
Unstructured Mesh Handling for

Extreme -Scale Computing

Timothy J. Tautges

Computational Scientist

Mathematics & Computer Science Division

Argonne National Laboratory

Outline

ÁMOAB

ςOverview: mesh & simulation

ς2-slide overview

ςData model

ςBasic mesh access

ςSets & tags

ςParallel mesh access

ς iMeshP

ÁCGM/Lasso

ςCGM 1-slide overview

ςLasso 1-slide overview

ÁUsage: MOAB-native tools

ÁUsage: mbpart / Zoltan

ÁUsage: mbcoupler

Argonne Training Program in Extreme-Scale Computing
2

Introduction

Continuous domain
(geometry)

Discrete domain
(mesh)

FEA

ÁPDE-based simulation discretizes PDEs over a discrete representation of the spatial
and often time domain, and solves for specific discrete model(s)

ÁSometimes geometric details of the spatial domain are important, sometimes not

ςMPP-enabled resolution should resolve geometric features (where possible & useful?)

ÁDepending on the geometric features & resolution requirements, generating the
mesh can be either trivial or not

ÁMesh, and data on the mesh, are involved in simulation at the front (generation),
middle (simulation), and back (viz& data analysis)

Argonne Training Program in Extreme-Scale Computing
3

Mesh-Oriented datABase (MOAB)

ÁLibrary for representing, manipulating structured, unstructured mesh models

ÁSupported mesh types:

ςFE zoo (vertices, edges, tri, quad, tet, pyramid, wedge, knife, hex)

ςPolygons/polyhedra

ςStructured mesh

ÁImplemented in C++, but uses array-based storage model

ςEfficient in both memory and, for set-based access, in time

ÁMesh I/O from/to various formats

ςHDF5 (custom), vtk, CCMIO (Star CD/CCM+), Abaqus, CGM, Exodus

ÁMain parts:

ςCore representation

ςTool classes (skinner, kdtree, OBBtree, ParallelCommΣ Χύ

ςTools (mbsize, mbconvert, mbzoltan, mbcouplerΣ Χύ

ÁParallel model supports typical element-based decompositions, with typical mesh-based
functions (shared interface, ghost exchange, ownership queries)

ÁRuns on 32k+ cores

Argonne Training Program in Extreme-Scale Computing
4

Parallel Mesh Model

ÁDefinitions:

ςElement-based partition:
decomposition of mesh over processors such that
each element assigned to exactly one proc/part,
with vertices shared between parts

ςShared entity: an entity represented on
multiple procs

ς (Part) interface entity: entity shared by multiple parts
(vertices, edges, faces in a 3D mesh & element-based partition)

ςOwned entity, owner: each mesh entity owned by exactly one proc

ςGhost entity: shared non-ƻǿƴŜŘ Ŝƴǘƛǘȅ όǎƻƳŜǘƛƳŜǎ ǊŜŦŜǊǊŜŘ ǘƻ ŀǎ άƘŀƭƻέύ

Áά5ŜƎǊŜŜέ ƻŦ ǇŀǊŀƭƭŜƭ-ness depends on application requirements, and can be adjusted as
needed during calculation

ςDuplicated model on every proc

ςDomain-decomposed

ςShared vertices, non-vertices

ς1 or more layer of ghost elements

5

P0 P1

P2

v1v2

v3v5

v4

e1

e2

t1

t2

t3

v4v1

v3v2

t1

t2

v5

v6

e2

e1

t3

t4

v2
v1

v5

t1

t2

v3

e2

t3

e1 e1

v4

e3

MOAB Parallel Mesh Model

ÁParallel model based on element-based partition

ςEach element assigned to exactly one part, with entities optionally shared between parts/procs

ςArbitrary number of layers of ghost elements

ÁSupported parallel mesh constructs:

ςFor each shared entity, every sharing procknows all other sharing procs& handles on those

ςSharing data stored as either single int/handle (shared with 1 other proc) or mult sharing
procs/handles

ςGhost/owned status also stored

ςStored in 1-ōȅǘŜ ΨpstatusΩ ōƛǘƳŀǎƪ ǘŀƎ

ÁParallel model usually initialized by loading from some decomposition in file

ς/ŀƴ ōŜ ŀƴȅ ǎǳōǎŜǘ ǎǘǊǳŎǘǳǊŜ ǘƘŀǘΩǎ ŀ άŎƻǾŜǊƛƴƎέ όŜŀŎƘ Ŝƴǘƛǘȅ ƛƴ ŜȄŀŎǘƭȅ 1 subset)

ςMaterial set, geometric volume, or Zoltan-generated partitioning

ÁSingle-file parallel read/write using parallel HDF5

ÁAll parallel functionality usually accessed through ParallelCommclass

Argonne Training Program in Extreme-Scale Computing
6

MOAB Data Model

Á4 basic types of data:

ςEntities (FE zoo, polygons, polyhedra)

ςSets (collections of entities & sets, parent/child links)

ςTags (annotation of data on other 3)

ς Interface (OOP, owns data)

ÁTags used for both fine-grained and coarse-grained data

ςFine grained: vertex-based temperature

ςCoarse-grained: provenance of mesh

ÁSets + tags used for a variety of mesh groupings

Argonne Training Program in Extreme-Scale Computing
7

Design velocitiesParallel Partitions

Geometric model topology

8

MOAB Entity Storage

EntityHandle:
ÅFundamental unit of

access in MOAB
Bitmask of type, id

4-bit 28-or 60-bit

type id

Dense tag 3

Dense tag 2

Dense tag 1

Connectivity

Dense tag 4

Dense tag 2

Coords

EntitySequence:
¸Represent used portions of handle space
¸Have pointer to SequenceData
¸Have start and end handle values
¸Arranged in binary tree by start handle

Typically one
EntitySequence for an
entire SequenceData

SequenceData:
¸Represent allocated portions of handle space
¸Have start and end handle
¸Coordinates or Connectivity, + Dense Tag Data

Linked list of all SequenceDatas
for a single entity type

Cache most
recently
accessed
EntitySequence

Range:
ÅClass for storing lists of handles
ÅNear constant-size for near-contiguous

subranges of handles
ÅMethods for efficient Booleans on lists

é

Start1, end1

Start2, end2

MOAB Mechanics (I)

ÁMOAB implemented in C++, but internally uses array-based storage

ςMore memory efficient for simulation, with functionality appropriate for all uses

ÁData accessed through a MOAB instance

ςMultiple instances can co-exist, but single instance is not thread-safe

ςParallel instances independent except through parallel mesh constructs mentioned earlier

ÁMOAB supports a variety of platforms

ςLinux, MacOS, IBM BG/x, Cray

ςWindows maybe coming soon

ÁMOAB configure/build process using autoconfOR cmake

ςMakefileάǎƴƛǇǇŜǘǎέ ōǳƛƭǘ ǘƻ ǎƛƳǇƭƛŦȅ ǳǎƛƴƎ ƛǘ ƛƴ ŀǇǇƭƛŎŀǘƛƻƴ makefiles(examples later)

ςCan build with no dependencies, but you should probably build with NetCDFand HDF5

ςFor the purposes of this training course, MOAB already built on Vesta

ς¸ƻǳ Ŏŀƴ ŀƭǎƻ ōǳƛƭŘ ŀ ƭƻŎŀƭ ŎƻǇȅ ƻƴ ȅƻǳǊ ƳŀŎƘƛƴŜΣ ŀƴŘ ƛƴ Ƴŀƴȅ ŎŀǎŜǎ ƛǘΩǎ ŜŀǎƛŜǊ ǘƻ ƭŜŀǊƴ ǘƘŀǘ ǿŀȅ

http://trac.mcs.anl.gov/projects/ITAPS/MOAB/wiki

Argonne Training Program in Extreme-Scale Computing
9

HelloMOAB: Basic Mesh Access
http://www.mcs.anl.gov/~fathom/moab -docs/html/HelloMOAB_8cpp -example.html

ÁInterface instantiation using moab::Core constructor

ςNormally, all MOAB access should be through moab:: namespace, not used here for brevity

ÁMesh can be loaded from file (Interface::load_file) or created in-place
(Interface::create_vertex, Interface::create_element)

ςMOAB source comes with various mesh files, in MeshFiles/unittestκΧ

ÁLists usually handed through interface as either Range or std::vector<EntityHandle>

Argonne Training Program in Extreme-Scale Computing
10

http://www.mcs.anl.gov/~fathom/moab-docs/html/HelloMOAB_8cpp-example.html

GetEntities : Basic Mesh Access
http://www.mcs.anl.gov/~ fathom/moab -docs/html/GetEntities_8cpp -example.html

ÁMOAB provides functions for getting handle type, id (type_from_handle,
id_from_handle)

ςThese are bitmask functions, you could implement your own in C/C++

ςEntityTypeŜƴǳƳŜǊŀǘƛƻƴΥ a.±9w¢9·Σ a.95D9Σ Χ όǳǎŜ Doxygento find definition)

ς Ids usually assigned in sequence, starting with 1 (note, 0 is never a valid id, except for handle 0,
ǿƘƛŎƘ ǊŜŦŜǊǎ ǘƻ ǘƘŜ άǊƻƻǘ ǎŜǘέ ƻǊ ƛƴǎǘŀƴŎŜύ

ÁRange provides API very similar to std::vector

ςbegin(), end(), rbegin(), etc.

ςRange::range_insertertype for handing to std::copy

Ámoab::CN class for Canonical Numbering

ςTells how vertices, edges, faces are numbered in local element

ςProvides functions for e.g. getting string name, getting # edges in an element, etc.

Argonne Training Program in Extreme-Scale Computing
11

http://www.mcs.anl.gov/~fathom/moab-docs/html/GetEntities_8cpp-example.html

Intermediate -Dimension Entities (òaentities ó)

ÁExplicit representation of edges and edges/faces in 2D, 3D meshes is optional

ςSometimes useful (e.g. adaptive refinement), sometimes not

ςFor tetrahedral meshes, can increase memory cost by ~4-6x, hex meshes slightly lower

ÁάwŜŀƭέ ƳŜǎƘŜǎ ǳǎǳŀƭƭȅ ŎƻƳŜ ǿƛǘƘ aentitiesnecessary for defining boundary condition
groupings, but no other ones

ÁIn MOAB:

ςYou can request creation of aentitiesby requesting them from adjacency calls with
άcreate_if_missingέ ŀǊƎǳƳŜƴǘ Ґ true

ςCalling get_entities_by_xxxwill return only those explicitly represented

ÁTo force creation of interior edges/faces for whole mesh:

ςGet all vertices using get_entities_by_dimensionwith dim = 0 (use Rangeversion)

ςCall get_adjacencieswith to_dimension= 1 or 2 and create_if_missing= true

Argonne Training Program in Extreme-Scale Computing
12

MOAB get_adjacencies Allows Booleans on Results List

Áget_adjacencies(from=v1-v4; to_dim=2; op=INTERSECT;to_list=<empty>) = q1

Áget_adjacencies(from=v3; to_dim=2; op=UNION;to_list=<empty>) = q1, q2

Áget_adjacencies(from=v3-v4; to_dim=2; op=INTERSECT; to_list=<q2,q3>) = q2

ÁUseful for reducing lines of code for mesh query & list manipulation

ÁInterface::Range also defines Boolean operations, for both code reduction and time
efficiency

Argonne Training Program in Extreme-Scale Computing
13

v1

v2

v3

v4

v5

v6

q1 q2

v7

v8

q3

Sets & Tags
ÁThe combination of sets and tags is one of the most

powerful abstractions in MOAB

ς I have yet to see a construct useful in mesh-based simulation that
cannot be efficiently represented using sets and tags

ÁTags are useful as both fine-grained (dense) and coarse-grained (sparse) data

ςSparse tags in MOAB are stored as (handle, value) tuples

ς5ŜƴǎŜ ǘŀƎǎ ŀǊŜ ŀƭƭƻŎŀǘŜŘκǎǘƻǊŜŘ ŀǎ όǾŀƭǳŜмΣ ǾŀƭǳŜнΣ Χύ ŦƻǊ ǎŜǉǳŜƴŎŜǎ ƻŦ Ŝƴǘƛǘȅ ƘŀƴŘƭŜǎ

ςPointer to tag memory can be retrieved through API, useful for unstructured array-based
simulations

ÁA set can have parent and child sets, and this is different from contains relations

ςCan define general directed graphs of sets

ÁSome more about sets:

ςThe whole mesh is specified through the MOAB API as set handle zero (0)

ςEliminates a whole set of functions for accessing entities for whole mesh vs. subset

ςMOAB has 2 types of sets:

ω List: order is preserved, entities can appear > 1 time (like std::vector)

ω Set: order not preserved (ordered by EntityHandle), each handle can occur only once (like std::set)

ς.ȅ ŘŜŦŀǳƭǘΣ ah!. ŘƻŜǎ ƴƻǘ ƳŀƪŜ ŜƴǘƛǘƛŜǎ ŀǎ ōŜƛƴƎ ƛƴ ǎŜǘǎΣ ǎƻ Ŏŀƴ ƘŀǾŜ άǎǘŀƭŜέ ǎŜǘǎ

ω/ŀƴ ǎǇŜŎƛŦȅ άǘǊŀŎƪƛƴƎέ ŦƭŀƎ ŦƻǊ ǎŜǘ ŀǘ ŎǊŜŀǘƛƻƴ ǘƛƳŜΣ ǘǊŜŀǘǎ ƛƴŎƭǳǎƛƻƴ ŀǎ Ŝƴǘƛǘȅ-set adjacency

ω Tracking efficient memory-wise, but not necessarily time-wise; better to adjust on whole-set basis

Argonne Training Program in Extreme-Scale Computing
14

Parallel Partitions

Sets & Tags (cont)

ÁMOAB APIdoes not bind specific set purposes

ςNo specific API support for boundary conditions, parallel parts, etc.

ÁMOAB defines conventionsfor conventional uses of sets

ςMBTagConventions.h, MBParallelConventions.hdefine various tag names, properties

ςa!¢9wL![ψ{9¢Σ 5LwL/I[9¢ψ{9¢Σ b9¦a!bbψ{9¢Σ b!a9Σ t!w![[9[ψt!w¢L¢LhbΣ Χ

Á{Ŝǘǎ ϧ ǘŀƎǎ ǳǎŜŦǳƭ ŦƻǊ ŘŜŦƛƴƛƴƎ άƳŜǘŀŘŀǘŀέ όŘŀǘŀ ŀōƻǳǘ ǘƘŜ Řŀǘŀύ

ςah!. ŘƻŎǳƳŜƴǘŀǘƛƻƴ ƛƴŎƭǳŘŜǎ άLκh ŀƴŘ aŜǘŀŘŀǘŀ {ǘƻǊŀƎŜ /ƻƴǾŜƴǘƛƻƴǎέ ŘƻŎǳƳŜƴǘ ǘƘŀǘ
describes some common uses

ω http://www.mcs.anl.gov/~fathom/moab-docs/html/md-contents.html

ω This document describes where data from specific file readers gets put in the MOAB data model

ÁFor some meshes (cubit), sets can be used to represent original geometric model
topology

ςNot enough time to describe here; check metadata document for details

Argonne Training Program in Extreme-Scale Computing
15

SetsNTags: Working with Sets and Tags
http://www.mcs.anl.gov/~ fathom/moab -docs/html/SetsNTags_8cpp -example.html

ÁInterface::tag_get_handleused for both accessing current tags and creating new ones

Á2 types of tag-based access:

ςGet entities by type, tag: most useful for sparse tags

ςGet tag values on specific entity(ies): most useful for dense tags

ÁFor materials and boundary conditions, more memory-efficient to define grouping using
sets, and material/BC data using tags on set

ÁMost modern meshing tools work this way too

Argonne Training Program in Extreme-Scale Computing
16

http://www.mcs.anl.gov/~fathom/moab-docs/html/GetEntities_8cpp-example.html

MOAB Parallel Mesh

ÁRecall:

ςElement-based partition:
decomposition of mesh over processors such that
each element assigned to exactly one proc/part,
with vertices shared between parts

ςShared entity: an entity represented on
multiple procs

ς (Part) interface entity: entity shared by multiple parts
(vertices, edges, faces in a 3D mesh & element-based partition)

ςOwned entity, owner: each mesh entity owned by exactly one proc

ςGhost entity: shared non-ƻǿƴŜŘ Ŝƴǘƛǘȅ όǎƻƳŜǘƛƳŜǎ ǊŜŦŜǊǊŜŘ ǘƻ ŀǎ άƘŀƭƻέύ

ÁCƻǊ ƭƻǘǎ ƻŦ ǇŀǊŀƭƭŜƭ ƳŜǎƘ ǳǎŀƎŜΣ ŘƻƴΩǘ ƴŜŜŘ ǘƻ ǘƘƛƴƪ ŀōƻǳǘ ǇŀǊŀƭƭŜƭ ŀǘ ŀƭƭ

ςSerial mesh API works the same way

ÁIn MOAB, parallel mesh constructs are stored using sets and tags

ςCould access most of the parallel mesh data using same serial API + parallel tag conventions

ÁMOAB also has a ParallelCommclass

ςProvides convenience functions for e.g. getting shared entities, ghost entities

ςParallel functionality, e.g. resolving shared and ghost entities, exchange/reduce tags

17

P0 P1

P2

v1v2

v3v5

v4

e1

e2

t1

t2

t3

v4v1

v3v2

t1

t2

v5

v6

e2

e1

t3

t4

v2
v1

v5

t1

t2

v3

e2

t3

e1 e1

v4

e3

MOAB Parallel Mesh (cont)

ÁMost common way of initializing parallel mesh is by reading a file, but details are
important

ςSpecifying partition type (replicated, by material, geometric volume, partitioning tool)

ςPost-read operations (resolve shared entities, exchange ghost cells)

ÁSpecified in MOAB using file options string

ς{ŜŜ ¦ǎŜǊΩǎ DǳƛŘŜΣ ǎŜŎǘƛƻƴ рΣ ŦƻǊ ƭƛǎǘ ƻŦ ƻǇǘƛƻƴǎand common usages

ÁMOAB implements parallel I/O using single file approach

ςDifferent from many other tools, which use 1FPP or other approaches

ςScalability / workflow simplicity often at odds

ÁFile format also important

ςMOAB uses HDF5 for native format, that file type used to store partitioned file

Argonne Training Program in Extreme-Scale Computing
18

19

MOAB Parallel I/O

ÁData taken on Intrepid (IBM BG/P)

ÁRead/write for 32m hex, 64m tet elems

ςNowhere near ideal I/O bandwidth

ςAbsolute time tolerable in most cases

ςDrastic tet time improvement after
reordering by partition

ω Fewer small fragments of HDF5 datasets

ÁRead/resolve/ghost times

ςRead times about constant

ςResolve, ghost time scaling close to linear

20

MOAB Parallel I/O: Weak Scaling

HelloParMOAB: Parallel Mesh Initilization /Access
http://www.mcs.anl.gov/~ fathom/moab -docs/html/HelloParMOAB_8cpp -example.html

ÁCan initialize MOAB using MPI_COMM_WORLD or other communicator

ςCan also use multiple ParallelCommobjects, on different communicators (but sharing may not work right

ŎǳǊǊŜƴǘƭȅΧύ

ÁUse ParallelComm::get_shared_entitiesto get shared entities by dimension and other
sharing proc(with defaults for all dimensions/other procs)

ÁPSTATUS_xxxenumeration/bitmask defines various parallel-relevant states

ςPSTATUS_ SHARED, MULTISHARED, INTERFACE, GHOST

ÁUse ParallelComm::filter_pstatusto filter range based on status & Boolean (NOT/AND)

ÁResolving shared, ghosted entities can be specified at file read time (using option) or as
explicit operation through ParallelComm

ÁMOAB does not restrict or change the way you can use MPI for other things

ς i.e. does not define e.g. MOAB_MPI_Commdatatypeor MOAB_MPI_Reducefunction

Argonne Training Program in Extreme-Scale Computing
21

http://www.mcs.anl.gov/~fathom/moab-docs/html/GetEntities_8cpp-example.html

Putting It Together: Parallel Lloyd Relaxation
http://www.mcs.anl.gov/~ fathom/moab -docs/html/LloydRelaxation_8cpp -example.html

Argonne Training Program in Extreme-Scale Computing

it += 1

it = 10
Serial:

it += 1

it ~ 12
Parallel:

exchange_tags

http://www.mcs.anl.gov/~fathom/moab-docs/html/GetEntities_8cpp-example.html

Putting It Together: Parallel Lloyd Relaxation (cont)
http://www.mcs.anl.gov/~fathom/moab -docs/html/LloydRelaxation_ 8cpp-example.html

ÁInitialization of mesh with shared entities resolved, one layer of ghosts exchanged

ÁUse centroid tag for intermediate storage of new vertex positions

ÁCN class cppvariables to dimension some lists

ÁWhen getting/setting tag values on multiple entities, make use of &stdvec[0] to get
pointer to memory

ςSTL guarantees this is valid

ςstl::vector dynamically-sized, useful for mesh-based codes

ÁJudicious choice of default value for tag eliminates need to initialize fixed tag for unfixed
vertices

ÁResults:

Argonne Training Program in Extreme-Scale Computing
23

http://www.mcs.anl.gov/~fathom/moab-docs/html/GetEntities_8cpp-example.html

iMesh, iMeshP Interfaces

ÁThe ITAPS project defined a set of
common interfaces (APIs) for
mesh, geometry, and relations

ÁC-based interface, but designed to be callable directly from Fortran and C++

ςGood portability, performance

ςMaintenance easier

ς iMeshPfor parallel data, constructs

ςPython also supported, through PyTAPS

ÁMOAB uses iMesh, iMeshPto support
Fortran-based applications

ÁPrimary differences between MOAB, iMesh(P):

ςMOAB parallel model defined entirely through sets+tags; iMeshPǳǎŜǎ άtŀǊǘƛǘƛƻƴέΣ άtŀǊǘέ

ς In iMeshP, when you have multiple Parts per process, ghosting across parts implies duplicate
entities in same iMeshPinstance

ςList handling through iMesh/ iMeshPsomewhat more cumbersome due to lack of
Range, std::vector data structures

ωMitigated a bit using ISO_C_BINDING for F90+

Ábƻǘ ŜƴƻǳƎƘ ǘƛƳŜ ǘƻ ŘŜǎŎǊƛōŜ Ŧǳƭƭȅ ƘŜǊŜΤ ǎŜŜ ah!. ¦ǎŜǊΩǎ DǳƛŘŜΣ ǎŜŎǘƛƻƴ т

24

implA.CC

app1.f77 app2.f90 app3.CC app4.c

implB.c implC.f77

iMesh (C) PyTAPS

app4.py

iRel/Lasso

iGeom/CGM iMesh/MOAB

Mesh-Based Tools Packaged With MOAB

ÁSeveral tools are packaged with MOAB and built by default

Ámbsize

ςUsed to read mesh & list numbers of entities of various types

-ll option (list long): lists everything in mesh; -g and ςm list geometry and material/BC sets, resp.

-f option: lists formats read and written by MOAB

Ámbconvert: use to convert between file formats

ςMultiple ςO <read_option> -o <write_option> can be used to test reading/writing in parallel

ςUse to generate vtk files for use by VisIt/ParaView

Ámbpart (in mbzoltansubdirectory): partition a mesh for parallel access

ς (requires Zoltanlibrary from Sandia)

ς Implements various partitioners(use ςh to list), but Recursive Intertial Bisection seems to be
most reliable & relatively fast

Ámbtagprop: convert tags between set- and entity-based ata

Ámbskin: generate & save the skin of a mesh

Argonne Training Program in Extreme-Scale Computing
25

Advanced Topics

ÁDirect access to MOAB storage

ςUse to obtain direct pointers to: tags (sparse & dense), connectivity, coordinates, adjacencies

ςAllows near-native speed for array-based applications

ς¦ǎŜǎ ƛǘŜǊŀǘƻǊ ŀǇǇǊƻŀŎƘ ǘƻ ŀƭƭƻǿ ŦƻǊ ƳǳƭǘƛǇƭŜ άŎƘǳƴƪǎέ ƛƴ ƘŀƴŘƭŜκŀǊǊŀȅ ǎǇŀŎŜ

ςSee examples DirectAccessNoHoles, DirectAccessWithHoles, DirectAccessNoHolesF90 for usage

ÁMesh searching

ςMOAB implements various tree types that enable local/parallel mesh searching

ςOptionally with finite element shape functions for locating points in elements

ςSee AdaptiveKDTreeclass, tools/mbcouplerin source

Argonne Training Program in Extreme-Scale Computing
26

MOAB-Based Solution Transfer

ÁEach physics type on independent mesh

ÁDistributed independently

ÁBoth meshes in same MOAB instance

p1

p3

p2

p4

OR

7M Hexes

28M Tets

ÁWorks for 2D, 3D in parallel for interpolation-based transfer
(+ global or subset conservation)
ÁWork on tracer transport will provide basis for element-based

conservation too

ÁMOAB currently being integrated into
ESMF to support online weight
regeneration too

p1 p2

p3 p4

p6p5

p8p7

28

Common Geometry Module (CGM)

ÁLibrary for query & modification of BREP CAD-based geometric models

ÁSupports various modeling engines

ςOpen.CASCADE (open-source)

ςACIS (commercial)

ςCUBIT-ACIS (available for research purposes)

ÁDesigned to represent geometric models as they are represented in CUBIT

ÁBasic model import & query

ςACIS .sat, OCC .brep, STEP, IGES

ςQuery # vertices/edges/faces/volumes, edge/face closest pt, face normal, etc.

ÁModel construction

ς3D/2D primitives, spline fitting, etc.

ςBooleans, transforms, sweeping, lofting, etc.

ςNot a parametric modeler like e.g. SolidWorks

ÁAdvanced features

ςFacet-based modeling

ςά±ƛǊǘǳŀƭέ ǘƻǇƻƭƻƎȅ όǎƳŀƭƭ ŦŜŀǘǳǊŜ ǊŜƳƻǾŀƭύ

ςDecomposition for (hex) meshing

