>

.) BERKELEY LAB) ENERGY

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Software Engineering and Process for HPC Scientific Software

Anshu Dubey

With several slides from

Brian Van Straalen
Phil Colella

ATPSEC 2013

Why is Software Process Important

« Modern scientific computing is no longer a solo effort

— Most interesting modeling questions that could be
simulated by the heroic individual programming scientist
have already been investigated

— "Productivity language” that are meant to alleviate the
complexity of programming high performance software
have not delivered yet

— Thus, coding is complicated and requires division of
roles and responsibilities.

« Working together on a common code is difficult unless there
IS a software process

~
coree) ‘“‘ BERKELEY LAB
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Software Process Components

« For All Codes
— Code Repository
— Build Process
— Code Architecture
— Coding Standards
— Verification Process
— Maintenance Practices
« If Publicly Distributed code
— Distribution Policies
— Contribution Policies
— Attribution Policies

~
coree) ‘“‘ BERKELEY LAB
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Code Repositories

Centralized Version Control
— CVS the first one to be heavily deployed

— Subversion the most commonly used

Distributed Version Control

— Most popular ones are Git and Mercurial

— Synchronization through exchange of patches
— One can maintain multiple local branches

— Makes for a much easier co-existence of
production and development

— Gate keeping can become challenging

~ 4
-2 fj BERKELEY LAB
LAWRENCE BERKELEY NATIONAL LABORATORY

Subversion: SVN

« Central Repository system.
— There is one master version of the state of the code

« Users have “check outs” or “working copy” of the master

repository

« Can access the master repository via several mechanisms
— rsh connection
— ssh connection
— svnserver
— All user interaction is considered a client-side operation
— Transactional protocol

,ﬁ\ﬂ BERKELEY LAB

LAWRENCE BERKELEY NATIONAL LABORATORY

Working with Repositories

Checkout

update

— Also a merging/concurrent process, as with CVS
diff [filename|directory]

add [filename|directory]

commit [|filename|directory]

delete [filename|directory]

merge

branches

>
ceceen) i BERKELEY LAB
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Working with Repositories

* You check out the head or some branch of the repository
— This Is your working copy

— When you have modified your working copy and you want
to save your work you check in

« What is stored is the difference between versions

— Minimization of information since the whole history must be
maintained

— When you do update the “diff’ is merged into your working

Copy
* You can roll back as much as you like

— Because the whole change history is maintained

— Tools exist that translate the history and logs into web
readable information

Example : FLASH repository

What Else Can You Do With Repositories

Managing branches

— Individuals working on some development that they don't
want to have colliding with other developers

— Tag a stable branch

— Separate production from development

— Manage multiple production projects
 Also help with backtracking for verification

 Aid in reproducibility of results (within the limits of having the
same software stack and hardware available)

* In short those of us who have been using it, wouldn’t live
without it

~
«.» BERKELEY LAB
freeeee ‘III‘
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Unusual Use

« Supporting multiple set of projects from different branches is
more recent at FLASH

* A hierarchy of project and production branches

» A stringent merge and test schedule is important

« Howwedid it:
— Turned one of the branches into main development branch
— Turned trunk into the merge area
— Enforced a merge schedule

— Enforced a policy of prioritizing the fixing of whatever broke
in the merge.

~
«.» BERKELEY LAB
freeeee ‘III‘
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Software Process Components

« For All Codes
— Code Repository
— Build Process
— Code Architecture
— Coding Standards
— Verification Process
— Maintenance Practices
« If Publicly Distributed code
— Distribution Policies
— Contribution Policies
— Attribution Policies

~.10
coree) l BERKELEY LAB
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Build Process

Multiple files, individual file compilation does not scale
beyond a point

If the code runs on many different platforms then each
software stack will have its own peculiarities

The code may want to use available libraries, getting them
all built consistently may be challenging

For all of these reasons it is worth investing in a managed
build process

Usually a combination of configuration and make
Autoconf, perl scripts, python for configuration
GNU Make for compilation

~ 11
coree) l BERKELEY LAB
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Configuration - FLASH Example : Setup
Script
Python code links together needed physics

and tools for a problem

— Traverse the FLASH source tree and link necessary files
for a given application to the object directory

— Creates a file defining global constants set at build time

— Builds infrastructure for mapping runtime parameters to
constants as needed

— Configures Makefiles properly
— Determine solution data storage list and create Flash.h

— Generate files needed to add runtime parameters to a
given simulation.

— Generate files needed to parse the runtime parameter file.

~
«.» BERKELEY LAB
freeeee ‘III‘
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Setup works with Config file and local
makefile snippets

* FLASH-specific syntax
« Define dependencies at all levels in the source tree:
— Lists required, requested, exclusive modules
* Declare solution variables, fluxes
* Declare runtime parameters
— Sets defaults and allowable ranges — do it early!
— Documentation — start line with “D”
« Variables, Units are additive down the directory tree
* Provides warnings to prevent dumb mistakes
« Consolidates makefile snippets into a complete makefile

~
«.» BERKELEY LAB
freeeee ‘III‘
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Confia file example

Configuration File for setup Stirring Turbulance

REQUIRES
REQUIRES
REQUIRES
REQUIRES
REQUIRES
REQUESTS

Driver
physics/sourceTerms/Stir/StirMain
physics/Ecs

physics/Hydro

Grid

I0

include IO routine only if IO unit included
LINKIF I0 writeIntegralQuantities.F90 IO/IOMain

LINKIF IO writeUserArray.F90 I0O/IOMain/hdfS/parallel
LINKIF IO readUserArray.F90 IO/I0Main/hdfS/parallel

LINKIF I0 writeUserArray.F90.pnetcdf IO/IOMain/pnetcdf
LINKIF IO readUserArray.F90.pnetcdf IO/IOMain/pnetcdf

D c_ambient reference sound speed
D rho_ambient reference density

D mach reference mach number
PARAMETER c_ambient REAL 1l.e0
PARAMETER rho_ambient REAL l.e0
PRRAMETER mach REAL 0.3

GRIDVAR mvrt

USESETUFVARS nDim
IF nDim <> 3
SETUPERROR At present Stir turb works correctly only in 3D. Use ./setup StirTurb -3d blah blah

ENDIF

~
/_\l /\
freeeee ‘||||
LAWRENCE BERKELEY NATIONAL LABORATORY

Simple setup

Sample Units File

INCLUDE Driver/DriverMain/TimeDep

INCLUDE Grid/GridMain/paramesh/Paramesh3/PM3_package/headers
INCLUDE Grid/GridMain/paramesh/Paramesh3/PM3_package/mpi_source
INCLUDE Grid/GridMain/paramesh/Paramesh3/PM3_package/source
INCLUDE Grid/localAPI

INCLUDE 10/IOMain/hdf5/serial/PM

INCLUDE PhysicalConstants/PhysicalConstantsMain

INCLUDE RuntimeParameters/RuntimeParametersMain

INCLUDE Simulation/SimulationMain/Sedov

INCLUDE flashUtilities/general

INCLUDE physics/Eos/EosMain/Gamma

INCLUDE physics/Hydro/HydroMain/split/PPM/PPMKernel

INCLUDE physics/Hydro/HydroMain/utilities

BERKELEY LAB

LAWRENCE BERKELEY NATIONAL LABORATORY

GNU Make

Main purpose: turn a set of source code into a library or
executable.

Only two kinds of objects in a Makefile

— Variables (lists of strings)

— Rules
Only a few kinds of flow control

— ifeq/ifneqg/else/endif

— No forms or looping available, no jumps, no recursion.
Most difficulties arising from make are related to

— Non-trivial variable parsing of the makefile(s)
— Rules can fire and trigger in non-obvious ways

~.16
ceeee l BERKELEY LAB
LAWRENCE BERKELEY NATIONAL LABORATORY

The Two type of Variables in GNU Make

 Recursively Expanded Variables “=“
foo = $(bar)
bar = $(ugh)
ugh = Huh?
all:;echo $(foo)
> make all
Huh?

 Variable is executed at the time it is used in a command
« = means build up a symbol table for this name

« Notice $. Like in shell, there is the value ‘bar’ and the variable
named ‘bar’

~ 7
coree) l BERKELEY LAB
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

» (Good points:
— Order doesn’t matter!

— Can declare a variable as the composite of many other
variables that can filled in by other parts of the Makefile

— CFLAGS = $(DEBUG_FLAGS) $(OPT_FLAG) $
(LIB_FLAGS)

— Lets a makefile build up sophisticated variables when
you don’t know all the suitable inputs, or what parts of
the Makefile they will come from

« >make all DIM=3
« Bad points:
— Future = declarations can clobber what you specified

— The last = declaration in the linear parsing of a Makefile
IS the only one that matters

~. 18
coree) l BERKELEY LAB
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

66, K6

« Simply Expanded Variables
— Immediate mode variable.

— The variable is assigned it's value based on the current
state of the Makefile parsing

— No symbol chain is created.
— Specific to GNU Make
« Often just an easier to understand variable.
— It acts like variables you know in other languages.
— can use for appending
« CFLAGS := $(CFLAGS) —c —e —mmx

~ 19
ceceen) i BERKELEY LAB
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Rules

targets . prerequisites
[TAB] recipe

« prerequisites are also called “sources”

« Simple example

clobber.o : clobber.cpp clobber.h config.h
[TAB] g++ -c —0 clobber.o clobber.cpp
clob.ex : clobber.o killerApp.o

[TAB] g++ -0 clob.ex cobber.o killerApp.o

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

More powerful rules

« Pattern Rules
%.0 : %.cpp
$(CC) -c $(CFLAGS) $(CPPFLAGS) $< -0 $@
#Gives a pattern that can turn a .cpp file into a .o file

* Multitarget Rules
%.f%.H : %.ChF
« Suffix Rules
— .C.O:
« $(CC) -c $(CFLAGS) $(CPPFLAGS) -0 $@ %<

21
ceceen) i BERKELEY LAB
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Other Makefile commands

iInclude
$(MAKE)
— calling a makefile from inside a recipe

— $(MAKELEVEL) can be looked at to see how deep the
call stack is
export
— send variables from this level of make to lower
makelevels

subst

— CFLAGs:= $(CFLAGS) $(subst FALSE,,$(subst TRUE,-DCH_MPI $(mpicppflags),$
(MP1)))

foreach
— libincludes = $(foreach i,$(LibNames),-I$(CHOMBO_HOME)/src/$i)

What the “make” program does

* Much mental confusion about make comes from thinking
that the Makefile is the make program

— Remember: Makefile is only Variables & Rules
* make:

— parses all of your Makefile, builds up variable chains
(overriding variables defined on command line)

— builds up rules database, then looks at what target the
user has specified

— then attempts to create a chain of rules from the files that
exist to the targets specified.

[THNT

* recursive “=" variables in source-target expressions
are evaluated

— Using the date stamp on files discovered in the chain
make executes recipes to deliver the target.

[THEN T

* "=" variables are evaluated in recipes. . ,,
,ﬁ\%‘ BERKELEY LAB

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Demonstration of the pervasive Make

‘error’

FooBar = trendy
F:= fashion

vars.:
@echo $(FooBar) S$(F)

ifeq ($(F),fashion)
FooBar=tragic

endif

F:= comedy

>make vars

tragic comedy

>

~ 4
coeee) i BERKELEY LAB
LAWRENCE BERKELEY NATIONAL LABORATORY

FLASH Example : Makefile

Each supported site has a specific Makefile.h
— Variable defined for library locations
— Variables for compiler being used
— Flags for using in “debug”, “test” or “opt” mode
— Other necessary flags
Every directory can have a makefile snippet
— Exploits the recursively expanded variables

— Makes sure to include the source files defined at that
level unless they are inherited

— Specified local dependencies

The file snippets are consolidated into Makefile.Unit for
every unit

The Makefile.h and Makefile.Unit are “included” in the

generated Makefile \
=" BERKELEY LAB

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Software Process Components

« For All Codes
— Code Repository
— Build Process
— Code Architecture Hal with HACC architecture next
— Coding Standards
— Verification Process
— Maintenance Practices
« If Publicly Distributed code
— Distribution Policies
— Contribution Policies
— Attribution Policies

20
ceceen) i BERKELEY LAB
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

