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ABSTRACT 
High-performance machines of today are already heterogeneous 
in nature with traditional multicores and accelerators such as 
GPUs and Xeon PHIs. It is a challenge to program these machines 
in a performance portable way with code that is maintainable 
across large production applications. RAJA is a recently 
introduced C/C++ programming approach targeting fine-grained 
parallelism in loops that is intended to be platform and vendor 
agnostic. Developed at the Lawrence Livermore National 
Laboratory, RAJA has shown promise on traditional multicores 
for ASC hydrodynamics codes. 

In this work we extend RAJA to GPUs using the new OpenMP 
4.1 standard. We document some of the unique issues when RAJA 
is used to program a heterogeneous system with distributed code 
and data spaces, and the efficiency challenges with RAJA when 
using the offload model of OpenMP 4.1. We then introduce 
several execution policies for RAJA that exploit the high 
performance features of OpenMP. We show that when RAJA is 
used to offload a loop with large amounts of work it matches 
performance of programs written with low-level OpenMP 4.1 
constructs. When a loop has limited work the overhead of 
offloading dominates and the approach of RAJA is a limiter for 
performance. We are investigating an asynchronous execution 
policy that targets such cases, which may help hide the cost of 
offloading. 

Categories and Subject Descriptors 
D.1.3 [Programming Techniques]: Concurrent Programming – 
parallel programming.  

General Terms 
Performance. 

Keywords 
Performance-portable, GPU programming, RAJA, OpenMP, 
LCALS. 

1. MOTIVATION 
As HPC systems incorporate diverse accelerators such as GPUs 
and Xeon PHIs™ with traditional CPUs it becomes challenging for 
application developers to achieve performance portability and 
maintainability of their codebases. In particular, to exploit fine-
grained parallelism in loops on these and other emerging 
architectures developers must express parallelism in varied 
computing paradigms such as Vector, Single Instruction Multiple 
Data (SIMD), and Single Instruction Multiple Thread (SIMT). 

RAJA [1] is a C/C++ programming approach developed at the 
Lawrence Livermore National Laboratory that allows an 
application developer to express fine-grained parallelism found in 
loops in a manner that is agnostic to the computing paradigm. 
Platform and vendor specific optimizations along with low-level 
programming models can be hidden behind the RAJA framework. 
Once an application is written in the RAJA style of programming 
it can be ported to a variety of platforms with minimum code 
disruption. Initial reports on using RAJA for ASC hydrodynamics 
codes show promising results [1]. 

To achieve these goals RAJA requires compiler support for 
recently introduced C++ language features and integration with 
emerging programming models. In this work we investigate how 
RAJA may be used to exploit systems with GPUs using the 
OpenMP® 4.1 [5] programming model. We use a Clang®/LLVM® 
based OpenMP compiler and runtime [2] that we are developing 
to accelerate RAJA programs on GPUs. We describe ongoing 
work to extend the RAJA framework to fully exploit GPU devices 
and the compiler/runtime functionality added to support RAJA. 

Our work is done in the context of the Livermore Compiler 
Analysis Loop Suite (LCALS) [3], which contains kernels written 
in OpenMP and RAJA for execution on CPUs. We first port 
LCALS to the GPU using OpenMP 4.1 and RAJA and then 
compare the performance of the two programming styles on an 
NVIDIA® Kepler K40m GPU. 
We find that RAJA compares well with programs written in pure 
OpenMP 4.1 when the amount of work per offloaded loop is 
substantial. For a kernel with sequences of loops that have limited 
work in their body, the overhead of offloading them individually 
with RAJA dominates, whereas in pure OpenMP they can be 
placed in a single offload region. We are investigating techniques 
to minimize this overhead. 

This study is broadly relevant to other template based 
programming approaches such as KOKKOS [6]. 
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2. THE RAJA APPROACH 
In this work we focus on RAJA as used in C++. RAJA uses C++ 
lambda functions and templates to separate loop traversal from a 
loop body. The mechanism enabling various loop traversal 
schemes such as sequential, SIMD, or in parallel across multiple 
cores is hidden within RAJA and is invisible to the application 
developer. 

Figure 1 shows how a user can convert a loop to RAJA. The loop 
body is expressed as a lambda function parameterized by the 
iteration variable. The lambda is said to capture-by-reference 
variables used within it, which are visible at the scope of the call 
site. The RAJA template forall is passed the loop body, its 
iteration bounds and an execution policy. 

C++ style loop 
for (int i=0; i<len; i++) { 
    bvc[i] = cls * (compression[i] + 1.0); 
} 
RAJA loop 
typedef simd_exec exec_policy; 
forall<exec_policy>(0, len, [&] (int i) { 
        bvc[i] = cls * (compression[i] + 1.0); 
} ); 

Figure 1: A RAJA loop corresponding to a C/C++ loop. 
The execution policy is defined in RAJA using templates. Figure 
2 shows two templates for serial SIMD and parallel execution on 
a multicore. RAJA hides vendor specific compiler directives and 
lower level programming models such as OpenMP, OpenACC® or 
CUDA®, only exposing an abstract execution intent to the user. 

template <typename LOOP_BODY> inline void forall( 
simd_exec, int begin, int end, LOOP_BODY loop_body) { 
    #pragma clang loop vectorize(enable) 
    for (int i = begin; i < end; i++) { 
        loop_body(i); 
    } 
} 

template <typename LOOP_BODY> inline void forall( 
omp_parallel_exec, int begin, int end, LOOP_BODY loop_body) 
{ 
    #pragma omp parallel for 
    for (int i = begin; i < end; i++) { 
        loop_body(i); 
    } 
} 

template <typename EXEC_T, typename LOOP_BODY> inline 
void forall (int begin, int end, LOOP_BODY loop_body) { 
    forall (EXEC_T(), begin, end, loop_body); 
} 

Figure 2: RAJA templates to specify serial execution on a 
SIMD unit using the LLVM compiler or multicore execution 
with OpenMP. 

3. OPENMP ACCELERATOR MODEL 
The OpenMP 4.0 [5] accelerator model defines a default host 
device and one or more target devices that are selectively invoked 
by the programmer. A device is associated with an independent 
data environment, i.e., a collection of variables accessible to it. On 
encountering a structured block annotated by a target pragma the 
host offloads the associated code and data to a device for 
execution. Variables are communicated explicitly, or mapped, 

from the host's data environment to that of the target using a map 
clause associated with the target construct. 

A device starts execution with one thread but may fork additional 
threads on encountering parallel constructs. To efficiently exploit 
massively threaded devices such as GPUs, where threads are 
grouped into blocks, the teams construct allows the creation of a 
group of independent teams each with a single thread. A distribute 
construct partitions iterations of its associated loop across teams. 
When a team encounters a parallel construct it may create 
additional threads on the device that can be used for worksharing. 

A map clause specifies variables that are to be made accessible by 
the target device. Arrays are mapped using the syntax array[base 
:length]. Motion types alloc, to, from, and tofrom of a map clause 
specify that a variable is to be allocated, initialized, and copied 
back to the host after device execution. If a variable accessed in a 
target region is not listed in its map clause and is not present in the 
device’s data environment, a default motion type of tofrom is 
assumed. 

#pragma omp target map(to: compression[0:len], e_old[0:len],      
                   vnewc[0:len]) map(from: bvc[0:len], p_new[0:len]) {     
    #pragma omp parallel for 
    for (int i=0 ; i<len ; i++ ) { 
        bvc[i] = cls * (compression[i] + 1.0); 
    } 
    #pragma omp parallel for 
    for (int i=0 ; i<len ; i++ ) { 
        p_new[i] = bvc[i] * e_old[i] ; 
        if ( fabs(p_new[i]) <  p_cut ) p_new[i] = 0.0 ; 
        if ( vnewc[i] >= eosvmax ) p_new[i] = 0.0 ; 
        if ( p_new[i]  <  pmin ) p_new[i]   = pmin ; 
    } 
} 

Figure 3: OpenMP PRESSURE kernel in LCALS extended 
with offload directives to execute on a GPU.  
Figure 3 shows the PRESSURE kernel in LCALS originally 
written for a CPU multicore environment modified for execution 
on a GPU using the target construct. Our compiler offloads the 
two loops in a single kernel on the GPU and uses all threads in a 
thread block for parallel execution of each loop. 

4. OFFLOADING WITH RAJA 
template <typename LOOP_BODY> inline void forall( 
omp_gpu_parallel_exec, int begin, int end, LOOP_BODY 
loop_body) { 
    #pragma omp target 
    #pragma omp parallel for schedule(static, 1) 
    for (int i = begin; i < end; i++) { 
        loop_body(i); 
    } 
} 

Figure 4: RAJA template using OpenMP 4.0 for GPU 
offloading on a thread block with coalesced memory accesses. 
To enable GPU execution we created a new execution policy, 
omp_gpu_parallel_exec, that exposes an intent for parallel GPU 
execution. The corresponding RAJA template in Figure 4 uses the 
OpenMP 4.0 target construct to offload a loop to the GPU, along 
with a parallel worksharing construct to execute the loop on 
threads of a GPU thread block. The parallel worksharing construct 
uses a static schedule with a chunk size of 1 to generate coalesced 
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memory accesses across GPU threads and fully exploit the 
memory bandwidth of a GPU. RAJA allows an application 
developer to ignore these implementation details when executing 
on a system with GPUs. 

4.1 Establishing the GPU Data Environment 
The RAJA template to support offloading cannot explicitly setup 
a device data environment with a map clause because variables 
accessed within the lambda function are not visible inside the 
template [7]. OpenMP implicitly maps all unmapped variables 
referenced in the lambda function (including arrays) as scalars 
with a motion type of tofrom. This obviously leads to invalid 
references on the GPU when an array is accessed through the 
RAJA abstraction. 

OpenMP 4.1 [6] allows an elegant solution to this problem 
through the introduction of standalone unstructured data mapping 
clauses that can be used to setup the device data environment 
prior to offloading with RAJA. A target enter data construct is 
used to map variables to the device data environment and the 
target exit data construct to copy them back to the host. 

Typical Physics codes store a mesh along with element and node 
field data in an encapsulated data structure called a Domain. 
Figure 5 shows such a Domain data structure in the 
DEL_DOT_VEC_2D kernel of LCALS. A structured mesh that is 
accessed by this kernel is stored as a member variable (along with 
other variables not required by the kernel) of this structure. We 
can use the unstructured data mapping clauses in the constructor 
and the destructor of the class to selectively setup and teardown 
the device data environment. 
When a RAJA loop is offloaded to the GPU our OpenMP runtime 
detects the presence of the earlier mapped array real_zones on the 
device and simply sets up a device reference in the kernel. In this 
manner data definition and motion to or from an accelerator 
device can be hidden and separated from the computation 
specified in RAJA. 

struct ADomain { 
   ADomain( LoopLength ilen, Index_type ndims ) 
      : ndims(ndims), NPNL(2), NPNR(1) {  
        // Initialization code 
        // Map data onto the device 
        #pragma omp target enter data map(to: real_zones[0:              
                                                                           n_real_zones]) 
   } 
  ~ADomain() { 

        // Release data from the device 
        #pragma omp target exit data map(release: real_zones[0:  
                                                                                 n_real_zones]) 
        if (real_zones) delete []real_zones; 
   } 
   ... 
 
   int *real_zones; 
   int   n_real_zones; 
}; 

Figure 5: Establishing a data environment for RAJA using 
unstructured data mapping constructs. 

4.2 Code Offloading 
The RAJA approach is designed by its authors to express fine-
grained parallelism in loops to achieve performance portability 
with minimum code disruption. When used to program a 

heterogeneous system we have found a few deficiencies that we 
highlight in this section. 

4.2.1 Offloading Arbitrary Code Regions 
On a system with an accelerator we require a mechanism to 
express the arbitrary offloading of code in addition to the current 
mechanism for expressing fine-grained parallelism. 

Consider the example of the VOL3D kernel in LCALS. Figure 6 
shows the relevant code where several pointers used in the kernel 
are initialized to reference distinct chunks of pre-allocated 
working memory. 

#define NDPTRSET(v,v0,v1,v2,v3,v4,v5,v6,v7)  \ 
   v0 = v ;    v1 = v0 + 1;  \ 
   v2 = v0 + domain.jp; \ 
   … 
   v7 = v3 + domain.kp; 
 
   Real_ptr x = loop_data.array_1D_Real[0]; 
 
   // The following two statements must be executed on the GPU 
   UnalignedReal_ptr x0,x1,x2,x3,x4,x5,x6,x7; 
   NDPTRSET(x,x0,x1,x2,x3,x4,x5,x6,x7); 
 
   typedef omp_gpu_parallel_exec exec_policy; 
   forall<exec_policy>(fpz, lpz + 1, [&] (int i) { 
       Real_type x71 = x7[i] - x1[i]; 
       Real_type x72 = x7[i] - x2[i]; 
           ... 
   } 

Figure 6: Code snippet from VOL3D showing the need for a 
RAJA construct to offload a serial section to an accelerator. 
One way to offload this code is to first map the working memory 
referenced by the pointer x onto the device and then initialize 
pointers x0-x7 on the device so that they reference the device 
variable. This requires a new RAJA construct that can hold serial 
code and express the intent of offloading to an accelerator. 

#pragma omp declare target 
    Real_type trap_int_func(Real_type x, Real_type y, 
                                            Real_type xp, Real_type yp) { 
        Real_type denom = (x - xp)*(x - xp) + (y - yp)*(y - yp); 
        denom = 1.0/sqrt(denom); 
        return denom; 
    } 
#pragma omp end declare target 
 
typedef omp_gpu_parallel_exec exec_policy; 
forall<exec_policy>(0, len, [&] (int i) { 
        … = trap_int_func(x, y, xp, yp); 
    } ); 

Figure 7: RAJA requires a new construct to enable the 
compilation of functions for an accelerator similar to the 
declare target construct of OpenMP 4.0. 
Second, recall that in OpenMP 4.0 code must be explicitly marked 
for execution on an accelerator. This also applies to functions that 
may be called on a device, which must be tagged with a declare 
target construct as shown in Figure 7. The snippet is from the 
TRAP_INT kernel of LCALS and shows a RAJA loop calling the 
function trap_int_func(). 
Without the declare target construct the function will not be made 
available on the GPU by an OpenMP compiler (this is particularly 
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relevant if the function is defined in a different compilation unit) 
and the RAJA loop will fail in the link stage. RAJA will require 
an abstraction to support functions on an accelerator. 

4.3 Optimizing RAJA GPU Programs 
The efficiency and feasibility of RAJA relies on two factors: 

a. The ability of the compiler to aggressively inline 
instances of the template and lambda functions, and 

b. The ability of the compiler to collect the requisite 
information about the computation and data expressed 
in the lambda.  

These two factors pose a challenge to the Clang compiler due to 
its sequence of actions, as summarized below. 

a. During template instantiation, the lambda function is 
also created and passed as an argument. Unlike a 
regular function, lambda functions capture references 
to data accessed within them. In Clang, lambda 
functions are represented as a unique C++ record 
(class) whose fields are the captured references. During 
emission of the lambda body the captured data 
references are loaded from the fields of the lambda 
object. 

b. Code generation now occurs, which is also when the 
OpenMP directives are processed. 

c. Finally, optimizations such as function inlining occur. 

We enable aggressive function inlining of RAJA programs to 
produce efficient code. However, a consequence of the sequence 
outlined above is that during OpenMP code emission the template 
and lambda functions are not yet inlined1. Hence, the OpenMP 
code generator inside the RAJA template cannot see outside the 
template boundary to automatically determine the data mapping 
information required for OpenMP 4.0. 

A user may explicitly map data accessed by the lambda onto the 
GPU with the enter and exit data constructs as described in 
Section 4.1. However, the lambda object (C++ record) must be 
treated as a special case for mapping by the compiler. 

4.3.1 Mapping Capture-by-Reference Variables in a 
Lambda 
The lambda function as used in RAJA captures variables by  
reference. They are represented as pointer fields of a C++ record 
describing the lambda as noted above. When a RAJA loop is 
offloaded using the target construct a variable of this type is 
mapped using the default motion type of tofrom. Unfortunately 
the pointer fields of this structure are not translated; they still refer 
to addresses in the host’s address space. This leads to invalid 
references when the RAJA loop is run on a GPU. 

This is a so-called deep copy issue that is still the subject of 
standardization in OpenMP. To successfully map a structure of 
arrays, as in this case, the runtime must map not just the structure 
itself but traverse deeper to also map the fields (pointers) within it. 

We modified our compiler and runtime to add limited deep copy 
support for the special case of a lambda function. After mapping 
the lambda structure, the runtime checks for the presence of each 
member pointer within the device data environment. If present, 
                                                                    
1 Inlining before OpenMP code generation may enable additional 

optimizations, e.g., fusion of RAJA loops. We are investigating 
how this can be done with minimal disruption to Clang. 

the corresponding device address replaces the host pointer value 
in the field of the mapped lambda structure. 

4.3.2 Efficient Offloading of Sequences of RAJA 
Loops 
Consider the PRESSURE kernel in Figure 3 offloaded to an 
accelerator using OpenMP 4.0. The target region contains a 
sequence of two parallel loops. As a general rule the larger the 
target region, the lower the startup overhead since the costs 
involved in invoking an accelerator can be amortized over a larger 
execution time. 

The equivalent program in RAJA uses two calls to the RAJA 
abstraction as shown in Figure 8. This results in two back-to-back 
invocations of the accelerator and therefore increased overheads. 
In this section we explore various OpenMP 4.1 offload constructs 
to see how such sequences of RAJA loops may be optimized.  

typedef omp_gpu_parallel_exec exec_policy; 
forall<exec_policy>(0, len, [&] (int i) { 
        bvc[i] = cls * (compression[i] + 1.0); 
} ); 
forall<exec_policy>(0, len, [&] (int i) { 
        p_new[i] = bvc[i] * e_old[i] ; 
        if ( fabs(p_new[i]) <  p_cut )  p_new[i] = 0.0 ; 
        if ( vnewc[i] >= eosvmax )  p_new[i] = 0.0 ; 
        if ( p_new[i]  <  pmin )  p_new[i] = pmin ; 
} ); 

Figure 8: RAJA equivalent of the PRESSURE kernel invokes 
the GPU twice, once for each loop. 

4.3.2.1 RAJA on a GPU Thread Block 
We first modified the RAJA template for parallel execution on a 
GPU to use the target teams distribute parallel for construct as 
shown in Figure 9. As mentioned in Section 3, this construct 
partitions iterations in a loop across teams for parallel execution. 
On the GPU these iterations are concurrently executed by multiple 
thread blocks. OpenMP restricts the placement of this offload 
construct to only a single loop nest that is to be offloaded so this is 
an ideal match for RAJA. 

template <typename LOOP_BODY> inline void forall( 
omp_gpu_parallel_exec, int begin, int end, LOOP_BODY 
loop_body) { 
    #pragma omp target teams distribute parallel for  
                                                                 schedule(static, 1) 
    for (int i = begin; i < end; i++) { 
        loop_body(i); 
    } 
} 

Figure 9: RAJA template using OpenMP 4.0 for offloading 
onto multiple GPU thread blocks. 

4.3.2.2 Minimizing OpenMP Overhead in a RAJA 
GPU Kernel 
Correctly executing general OpenMP programs on a GPU requires 
a complex thread co-ordination scheme due to the limitations of 
the architecture. On a GPU the smallest unit of organization is a 
group of 16 or 32 threads termed a warp. A warp of threads must 
execute in lock-step for maximum performance. Furthermore, 
synchronization always occurs at the level of a block of threads 
and must occur at the same syntactic location. Finally, a thread on 
a GPU has a private stack. To share stack variables between 
threads, for example, between a master and its team, they must be 
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promoted to GPU shared memory so that a reference to the 
corresponding data is valid in the different threads. 

General OpenMP target regions may contain serial and parallel 
sections, sequences of parallel regions with varying numbers of 
threads, sharing of stack variables between a team master and its 
team, and nested parallel or simd constructs. Supporting all of this 
functionality requires a complex control loop formulation on the 
GPU that essentially guides a subset of threads from serial to 
parallel regions. This machinery increases the registers and shared 
memory used in a kernel and reduces the GPU occupancy, i.e., the 
number of concurrently executing threads on a GPU core, which 
can result in poor performance. 

We can overcome these limitations in the case of RAJA where 
only a single parallel loop is present in a target region. We know, 
for example, that once threads are invoked they execute in parallel 
and only synchronize at kernel termination. Data is also not 
shared between threads in this construct. Our compiler detects the 
offload construct used in RAJA and generates a simplified control 
mechanism with minimal overhead. In Section 5 we study the 
impact of this simplified code generation scheme on performance. 

4.3.2.3 Pipelining RAJA Loops on GPUs 
Programs written in RAJA are expected to contain numerous 
back-to-back target regions, each with small-scale computations. 
GPU kernels with small-scale computations underutilize the 
device resources. We are investigating a technique to pipeline 
consecutive RAJA loops on an accelerator to more fully utilize the 
GPU resources. 

One way to overcome the startup overhead when offloading target 
regions is to invoke the device asynchronously with respect to the 
host thread. OpenMP 4.1 provides the nowait clause that can be 
used to initiate the execution of a target region on an accelerator 
but continue execution of the encountering host thread before the 
accelerator completes. 

typedef omp_gpu_parallel_exec async_exec_policy; 
template <typename LOOP_BODY> inline void forall( 
omp_gpu_async_parallel_exec, int begin, int end, 
LOOP_BODY loop_body) { 
    #pragma omp target teams distribute parallel for nowait 
                                                                 schedule(static, 1) 
    for (int i = begin; i < end; i++) { 
        loop_body(i); 
    } 
} 
 
void main() { 
    … 
    forall<async_exec_policy>(0, len, [&] (int i) {……} ); 
    forall<async_exec_policy>(0, len, [&] (int i) {……} ); 
    … 
    #pragma omp taskwait 
} 

Figure 10: RAJA loops with the asynchronous execution 
policy allows a host thread to execute concurrently with its 
target region. 

5. RESULTS 
In this section we compare the performance of RAJA against pure 
OpenMP. We study the LCALS [3] benchmark, a collection of 
floating-point scientific kernels released by the co-design center at 
the Lawrence Livermore National Laboratory to interface with 

platform vendors. The benchmark is designed to measure SIMD 
and OpenMP multithreaded performance. It also includes variants 
to compare multithreaded performance of pure OpenMP and 
RAJA kernels. 

We first ported LCALS to OpenMP 4.0 by adding directives to 
offload each kernel to the GPU. We were able to successfully do 
so for all the multithreaded kernels except for COUPLE, and 
PIC_2D.  COUPLE requires the Complex STL library, which is 
currently not supported on the GPU. PIC_2D requires the data 
mapping of an array of pointers onto the GPU, which is currently 
not supported by the map clause of the OpenMP standard. 

We run our experiments on an OpenPower system with IBM 
Power8 CPUs and NVIDIA Kepler K40m GPUs. The kernels are 
compiled using our Clang/LLVM based compiler and is available 
online [8]. We employ the Lightweight OpenMP (LOMP) library 
developed at IBM for the host OpenMP runtime and the GPU 
offload logic. We use an OpenMP runtime for NVIDIA GPUs that 
we have developed and released online [9]. 

 
Figure 11: RAJA performance normalized to pure OpenMP 
4.0 on LCALS kernels with a small dataset. 

 

Figure 12: RAJA performance normalized to pure OpenMP 
4.0 on LCALS kernels with a large dataset. 
Figure 11 compares the performance of the kernels written using 
pure OpenMP and the RAJA abstraction. In this case we used a 
small dataset so there is limited work in each kernel for most 
cases. The runtime is dominated by the overhead of offloading as 
described in Section 4.3.2. 

We see comparable performance in all but three cases. 
PRESSURE_CALC_ALT2 and ENERGY_CALC_ALT are two 
                                                                    
2 Currently results of PRESSURE_CALC_ALT with RAJA are 

incorrect. We are investigating this correctness issue. 
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kernels with 2 and 6 loops respectively. The pure OpenMP 
version can offload each kernel in a single target region but RAJA 
prescribes an offload for each loop, which explains some of the 
poorer performance. We expect some of this overhead to be 
hidden once we have implemented the asynchronous execution 
policy as described in Section 4.3.2.3.  

For some of these benchmarks RAJA versions produce less 
optimized code due to two reasons. First, there are multiple load 
instructions to access array elements transferred from host to 
target in the main parallel loops. Many of them are loop invariants 
dereferencing wrapper pointers to get base addresses of arrays. 
While the Loop Invariant Code Motion (LICM) pass properly 
hoists these instructions out of the loop for the pure OpenMP 
versions, it fails to do so for RAJA. 

Second, some of the loops have if-else statements represented as 
branches to true and false basic blocks. The instruction combine 
optimization tries to eliminate the branches with predicated 
instructions (e.g., select), but it fails with RAJA version. 

The common cause for the optimization failures is conservative 
alias analysis results for RAJA versions. The additional levels of 
indirection when referencing target data with RAJA prevents alias 
analysis from correctly deducing alias sets. Both LICM and 
predicating if-else rely on alias analysis results to determine if 
code changes are safe. With the conservative alias sets, the safety 
of optimizations cannot be proved and so are not applied. 

We plan to improve the compiler to better handle the anonymous 
class object argument for lambda functions to produce more 
accurate alias sets. 

 

Figure 13: Comparison of optimizations developed for RAJA. 
Performance is normalized to RAJA SINGLE BLOCK. 
Figure 12 shows the results of the experiment with a larger 
dataset. With more work per kernel the startup overhead can be 
hidden and the performance of RAJA is comparable to pure 
OpenMP. Several kernels are faster with RAJA because it splits 
the offloaded regions to distinct loops that can be individually 
offloaded to multiple GPU blocks using the teams OpenMP 
construct as described in Section 4.3.2.1 (of course, the loops in 
the pure OpenMP target regions can also be rewritten to execute 
on multiple regions as for RAJA). 

These results offer evidence for the merits of the RAJA 
philosophy. For sequences of loops with enough work the right 

approach is to offload them individually to multiple GPU blocks 
as the overhead of offloading can easily be amortized. 

In Figure 13 we compare the two optimizations developed for 
RAJA programs. The baseline offloads a RAJA loop to a single 
GPU block; the first optimization to multiple GPU blocks; and the 
final one uses our simplified OpenMP code generation scheme. 

Using multiple GPU blocks is always beneficial for performance, 
particularly for compute bound kernels like VOL3D. The 
simplified code generation scheme also improves performance as 
is evident for the first four kernels, which have limited number of 
instructions in the loop body. An application developer is 
oblivious to these optimizations, which are hidden by RAJA. 

6. CONCLUSIONS 
In this paper we have described how RAJA, a new abstraction for 
fine-grained parallelism in loops, can be extended to offload loop 
programs onto a GPU. We identified unique challenges in porting 
RAJA to a heterogeneous system with CPUs and GPUs due to 
their distributed code and data spaces, and the offloading model of 
low-level programming abstractions such as OpenMP. 

We introduced several execution policies for efficient code and 
data offloading in RAJA using OpenMP 4.1. The philosophy of 
RAJA is to target a single parallel loop for its fundamental unit of 
abstraction. This choice is validated when offloading a loop with 
large amounts of work as we can exploit the teams construct to 
offload to the entire GPU and an efficient code generation scheme 
to minimize OpenMP overhead. 

When a loop has limited work the overhead of offloading 
dominates. We described an asynchronous execution policy that is 
designed to pipeline the execution of a sequence of RAJA loops. 
We expect this policy will minimize the overhead of offloading. 
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