partitioning (non-hierarchical)
- Weak or strong admissibility
- Larger asymptotic complexity than \mathcal{H}, HSS, …
- Works well in practice

Data-Sparse Matrix Representation Overview

- Partitioning: **hierarchical** \mathcal{H}, HODLR, HSS) or **flat** (BLR)
- Admissibility: **weak** (HODLR, HSS) or **strong** \mathcal{H}, \mathcal{H}^2
- Bases: **nested** (HSS, \mathcal{H}^2) or **not nested** (HODLR, \mathcal{H}, BLR)
Particle methods like Barnes-Hut and FMM can be interpreted algebraically using hierarchical matrix algebra

- Barnes-Hut $O(N \log N)$
- Fast Multipole Method $O(N)$

Butterfly Decomposition [1]

Complementary low rank property: sub-blocks of size $O(N)$ are low rank:

Multiplicative decomposition:

- Multilevel generalization of low rank decomposition
- Based on FFT ideas, motivated by high-frequency problems

HODBF: Hierarchically Off-Diagonal Butterfly

- HODLR but with low rank replaced by Butterfly decomposition
- Reduces ranks of large off-diagonal blocks
Low Rank Approximation Techniques

Traditional approaches need entire matrix

- Truncated Singular Value Decomposition (TSVD): \(A \approx U \Sigma V^T \)
 - Optimal, but expensive
- Column Pivoted QR: \(AP \approx QR \)
 - Less accurate than TSVD, but cheaper

Adaptive Cross Approximation

- No need to compute every element of the matrix
- Requires certain assumptions on input matrix
- Left-looking LU with rook pivoting

Randomized algorithms \[1\]

- Fast matrix-vector product: \(S = A\Omega \)
 - Reduce dimension of \(A \) by random projection with \(\Omega \)
- E.g., operator is sparse or rank structured, or the product of sparse and rank structured

Approximate Multifrontal Factorization
Sparse Multifrontal Solver/Preconditioner with Rank-Structured Approximations

L and U factors, after nested-dissection ordering, compressed blocks in blue

Only apply rank structured compression to largest fronts (dense sub-blocks), keep the rest as regular dense
High Frequency Helmholtz and Maxwell

Regular $k^3 = N$ grid, fixed number of discretization points per wavelength

Marmousi2 geophysical elastic dataset

Indefinite Maxwell, using MFEM
High Frequency Helmholtz and Maxwell

Sparse multifrontal solver with HODBF compression

Operations for factor and solve phases, \(\varepsilon = 10^{-3} \).

Memory usage for the sparse triangular factors.

GMRES convergence for \(k = 200 \).

- Highly oscillatory problems are hard for iterative solvers
- Typically solved with sparse direct solvers, but scale as \(\mathcal{O}(N^2) \)
Software: ButterflyPACK

- Butterfly
- Hierarchically Off-Diagonal Low Rank (HODLR)
- Hierarchically Off-Diagonal Butterfly (HODBF)
- Hierarchical matrix format (\mathcal{H})
 - Limited parallelism

- Fast compression, using randomization
- Fast multiplication, factorization & solve
- Fortran2008, MPI, OpenMP

https://github.com/liuyangzhuan/ButterflyPACK
Software: STRUMPACK
STRUctured Matrix PACKage

- Fully algebraic solvers/preconditioners
- Sparse direct solver (multifrontal LU factorization)
- Approximate sparse factorization preconditioner
- Dense
 - HSS: Hierarchically Semi-Separable
 - BLR: Block Low Rank (sequential only)
 - ButterflyPACK integration/interface:
 - Butterfly
 - HODLR
 - HODBF

- C++, MPI + OpenMP + CUDA, real & complex, 32/64 bit integers
- BLAS, LAPACK, Metis
- Optional: MPI, ScaLAPACK, ParMETIS, (PT-)Scotch, cuBLAS/cuSOLVER, SLATE, ZFP

https://github.com/pghysels/STRUMPACK
https://portal.nersc.gov/project/sparse/strumpack/master/
Other Available Software

<table>
<thead>
<tr>
<th>Software</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HiCMA</td>
<td>https://github.com/ecrc/hicma</td>
</tr>
<tr>
<td>HLib</td>
<td>http://www.hlib.org/</td>
</tr>
<tr>
<td>HLibPro</td>
<td>https://www.hlibpro.com/</td>
</tr>
<tr>
<td>H2Lib</td>
<td>http://www.h2lib.org/</td>
</tr>
<tr>
<td>HACApK</td>
<td>https://github.com/hoshino-UTokyo/hacapkgpu</td>
</tr>
<tr>
<td>MUMPS</td>
<td>http://mumps.enseeiht.fr/</td>
</tr>
<tr>
<td>PaStiX</td>
<td>https://gitlab.inria.fr/solverstack/pastix</td>
</tr>
<tr>
<td>ExaFMM</td>
<td>http://www.bu.edu/exafmm/</td>
</tr>
</tbody>
</table>

See also:

https://github.com/gchavez2/awesome_hierarchical_matrices
SuperU_DIST Hands-on session
SuperLU DIST with MFEM
xsdk-project.github.io/MathPackagesTraining2020/lessons/superlu_mfem/

Solve steady-state convection-diffusion equations

Get 2 compute nodes: qsub -l -n 1 -t 30 -A ATPESC2020 -q R.ATPESC2020_0806_1
cd HandsOnLessons/superlu_mfem

• run 1: ./convdiff >& run1.out
• run 2: ./convdiff --velocity 1000 >& run2.out
• run 3: ./convdiff --velocity 1000 -slu -cp 0 >& run3.out
• run 4: ./convdiff --velocity 1000 -slu -cp 2 >& run4.out
• run 5: ./convdiff --velocity 1000 -slu -cp 4 >& run5.out
• run 5.5: mpiexec -n 1 ./convdiff --refine 3 --velocity 1000 -slu -cp 4 >& run55.out
• run 6: mpiexec -n 12 ./convdiff --refine 3 --velocity 1000 -slu -cp 4 >& run6.out
• run 7: mpiexec -n 12 ./convdiff --refine 3 --velocity 1000 -slu -cp 4 -2rhs >& run7.out
SuperLU_DIST with MFEM

HandsOnLessons/superlu_mfem/convdiff.cpp

Convection-Diffusion equation (steady-state):

GMRES iterative solver with BoomerAMG preconditioner

Switch to SuperLU direct solver

Experiment with different orderings: --slu-colperm (you see different number of nonzeros in L+U)

Lessons learned

- Direct solver can deal with ill-conditioned problems.
- Performance may vary greatly with different elimination orders.
SuperLU_DIST exercises:
HandsOnLessons/superlu_mfem/superlu-dist/EXAMPLE

See README file (e.g. mpiexec -n 12 ./pddrive -r 3 -c 4 stomach.rua)

- pddrive.c: Solve one linear system.
- pddrive1.c: Solve the systems with same A but different right-hand side at different times.
 - Reuse the factored form of A.
- pddrive2.c: Solve the systems with the same pattern as A.
 - Reuse the sparsity ordering.
- pddrive3.c: Solve the systems with the same sparsity pattern and similar values.
 - Reuse the sparsity ordering and symbolic factorization.
- pddrive4.c: Divide the processes into two subgroups (two grids) such that each subgroup solves a linear system independently from the other.

Block Jacobi preconditioner
Four input matrices:

- g4.rua (16 dofs)
- g20.rua (400 dofs)
- big.rua (4960 dofs)
- stomach.rua (213k dofs, ~15 sec @ P=16)

- Can get many other test matrices at SuiteSparse
 https://sparse.tamu.edu
STRUMPACK Hands-On Session
HODLR Compression of Toeplitz Matrix

\[T(i, j) = \frac{1}{1 + |i - j|} \]

HandsOnLessons/strumpack/run_testHODLR

- See HandsOnLessons/strumpack/README

- Get a compute node:

```
qsub -I -n 1 -t 30 -A ATPESC2020
```

- Set OpenMP threads:

```
export OMP_NUM_THREADS=1
```

- Run example:

```
mpiexec -n 1 ./run_testHODLR 20000
```

- With description of command line parameters:

```
mpiexec -n 1 ./run_testHODLR 20000 --help
```

- Vary leaf size (smallest block size) and tolerance:

```
mpiexec -n 1 ./run_testHODLR 20000 --hodlr_rel_tol 1e-4 --hodlr_leaf_size 16
mpiexec -n 1 ./run_testHODLR 20000 --hodlr_rel_tol 1e-4 --hodlr_leaf_size 128
```

- Vary number of MPI processes:

```
mpiexec -n 12 ./run_testHODLR 20000 --hodlr_rel_tol 1e-8 --hodlr_leaf_size 16
mpiexec -n 12 ./run_testHODLR 20000 --hodlr_rel_tol 1e-8 --hodlr_leaf_size 128
```
Solve a Sparse Linear System with Matrix pde900.mtx

See HandsOnLessons/strumpack/README

Get a compute node: qsub -I -n 1 -t 30 -A ATPESC2020

Set OpenMP threads: export OMP_NUM_THREADS=1

Run example:
 mpiexec -n 1 ./run_testMMdouble pde900.mtx

With description of command line parameters:
 mpiexec -n 1 ./run_testMMDouble pde900.mtx --help

Vary number of MPI processes:
 mpiexec -n 1 ./run_testMMdouble pde900.mtx
 mpiexec -n 12 ./run_testMMdoubleMPIDist pde900.mtx

Other sparse matrices, in matrix market format:
 NIST Matrix Market: https://math.nist.gov/MatrixMarket
 SuiteSparse: http://faculty.cse.tamu.edu/davis/suitesparse.html
Solve 3D Poisson Problem

HandsOnLessons/strumpack/run_testPoisson3d{MPIDist}

- See HandsOnLessons/strumpack/README
- Get a compute node: `qsub -I -n 1 -t 30 -A ATPESC2020`
- Set OpenMP threads: `export OMP_NUM_THREADS=1`

- Solve 40^3 Poisson problem:
 - `mpiexec -n 1 ./run_testPoisson3d 40 --help`
- Enable BLR compression (sequential):
 - `mpiexec -n 1 ./run_testPoisson3d 40 --sp_compression BLR --help`
 - `mpiexec -n 1 ./run_testPoisson3d 40 --sp_compression BLR --blr_rel_tol 1e-2`
 - `mpiexec -n 1 ./run_testPoisson3d 40 --sp_compression BLR --blr_rel_tol 1e-4`
 - `mpiexec -n 1 ./run_testPoisson3d 40 --sp_compression BLR --blr_leaf_size 128`
 - `mpiexec -n 1 ./run_testPoisson3d 40 --sp_compression BLR --blr_leaf_size 256`
- Parallel, with HSS/HODLR compression:
 - `mpiexec -n 12 ./run_testPoisson3dMPIDist 40`
 - `mpiexec -n 12 ./run_testPoisson3dMPIDist 40 --sp_compression HSS \`
 --sp_compression_min_sep_size 1000 --hss_rel_to1 1e-2`
 - `mpiexec -n 12 ./run_testPoisson3dMPIDist 40 --sp_compression HODLR \`
 --sp_compression_min_sep_size 1000 --hodlr_leaf_size 128`
Thank you!
EXTRA SLIDES
Direct solvers can support wide range of applications

- fluid dynamics, structural mechanics, chemical process simulation, circuit simulation, electromagnetic fields, magneto-hydrodynamics, seismic-imaging, economic modeling, optimization, data analysis, statistics, ...

- (non)symmetric, indefinite, ill-conditioned ...

- Example: A of dimension 10^6, 10~100 nonzeros per row

- Matlab: > spy(A)
SuperLU_DIST performance on Intel KNL

• Single node improvement
 – Aggregate large GEMM
 – OpenMP task parallel
 – Vectorize scatter
 – Cacheline- & Page-aligned malloc

• Strong scaling to 32 nodes

• Current work: 3D algorithm to reduce communication, increase parallelism

nlpttk80, \(n = 1.1\text{M}, \text{nnz} = 28\text{M} \)
Ga19As19H42, \(n = 1.3\text{M}, \text{nnz} = 8.8\text{M} \)
RM07R, \(n = 0.3\text{M}, \text{nnz} = 37.5\text{M} \)
Examples in examples/

See README

- **testPoisson2d:**
 - A double precision C++ example, solving the 2D Poisson problem with the sequential or multithreaded solver.

- **testPoisson2dMPIDist:**
 - A double precision C++ example, solving the 2D Poisson problem with the fully distributed MPI solver.

- **testMMdoubleMPIDist:**
 - A double precision C++ example, solving a linear system with a matrix given in a file in the matrix-market format, using the fully distributed MPI solver.

- **testMMdoubleMPIDist64:**
 - A double precision C++ example using 64 bit integers for the sparse matrix.

- **{s,d,c,z}example:**
 - examples to use C interface.
Available direct solvers

- Survey of different types of factorization codes

 - LL^T (s.p.d.)
 - LDL^T (symmetric indefinite)
 - LU (nonsymmetric)
 - QR (least squares)
 - Sequential, shared-memory (multicore), distributed-memory, out-of-core, few are GPU-enabled …

- Distributed-memory codes:
 - SuperLU_DIST (Li, Demmel, Grigori, Liu, Sao, Yamazaki)
 - accessible from PETSc, Trilinos, …
 - MUMPS, PasTiX, WSMP, …
<table>
<thead>
<tr>
<th>Code</th>
<th>Technique</th>
<th>Scope</th>
<th>Contact</th>
</tr>
</thead>
</table>

Serial platforms

<table>
<thead>
<tr>
<th>Code</th>
<th>Technique</th>
<th>Scope</th>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHOLMOD</td>
<td>Left-looking</td>
<td>SPD</td>
<td>Davis</td>
</tr>
<tr>
<td>KLU</td>
<td>Left-looking</td>
<td>Unsym</td>
<td>Davis</td>
</tr>
<tr>
<td>MA57</td>
<td>Multifrontal</td>
<td>Sym</td>
<td>HSL</td>
</tr>
<tr>
<td>MA41</td>
<td>Multifrontal</td>
<td>Sym-pat</td>
<td>HSL</td>
</tr>
<tr>
<td>MA42</td>
<td>Frontal</td>
<td>Unsym</td>
<td>HSL</td>
</tr>
<tr>
<td>MA67</td>
<td>Multifrontal</td>
<td>Sym</td>
<td>HSL</td>
</tr>
<tr>
<td>MA48</td>
<td>Right-looking</td>
<td>Unsym</td>
<td>HSL</td>
</tr>
<tr>
<td>Olvio</td>
<td>Left/right/Multifr.</td>
<td>Sym, Out-core</td>
<td>Dobrian</td>
</tr>
<tr>
<td>SPARSE</td>
<td>Right-looking</td>
<td>Unsym</td>
<td>Hundert</td>
</tr>
<tr>
<td>SPARSPAK</td>
<td>Left-looking</td>
<td>SPD, Unsym, QR</td>
<td>George et al.</td>
</tr>
<tr>
<td>SPOOLES</td>
<td>Left-looking</td>
<td>Sym, Sym-pat, QR</td>
<td>Ashcraft</td>
</tr>
<tr>
<td>SuperLU</td>
<td>Left-looking</td>
<td>SPD</td>
<td>Ng</td>
</tr>
<tr>
<td>SuperLU</td>
<td>Left-looking</td>
<td>Unsym</td>
<td>Li</td>
</tr>
<tr>
<td>UMFPACK</td>
<td>Multifrontal</td>
<td>Unsym</td>
<td>Davis</td>
</tr>
</tbody>
</table>

Shared memory parallel machines

<table>
<thead>
<tr>
<th>Code</th>
<th>Technique</th>
<th>Scope</th>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCSLIB-EXT</td>
<td>Multifrontal</td>
<td>Sym, Unsym, QR</td>
<td>Ashcraft et al.</td>
</tr>
<tr>
<td>Cholesky</td>
<td>Left-looking</td>
<td>SPD</td>
<td>Rothberg</td>
</tr>
<tr>
<td>MF2</td>
<td>Multifrontal</td>
<td>Sym, Sym-pat, Out-core, GPU</td>
<td>Lucas</td>
</tr>
<tr>
<td>MA41</td>
<td>Multifrontal</td>
<td>Sym-pat</td>
<td>HSL</td>
</tr>
<tr>
<td>MA80</td>
<td>Multifrontal</td>
<td>QR</td>
<td>HSL</td>
</tr>
<tr>
<td>PanelLLT</td>
<td>Left-looking</td>
<td>SPD</td>
<td>Ng</td>
</tr>
<tr>
<td>PARASPAR</td>
<td>Right-looking</td>
<td>Unsym</td>
<td>Zlatev</td>
</tr>
<tr>
<td>PARISOS</td>
<td>Left-Right looking</td>
<td>Sym-pat</td>
<td>Schenk</td>
</tr>
<tr>
<td>SPARSP</td>
<td>Left-looking</td>
<td>Sym, Sym-pat</td>
<td>Aschraft</td>
</tr>
<tr>
<td>SuiteSparseQR</td>
<td>Multifrontal</td>
<td>Rank-revealing QR</td>
<td>Davis</td>
</tr>
<tr>
<td>SuperLU_MT</td>
<td>Left-looking</td>
<td>Unsym</td>
<td>Li</td>
</tr>
<tr>
<td>TAUCS</td>
<td>Left/Multifr.</td>
<td>Sym, Unsym, Out-core</td>
<td>Toledo</td>
</tr>
<tr>
<td>WSMG</td>
<td>Multifrontal</td>
<td>SPD, Unsym</td>
<td>Gupta</td>
</tr>
</tbody>
</table>

Distributed memory parallel machines

<table>
<thead>
<tr>
<th>Code</th>
<th>Technique</th>
<th>Scope</th>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clique</td>
<td>Multifrontal</td>
<td>(no pivoting)</td>
<td>Poulson</td>
</tr>
<tr>
<td>MF2</td>
<td>Multifrontal</td>
<td>Sym, Sym-pat, Out-core, GPU</td>
<td>Lucas</td>
</tr>
<tr>
<td>DSCPACK</td>
<td>Multifrontal</td>
<td>SPD</td>
<td>Raghavan</td>
</tr>
<tr>
<td>MUMPS</td>
<td>Multifrontal</td>
<td>Sym, Sym-pat</td>
<td>Amestoy</td>
</tr>
<tr>
<td>PaStI</td>
<td>Left-Right looking</td>
<td>SPD, Sym, Sym-pat</td>
<td>Renrot</td>
</tr>
<tr>
<td>PSPASES</td>
<td>Multifrontal</td>
<td>SPD</td>
<td>Gupta</td>
</tr>
<tr>
<td>SPOOLES</td>
<td>Left-looking</td>
<td>Sym, Sym-pat, QR</td>
<td>Aschraft</td>
</tr>
<tr>
<td>SuperLU_DIST</td>
<td>Right-looking</td>
<td>Unsym, GPU</td>
<td>Li</td>
</tr>
<tr>
<td>symPACK</td>
<td>Left-Right looking</td>
<td>SPD</td>
<td>Jacqueline</td>
</tr>
<tr>
<td>S+</td>
<td>Right-looking</td>
<td>Unsym</td>
<td>Yang</td>
</tr>
<tr>
<td>WSMG</td>
<td>Multifrontal</td>
<td>SPD, Unsym</td>
<td>Gupta</td>
</tr>
</tbody>
</table>

Table 1: Software to solve sparse linear systems using direct methods.

† Uses QR storage to statically accommodate any LU fill-in

Abbreviations used in the table:

- SPD = symmetric and positive definite
- Sym = symmetric and may be indefinite
- Sym-pat = symmetric nonzero pattern but unsymmetric values
- Unsym = unsymmetric

HSL = Harwell Subroutine Library: http://www.csc.cri.def.ac.uk/Activity/HSL
Synchronization-avoiding triangular solve in SuperLU_DIST
(GitHub “trisolve” branch. Liu, Jacquelin, Ghysels, Li, SIAM CSC’18)

- In preconditioning, need multiple triangular solves for each factorization.
- Challenge: lower Arithmetic Intensity, higher task dependency.
 - Flops \sim nonzeros in triangular matrix L.
- Customized asynchronous tree-based broadcast/reduction communication
 - Each tree involves a subset of \sqrt{P} processes.
 - Latency $\log(P)$ for P MPI ranks.
- 4096 cores Cori Haswell:
 - 4.4x faster with 1-RHS, 6x faster with 50-RHS
Communication-avoid 3D sparse LU in SuperLU_DIST
(P. Sao, X.S. Li, R. Vuduc, IPDPS 2018)

- For matrices from planar graph, provably asymptotic lower communication complexity:
 - Comm. volume reduced by a factor of $\sqrt{\log(n)}$.
 - Latency reduced by a factor of $\log(n)$.

- Strong scale to 24,000 cores.

Compared to 2D algorithm:
- Planar graph: up to 27x faster, 30% more memory @ $P_z = 16$
- Non-planar graph: up to 3.3x faster, 2x more memory @ $P_z = 16$

2D to 3D: \rightarrow 23x speedup

Teraflop/s
(32x procs \rightarrow 2x speedup)

3D process grid: \{P_{XY}, P_Z\}

hpcgarage.org/hookem

MPI processes (2D process grid; 4 cores / process)
Combining 3D algorithm with GPU acceleration
(Sao, Vuduc, Li, JPDC preprint, 2018)

- Co-processor acceleration to reduce intra-node communication
 - Sao, Vuduc, Li (EuroPar’14); Sao, Liu, Vuduc, Li (IPDPS’15)
 - Offload Schur-complement update to GPU

- Empirical study on Cray XK7 (titan @ OLCF)
 Each node: AMD Opteron processor (16 cores) + 1 Nvidia K20X GPU

Speedup of combined 3D-CPU-GPU over 3D-CPU:
SuperLU Installation

- Download site:
 - Tarball: http://crd.lbl.gov/~xiaoye/SuperLU
 - Github: https://github.com/xiaoyeli/superlu_dist
 - Users’ Guide, HTML code documentation, papers.

- Follow README at top level directory
 - Two ways of building:
 1. CMake build system.
 2. Edit make.inc (compilers, optimizations, libraries, ...)

- Dependency: BLAS, ParMetis or PT-Scotch (parallel ND ordering)
 - Link with a fast BLAS library
 - The one under CBLAS/ is functional, but not optimized
 - Vendor, OpenBLAS, ATLAS, ...
Use multicore, GPU

- Instructions in top-level README.
- To use OpenMP parallelism:

  ```
  Export OMP_NUM_THREADS=<##>
  ```
- To enable Nvidia GPU access, need to take the following 2 step:
 1. set the following Linux environment variable:

     ```
     export ACC=GPU
     ```
 2. Add the CUDA library location in make.inc: (see sample make.inc)

     ```
     ifeq "${ACC}" "GPU"
     
     CUDA_FLAGS = -DGPU_ACC
     INCS += -I<CUDA directory>/include
     LIBS += -L<CUDA directory>/lib64 -lcublas -lcudart
     ```
     ```
     endif
     ```
Flowchart of iterative methods

- Is the matrix symmetric?
 - Yes: Is the matrix definite?
 - Yes: Are the outer eigenvalues known?
 - Yes: Try Chebyshev or CG
 - No: Try CG
 - No: Try MinRES or CG
 - No: Try GMRES with long restart

- Is the transpose available?
 - Yes: Try QMR
 - No:
 - Is storage at a premium?
 - Yes: Try CGS or Bi-CGSTAB
 - No: Try GMRES with long restart