
Towards Performance Portable GPU Programming with RAJA
[Extended Abstact]

Arpith C. Jacob, Samuel F. Antao, Hyojin Sung, Alexandre E. Eichenberger, Carlo Bertolli,
Gheorghe-Teodor Bercea, Tong Chen, Zehra Sura, Georgios Rokos, Kevin O’Brien

IBM T.J. Watson Research Center
1101 Kitchawan Rd.

Yorktown Heights NY, U.S.A.

{acjacob,sfantao,hsung,alexe,cbertol,gbercea,chentong,zsura,grokos,caomhin}@us.ibm.com

ABSTRACT
High-performance machines of today are already heterogeneous
in nature with traditional multicores and accelerators such as
GPUs and Xeon PHIs. It is a challenge to program these machines
in a performance portable way with code that is maintainable
across large production applications. RAJA is a recently
introduced C/C++ programming approach targeting fine-grained
parallelism in loops that is intended to be platform and vendor
agnostic. Developed at the Lawrence Livermore National
Laboratory, RAJA has shown promise on traditional multicores
for ASC hydrodynamics codes.

In this work we extend RAJA to GPUs using the new OpenMP
4.1 standard. We document some of the unique issues when RAJA
is used to program a heterogeneous system with distributed code
and data spaces, and the efficiency challenges with RAJA when
using the offload model of OpenMP 4.1. We then introduce
several execution policies for RAJA that exploit the high
performance features of OpenMP. We show that when RAJA is
used to offload a loop with large amounts of work it matches
performance of programs written with low-level OpenMP 4.1
constructs. When a loop has limited work the overhead of
offloading dominates and the approach of RAJA is a limiter for
performance. We are investigating an asynchronous execution
policy that targets such cases, which may help hide the cost of
offloading.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming –
parallel programming.

General Terms
Performance.

Keywords
Performance-portable, GPU programming, RAJA, OpenMP,
LCALS.

1. MOTIVATION
As HPC systems incorporate diverse accelerators such as GPUs
and Xeon PHIs™ with traditional CPUs it becomes challenging for
application developers to achieve performance portability and
maintainability of their codebases. In particular, to exploit fine-
grained parallelism in loops on these and other emerging
architectures developers must express parallelism in varied
computing paradigms such as Vector, Single Instruction Multiple
Data (SIMD), and Single Instruction Multiple Thread (SIMT).

RAJA [1] is a C/C++ programming approach developed at the
Lawrence Livermore National Laboratory that allows an
application developer to express fine-grained parallelism found in
loops in a manner that is agnostic to the computing paradigm.
Platform and vendor specific optimizations along with low-level
programming models can be hidden behind the RAJA framework.
Once an application is written in the RAJA style of programming
it can be ported to a variety of platforms with minimum code
disruption. Initial reports on using RAJA for ASC hydrodynamics
codes show promising results [1].

To achieve these goals RAJA requires compiler support for
recently introduced C++ language features and integration with
emerging programming models. In this work we investigate how
RAJA may be used to exploit systems with GPUs using the
OpenMP® 4.1 [5] programming model. We use a Clang®/LLVM®
based OpenMP compiler and runtime [2] that we are developing
to accelerate RAJA programs on GPUs. We describe ongoing
work to extend the RAJA framework to fully exploit GPU devices
and the compiler/runtime functionality added to support RAJA.

Our work is done in the context of the Livermore Compiler
Analysis Loop Suite (LCALS) [3], which contains kernels written
in OpenMP and RAJA for execution on CPUs. We first port
LCALS to the GPU using OpenMP 4.1 and RAJA and then
compare the performance of the two programming styles on an
NVIDIA® Kepler K40m GPU.
We find that RAJA compares well with programs written in pure
OpenMP 4.1 when the amount of work per offloaded loop is
substantial. For a kernel with sequences of loops that have limited
work in their body, the overhead of offloading them individually
with RAJA dominates, whereas in pure OpenMP they can be
placed in a single offload region. We are investigating techniques
to minimize this overhead.

This study is broadly relevant to other template based
programming approaches such as KOKKOS [6].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.
Portability Among HPC Architectures for Scientific Applications,
November 15, 2015, Austin, TX, USA.
Copyright 2015 HPCPort.

1

2. THE RAJA APPROACH
In this work we focus on RAJA as used in C++. RAJA uses C++
lambda functions and templates to separate loop traversal from a
loop body. The mechanism enabling various loop traversal
schemes such as sequential, SIMD, or in parallel across multiple
cores is hidden within RAJA and is invisible to the application
developer.

Figure 1 shows how a user can convert a loop to RAJA. The loop
body is expressed as a lambda function parameterized by the
iteration variable. The lambda is said to capture-by-reference
variables used within it, which are visible at the scope of the call
site. The RAJA template forall is passed the loop body, its
iteration bounds and an execution policy.

C++ style loop
for (int i=0; i<len; i++) {
 bvc[i] = cls * (compression[i] + 1.0);
}
RAJA loop
typedef simd_exec exec_policy;
forall<exec_policy>(0, len, [&] (int i) {
 bvc[i] = cls * (compression[i] + 1.0);
});

Figure 1: A RAJA loop corresponding to a C/C++ loop.
The execution policy is defined in RAJA using templates. Figure
2 shows two templates for serial SIMD and parallel execution on
a multicore. RAJA hides vendor specific compiler directives and
lower level programming models such as OpenMP, OpenACC® or
CUDA®, only exposing an abstract execution intent to the user.

template <typename LOOP_BODY> inline void forall(
simd_exec, int begin, int end, LOOP_BODY loop_body) {
 #pragma clang loop vectorize(enable)
 for (int i = begin; i < end; i++) {
 loop_body(i);
 }
}

template <typename LOOP_BODY> inline void forall(
omp_parallel_exec, int begin, int end, LOOP_BODY loop_body)
{
 #pragma omp parallel for
 for (int i = begin; i < end; i++) {
 loop_body(i);
 }
}

template <typename EXEC_T, typename LOOP_BODY> inline
void forall (int begin, int end, LOOP_BODY loop_body) {
 forall (EXEC_T(), begin, end, loop_body);
}

Figure 2: RAJA templates to specify serial execution on a
SIMD unit using the LLVM compiler or multicore execution
with OpenMP.

3. OPENMP ACCELERATOR MODEL
The OpenMP 4.0 [5] accelerator model defines a default host
device and one or more target devices that are selectively invoked
by the programmer. A device is associated with an independent
data environment, i.e., a collection of variables accessible to it. On
encountering a structured block annotated by a target pragma the
host offloads the associated code and data to a device for
execution. Variables are communicated explicitly, or mapped,

from the host's data environment to that of the target using a map
clause associated with the target construct.

A device starts execution with one thread but may fork additional
threads on encountering parallel constructs. To efficiently exploit
massively threaded devices such as GPUs, where threads are
grouped into blocks, the teams construct allows the creation of a
group of independent teams each with a single thread. A distribute
construct partitions iterations of its associated loop across teams.
When a team encounters a parallel construct it may create
additional threads on the device that can be used for worksharing.

A map clause specifies variables that are to be made accessible by
the target device. Arrays are mapped using the syntax array[base
:length]. Motion types alloc, to, from, and tofrom of a map clause
specify that a variable is to be allocated, initialized, and copied
back to the host after device execution. If a variable accessed in a
target region is not listed in its map clause and is not present in the
device’s data environment, a default motion type of tofrom is
assumed.

#pragma omp target map(to: compression[0:len], e_old[0:len],
 vnewc[0:len]) map(from: bvc[0:len], p_new[0:len]) {
 #pragma omp parallel for
 for (int i=0 ; i<len ; i++) {
 bvc[i] = cls * (compression[i] + 1.0);
 }
 #pragma omp parallel for
 for (int i=0 ; i<len ; i++) {
 p_new[i] = bvc[i] * e_old[i] ;
 if (fabs(p_new[i]) < p_cut) p_new[i] = 0.0 ;
 if (vnewc[i] >= eosvmax) p_new[i] = 0.0 ;
 if (p_new[i] < pmin) p_new[i] = pmin ;
 }
}

Figure 3: OpenMP PRESSURE kernel in LCALS extended
with offload directives to execute on a GPU.
Figure 3 shows the PRESSURE kernel in LCALS originally
written for a CPU multicore environment modified for execution
on a GPU using the target construct. Our compiler offloads the
two loops in a single kernel on the GPU and uses all threads in a
thread block for parallel execution of each loop.

4. OFFLOADING WITH RAJA
template <typename LOOP_BODY> inline void forall(
omp_gpu_parallel_exec, int begin, int end, LOOP_BODY
loop_body) {
 #pragma omp target
 #pragma omp parallel for schedule(static, 1)
 for (int i = begin; i < end; i++) {
 loop_body(i);
 }
}

Figure 4: RAJA template using OpenMP 4.0 for GPU
offloading on a thread block with coalesced memory accesses.
To enable GPU execution we created a new execution policy,
omp_gpu_parallel_exec, that exposes an intent for parallel GPU
execution. The corresponding RAJA template in Figure 4 uses the
OpenMP 4.0 target construct to offload a loop to the GPU, along
with a parallel worksharing construct to execute the loop on
threads of a GPU thread block. The parallel worksharing construct
uses a static schedule with a chunk size of 1 to generate coalesced

2

memory accesses across GPU threads and fully exploit the
memory bandwidth of a GPU. RAJA allows an application
developer to ignore these implementation details when executing
on a system with GPUs.

4.1 Establishing the GPU Data Environment
The RAJA template to support offloading cannot explicitly setup
a device data environment with a map clause because variables
accessed within the lambda function are not visible inside the
template [7]. OpenMP implicitly maps all unmapped variables
referenced in the lambda function (including arrays) as scalars
with a motion type of tofrom. This obviously leads to invalid
references on the GPU when an array is accessed through the
RAJA abstraction.

OpenMP 4.1 [6] allows an elegant solution to this problem
through the introduction of standalone unstructured data mapping
clauses that can be used to setup the device data environment
prior to offloading with RAJA. A target enter data construct is
used to map variables to the device data environment and the
target exit data construct to copy them back to the host.

Typical Physics codes store a mesh along with element and node
field data in an encapsulated data structure called a Domain.
Figure 5 shows such a Domain data structure in the
DEL_DOT_VEC_2D kernel of LCALS. A structured mesh that is
accessed by this kernel is stored as a member variable (along with
other variables not required by the kernel) of this structure. We
can use the unstructured data mapping clauses in the constructor
and the destructor of the class to selectively setup and teardown
the device data environment.
When a RAJA loop is offloaded to the GPU our OpenMP runtime
detects the presence of the earlier mapped array real_zones on the
device and simply sets up a device reference in the kernel. In this
manner data definition and motion to or from an accelerator
device can be hidden and separated from the computation
specified in RAJA.

struct ADomain {
 ADomain(LoopLength ilen, Index_type ndims)
 : ndims(ndims), NPNL(2), NPNR(1) {
 // Initialization code
 // Map data onto the device
 #pragma omp target enter data map(to: real_zones[0:
 n_real_zones])
 }
 ~ADomain() {

 // Release data from the device
 #pragma omp target exit data map(release: real_zones[0:
 n_real_zones])
 if (real_zones) delete []real_zones;
 }
 ...

 int *real_zones;
 int n_real_zones;
};

Figure 5: Establishing a data environment for RAJA using
unstructured data mapping constructs.

4.2 Code Offloading
The RAJA approach is designed by its authors to express fine-
grained parallelism in loops to achieve performance portability
with minimum code disruption. When used to program a

heterogeneous system we have found a few deficiencies that we
highlight in this section.

4.2.1 Offloading Arbitrary Code Regions
On a system with an accelerator we require a mechanism to
express the arbitrary offloading of code in addition to the current
mechanism for expressing fine-grained parallelism.

Consider the example of the VOL3D kernel in LCALS. Figure 6
shows the relevant code where several pointers used in the kernel
are initialized to reference distinct chunks of pre-allocated
working memory.

#define NDPTRSET(v,v0,v1,v2,v3,v4,v5,v6,v7) \
 v0 = v ; v1 = v0 + 1; \
 v2 = v0 + domain.jp; \
 …
 v7 = v3 + domain.kp;

 Real_ptr x = loop_data.array_1D_Real[0];

 // The following two statements must be executed on the GPU
 UnalignedReal_ptr x0,x1,x2,x3,x4,x5,x6,x7;
 NDPTRSET(x,x0,x1,x2,x3,x4,x5,x6,x7);

 typedef omp_gpu_parallel_exec exec_policy;
 forall<exec_policy>(fpz, lpz + 1, [&] (int i) {
 Real_type x71 = x7[i] - x1[i];
 Real_type x72 = x7[i] - x2[i];
 ...
 }

Figure 6: Code snippet from VOL3D showing the need for a
RAJA construct to offload a serial section to an accelerator.
One way to offload this code is to first map the working memory
referenced by the pointer x onto the device and then initialize
pointers x0-x7 on the device so that they reference the device
variable. This requires a new RAJA construct that can hold serial
code and express the intent of offloading to an accelerator.

#pragma omp declare target
 Real_type trap_int_func(Real_type x, Real_type y,
 Real_type xp, Real_type yp) {
 Real_type denom = (x - xp)*(x - xp) + (y - yp)*(y - yp);
 denom = 1.0/sqrt(denom);
 return denom;
 }
#pragma omp end declare target

typedef omp_gpu_parallel_exec exec_policy;
forall<exec_policy>(0, len, [&] (int i) {
 … = trap_int_func(x, y, xp, yp);
 });

Figure 7: RAJA requires a new construct to enable the
compilation of functions for an accelerator similar to the
declare target construct of OpenMP 4.0.
Second, recall that in OpenMP 4.0 code must be explicitly marked
for execution on an accelerator. This also applies to functions that
may be called on a device, which must be tagged with a declare
target construct as shown in Figure 7. The snippet is from the
TRAP_INT kernel of LCALS and shows a RAJA loop calling the
function trap_int_func().
Without the declare target construct the function will not be made
available on the GPU by an OpenMP compiler (this is particularly

3

relevant if the function is defined in a different compilation unit)
and the RAJA loop will fail in the link stage. RAJA will require
an abstraction to support functions on an accelerator.

4.3 Optimizing RAJA GPU Programs
The efficiency and feasibility of RAJA relies on two factors:

a. The ability of the compiler to aggressively inline
instances of the template and lambda functions, and

b. The ability of the compiler to collect the requisite
information about the computation and data expressed
in the lambda.

These two factors pose a challenge to the Clang compiler due to
its sequence of actions, as summarized below.

a. During template instantiation, the lambda function is
also created and passed as an argument. Unlike a
regular function, lambda functions capture references
to data accessed within them. In Clang, lambda
functions are represented as a unique C++ record
(class) whose fields are the captured references. During
emission of the lambda body the captured data
references are loaded from the fields of the lambda
object.

b. Code generation now occurs, which is also when the
OpenMP directives are processed.

c. Finally, optimizations such as function inlining occur.

We enable aggressive function inlining of RAJA programs to
produce efficient code. However, a consequence of the sequence
outlined above is that during OpenMP code emission the template
and lambda functions are not yet inlined1. Hence, the OpenMP
code generator inside the RAJA template cannot see outside the
template boundary to automatically determine the data mapping
information required for OpenMP 4.0.

A user may explicitly map data accessed by the lambda onto the
GPU with the enter and exit data constructs as described in
Section 4.1. However, the lambda object (C++ record) must be
treated as a special case for mapping by the compiler.

4.3.1 Mapping Capture-by-Reference Variables in a
Lambda
The lambda function as used in RAJA captures variables by
reference. They are represented as pointer fields of a C++ record
describing the lambda as noted above. When a RAJA loop is
offloaded using the target construct a variable of this type is
mapped using the default motion type of tofrom. Unfortunately
the pointer fields of this structure are not translated; they still refer
to addresses in the host’s address space. This leads to invalid
references when the RAJA loop is run on a GPU.

This is a so-called deep copy issue that is still the subject of
standardization in OpenMP. To successfully map a structure of
arrays, as in this case, the runtime must map not just the structure
itself but traverse deeper to also map the fields (pointers) within it.

We modified our compiler and runtime to add limited deep copy
support for the special case of a lambda function. After mapping
the lambda structure, the runtime checks for the presence of each
member pointer within the device data environment. If present,

1 Inlining before OpenMP code generation may enable additional

optimizations, e.g., fusion of RAJA loops. We are investigating
how this can be done with minimal disruption to Clang.

the corresponding device address replaces the host pointer value
in the field of the mapped lambda structure.

4.3.2 Efficient Offloading of Sequences of RAJA
Loops
Consider the PRESSURE kernel in Figure 3 offloaded to an
accelerator using OpenMP 4.0. The target region contains a
sequence of two parallel loops. As a general rule the larger the
target region, the lower the startup overhead since the costs
involved in invoking an accelerator can be amortized over a larger
execution time.

The equivalent program in RAJA uses two calls to the RAJA
abstraction as shown in Figure 8. This results in two back-to-back
invocations of the accelerator and therefore increased overheads.
In this section we explore various OpenMP 4.1 offload constructs
to see how such sequences of RAJA loops may be optimized.

typedef omp_gpu_parallel_exec exec_policy;
forall<exec_policy>(0, len, [&] (int i) {
 bvc[i] = cls * (compression[i] + 1.0);
});
forall<exec_policy>(0, len, [&] (int i) {
 p_new[i] = bvc[i] * e_old[i] ;
 if (fabs(p_new[i]) < p_cut) p_new[i] = 0.0 ;
 if (vnewc[i] >= eosvmax) p_new[i] = 0.0 ;
 if (p_new[i] < pmin) p_new[i] = pmin ;
});

Figure 8: RAJA equivalent of the PRESSURE kernel invokes
the GPU twice, once for each loop.

4.3.2.1 RAJA on a GPU Thread Block
We first modified the RAJA template for parallel execution on a
GPU to use the target teams distribute parallel for construct as
shown in Figure 9. As mentioned in Section 3, this construct
partitions iterations in a loop across teams for parallel execution.
On the GPU these iterations are concurrently executed by multiple
thread blocks. OpenMP restricts the placement of this offload
construct to only a single loop nest that is to be offloaded so this is
an ideal match for RAJA.

template <typename LOOP_BODY> inline void forall(
omp_gpu_parallel_exec, int begin, int end, LOOP_BODY
loop_body) {
 #pragma omp target teams distribute parallel for
 schedule(static, 1)
 for (int i = begin; i < end; i++) {
 loop_body(i);
 }
}

Figure 9: RAJA template using OpenMP 4.0 for offloading
onto multiple GPU thread blocks.

4.3.2.2 Minimizing OpenMP Overhead in a RAJA
GPU Kernel
Correctly executing general OpenMP programs on a GPU requires
a complex thread co-ordination scheme due to the limitations of
the architecture. On a GPU the smallest unit of organization is a
group of 16 or 32 threads termed a warp. A warp of threads must
execute in lock-step for maximum performance. Furthermore,
synchronization always occurs at the level of a block of threads
and must occur at the same syntactic location. Finally, a thread on
a GPU has a private stack. To share stack variables between
threads, for example, between a master and its team, they must be

4

promoted to GPU shared memory so that a reference to the
corresponding data is valid in the different threads.

General OpenMP target regions may contain serial and parallel
sections, sequences of parallel regions with varying numbers of
threads, sharing of stack variables between a team master and its
team, and nested parallel or simd constructs. Supporting all of this
functionality requires a complex control loop formulation on the
GPU that essentially guides a subset of threads from serial to
parallel regions. This machinery increases the registers and shared
memory used in a kernel and reduces the GPU occupancy, i.e., the
number of concurrently executing threads on a GPU core, which
can result in poor performance.

We can overcome these limitations in the case of RAJA where
only a single parallel loop is present in a target region. We know,
for example, that once threads are invoked they execute in parallel
and only synchronize at kernel termination. Data is also not
shared between threads in this construct. Our compiler detects the
offload construct used in RAJA and generates a simplified control
mechanism with minimal overhead. In Section 5 we study the
impact of this simplified code generation scheme on performance.

4.3.2.3 Pipelining RAJA Loops on GPUs
Programs written in RAJA are expected to contain numerous
back-to-back target regions, each with small-scale computations.
GPU kernels with small-scale computations underutilize the
device resources. We are investigating a technique to pipeline
consecutive RAJA loops on an accelerator to more fully utilize the
GPU resources.

One way to overcome the startup overhead when offloading target
regions is to invoke the device asynchronously with respect to the
host thread. OpenMP 4.1 provides the nowait clause that can be
used to initiate the execution of a target region on an accelerator
but continue execution of the encountering host thread before the
accelerator completes.

typedef omp_gpu_parallel_exec async_exec_policy;
template <typename LOOP_BODY> inline void forall(
omp_gpu_async_parallel_exec, int begin, int end,
LOOP_BODY loop_body) {
 #pragma omp target teams distribute parallel for nowait
 schedule(static, 1)
 for (int i = begin; i < end; i++) {
 loop_body(i);
 }
}

void main() {
 …
 forall<async_exec_policy>(0, len, [&] (int i) {……});
 forall<async_exec_policy>(0, len, [&] (int i) {……});
 …
 #pragma omp taskwait
}

Figure 10: RAJA loops with the asynchronous execution
policy allows a host thread to execute concurrently with its
target region.

5. RESULTS
In this section we compare the performance of RAJA against pure
OpenMP. We study the LCALS [3] benchmark, a collection of
floating-point scientific kernels released by the co-design center at
the Lawrence Livermore National Laboratory to interface with

platform vendors. The benchmark is designed to measure SIMD
and OpenMP multithreaded performance. It also includes variants
to compare multithreaded performance of pure OpenMP and
RAJA kernels.

We first ported LCALS to OpenMP 4.0 by adding directives to
offload each kernel to the GPU. We were able to successfully do
so for all the multithreaded kernels except for COUPLE, and
PIC_2D. COUPLE requires the Complex STL library, which is
currently not supported on the GPU. PIC_2D requires the data
mapping of an array of pointers onto the GPU, which is currently
not supported by the map clause of the OpenMP standard.

We run our experiments on an OpenPower system with IBM
Power8 CPUs and NVIDIA Kepler K40m GPUs. The kernels are
compiled using our Clang/LLVM based compiler and is available
online [8]. We employ the Lightweight OpenMP (LOMP) library
developed at IBM for the host OpenMP runtime and the GPU
offload logic. We use an OpenMP runtime for NVIDIA GPUs that
we have developed and released online [9].

Figure 11: RAJA performance normalized to pure OpenMP
4.0 on LCALS kernels with a small dataset.

Figure 12: RAJA performance normalized to pure OpenMP
4.0 on LCALS kernels with a large dataset.
Figure 11 compares the performance of the kernels written using
pure OpenMP and the RAJA abstraction. In this case we used a
small dataset so there is limited work in each kernel for most
cases. The runtime is dominated by the overhead of offloading as
described in Section 4.3.2.

We see comparable performance in all but three cases.
PRESSURE_CALC_ALT2 and ENERGY_CALC_ALT are two

2 Currently results of PRESSURE_CALC_ALT with RAJA are

incorrect. We are investigating this correctness issue.

5

kernels with 2 and 6 loops respectively. The pure OpenMP
version can offload each kernel in a single target region but RAJA
prescribes an offload for each loop, which explains some of the
poorer performance. We expect some of this overhead to be
hidden once we have implemented the asynchronous execution
policy as described in Section 4.3.2.3.

For some of these benchmarks RAJA versions produce less
optimized code due to two reasons. First, there are multiple load
instructions to access array elements transferred from host to
target in the main parallel loops. Many of them are loop invariants
dereferencing wrapper pointers to get base addresses of arrays.
While the Loop Invariant Code Motion (LICM) pass properly
hoists these instructions out of the loop for the pure OpenMP
versions, it fails to do so for RAJA.

Second, some of the loops have if-else statements represented as
branches to true and false basic blocks. The instruction combine
optimization tries to eliminate the branches with predicated
instructions (e.g., select), but it fails with RAJA version.

The common cause for the optimization failures is conservative
alias analysis results for RAJA versions. The additional levels of
indirection when referencing target data with RAJA prevents alias
analysis from correctly deducing alias sets. Both LICM and
predicating if-else rely on alias analysis results to determine if
code changes are safe. With the conservative alias sets, the safety
of optimizations cannot be proved and so are not applied.

We plan to improve the compiler to better handle the anonymous
class object argument for lambda functions to produce more
accurate alias sets.

Figure 13: Comparison of optimizations developed for RAJA.
Performance is normalized to RAJA SINGLE BLOCK.
Figure 12 shows the results of the experiment with a larger
dataset. With more work per kernel the startup overhead can be
hidden and the performance of RAJA is comparable to pure
OpenMP. Several kernels are faster with RAJA because it splits
the offloaded regions to distinct loops that can be individually
offloaded to multiple GPU blocks using the teams OpenMP
construct as described in Section 4.3.2.1 (of course, the loops in
the pure OpenMP target regions can also be rewritten to execute
on multiple regions as for RAJA).

These results offer evidence for the merits of the RAJA
philosophy. For sequences of loops with enough work the right

approach is to offload them individually to multiple GPU blocks
as the overhead of offloading can easily be amortized.

In Figure 13 we compare the two optimizations developed for
RAJA programs. The baseline offloads a RAJA loop to a single
GPU block; the first optimization to multiple GPU blocks; and the
final one uses our simplified OpenMP code generation scheme.

Using multiple GPU blocks is always beneficial for performance,
particularly for compute bound kernels like VOL3D. The
simplified code generation scheme also improves performance as
is evident for the first four kernels, which have limited number of
instructions in the loop body. An application developer is
oblivious to these optimizations, which are hidden by RAJA.

6. CONCLUSIONS
In this paper we have described how RAJA, a new abstraction for
fine-grained parallelism in loops, can be extended to offload loop
programs onto a GPU. We identified unique challenges in porting
RAJA to a heterogeneous system with CPUs and GPUs due to
their distributed code and data spaces, and the offloading model of
low-level programming abstractions such as OpenMP.

We introduced several execution policies for efficient code and
data offloading in RAJA using OpenMP 4.1. The philosophy of
RAJA is to target a single parallel loop for its fundamental unit of
abstraction. This choice is validated when offloading a loop with
large amounts of work as we can exploit the teams construct to
offload to the entire GPU and an efficient code generation scheme
to minimize OpenMP overhead.

When a loop has limited work the overhead of offloading
dominates. We described an asynchronous execution policy that is
designed to pipeline the execution of a sequence of RAJA loops.
We expect this policy will minimize the overhead of offloading.

7. ACKNOWLEDGEMENT
This work is partially supported by the CORAL project LLNS
Subcontract No. B604142.

8. REFERENCES
[1] R. D. Hornung, and J. A. Keasler. 2014. The RAJA

Portability Layer: Overview and Status. LLNL-TR-661403 .

[2] C. Bertolli et al. 2014. Coordinating GPU threads for
OpenMP 4.0 in LLVM. LLVM compiler infrastructure in
HPC.

[3] LCALS. 2015. Retrieved from
https://codesign.llnl.gov/LCALS.php

[4] H. C. Edwards, and C. R. Trott. 2013. Kokkos: Enabling
Performance Portability Across Manycore Architectures. In
Extreme Scaling Workshop.

[5] OpenMP ARB. OpenMP version 4.0, May 2013.
[6] OpenMP ARB. OpenMP version 4.1, July 2015.
[7] W. Scogland et al. 2015. Supporting Indirect Data Mapping

in OpenMP. 11th International Workshop on OpenMP.

[8] Clang with support for OpenMP 4.0. 2015.
https://github.com/clang-omp/clang_trunk

[9] GPU OpenMP runtime. 2015.
https://github.com/clang-omp/libomptarget

6

